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Coexistence of ergodic and weakly ergodic states in finite-height Wannier-Stark ladders
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We investigate a single particle in one-dimensional Wannier-Stark ladders with either a linear potential or
a mosaic potential with spacing κ = 2. In both cases, we exactly determine the critical energies separating the
weakly ergodic states from ergodic states for a finite potential height. Especially in the latter case, we demonstrate
a rich phase diagram with ergodic states, weakly ergodic states, and strongly Wannier-Stark-localized states. Our
results also exhibit that critical energies are highly dependent on the height of the ladder and ergodic states only
survive at E ≈ 0 for the high ladder. Importantly, we find that the number of ergodic states can be adjusted
by changing the interval of the nonzero potential. These interesting features will shed light on the study of
disorder-free systems.
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I. INTRODUCTION

Anderson localization [1] is well known as the phe-
nomenon in which the eigenfunction amplitude decays
exponentially in space in disordered systems. It provides
a foundational understanding of the insulating property of
materials containing impurities. Scaling theory shows that
Anderson localization is dimension dependent [2–5]. In one-
and two-dimensional systems without any symmetry, all states
are Anderson-localized states in the presence of arbitrarily
weak uncorrelated disorder [2,3]. However, in three dimen-
sions, there is a localization transition from extended states to
Anderson-localized states as the disorder strength increases.
In this three-dimensional system, Anderson-localized states
and extended states coexist, and they are separated by criti-
cal energies, dubbed mobility edges [4]. Since then, various
uncorrelated disordered systems and quasiperiodic (quasi-
randomness) systems have been found to display the existence
of mobility edges [6–21], and some of them have been ob-
served in experiments [22–25].

Recently, it was reported that mobility edges also exist in
disorder-free systems with mosaic modulations for spacing
κ > 1 [26]. However, Ref. [27] shows the opposite conclusion
to Ref. [26], which analytically proves that there is no mobility
edge in the strict sense in the mosaic Wannier-Stark lattices
and points out that Avila’s theory [28] is not applicable to
these systems. The corresponding experiment is also reported
in Ref. [29]. To illustrate the motivation for this work, we refer
to the definition of Wannier-Stark localization. For a model
in the presence of a linear potential, the eigenstates are the
well-known Wannier-Stark states |�m〉 = ∑

j J j−m(2t/V )| j〉
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[30], where J j−m are the Bessel functions of the first kind
and j and m represent the site index and energy-level index,
respectively. The properties of the Bessel functions show that
J j−m are mainly localized in the interval |m − j| < 2t/V
[31]. In the thermodynamic limit with system size L → ∞,
|m − j| < 2t/V � L for arbitrarily finite V ; thus, all states
are Wannier-Stark-localized states [31–34]. This case corre-
sponds to the infinite-height Wannier-Stark ladder due to the
height of the ladder V L → ∞. Different from it, when the
Wannier-Stark ladder is finite height, the extended states can
also exist [35–37]. Thus, the height of the ladder is impor-
tant for Wannier-Stark localization. In this work, we mainly
focus on the case of finite-height Wannier-Stark ladders to
identify different phases. To introduce the different phases ob-
served in this work, we explicitly define that the ergodic state
corresponds to the wave function being distributed through-
out the space, the weakly ergodic state corresponds to the
wave function living on a finite fraction of all the sites with
fractal dimension D = 1 [38], and the strongly Wannier-Stark-
localized state corresponds to the wave function localizing in
about a single site [39,40], as shown in Fig. 1(a).

II. MODEL

We investigate a quantum particle in a disorder-free chain
with open boundary conditions, which is described by the
following Schrödinger equation [41]:

t (ψ j+1 + ψ j−1) + Vjψ j = Eψ j, (1)

where ψ j is the amplitude of the wave function at site j. E is
the eigenvalue. We set the nearest-neighbor hopping strength
t ≡ 1 as the energy unit, and Vj is the site-dependent potential,
which reads

Vj =
{

V j, j = κi,
0, otherwise, (2)
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FIG. 1. Schematic plot of wave functions and potentials. (a) Typ-
ical wave functions for ergodic states, weakly ergodic states, and
strongly Wannier-Stark-localized states. (b) The linear potential with
spacing κ = 1 and the mosaic potential with spacing κ = 2. In (a),
rectangles represent lattice sites, and orange-filled ones represent
sites occupied by the wave function. In (b), j is the site index, and
Vmax represents the maximum value of the potential. The green and
yellow lines indicate that the potential energy is nonzero and zero,
respectively. It is necessary to emphasize that the critical energies
obtained in our work separate ergodic states and weakly ergodic
states in the spectrum.

where V is the strength of the linear potential. κ adjusts
the spacing of sites with nonzero potential. Typically, we
choose κ = 1 and κ = 2 in this work, corresponding to the
linear potential and the mosaic potential [9,26], respectively.
Schematic plots of the potentials are shown in Fig. 1(b).
Without specification, i = 0, 1, 2, . . . , (N − 1) represents the
location of the supercell. Each supercell includes κ sites; thus,
the chain length is expressed as L = κN . The maximum value
of the potential is defined as Vmax = κV (N − 1). In the present
work, we use finite-height ladders [35–37]; i.e., Vmax does not
depend on the system size, and V ∝ 1/(N − 1).

For κ = 1, Eq. (1) is reduced to the Wannier-Stark model
[30,42], whose eigenstates are all Wannier-Stark-localized
states for arbitrarily finite V [31–34]. For κ = 2, disorder-
free mobility edges were reported recently [26]. Remarkably,
these two models have already been realized in experiments in
the superconducting-qubit and nanophotonic-device systems
[29,43].

III. LYAPUNOV EXPONENT AND CRITICAL ENERGIES

We start from Eq. (1) and transform it into the transfer-
matrix form as [

ψ j+1

ψ j

]
= Tj

[
ψ j

ψ j−1

]
, (3)

where Tj is given by

Tj =
(

E − Vj −1
1 0

)
. (4)

For convenience, we abbreviate Eq. (3) as � j = Tj� j−1.
The transfer matrix of the supercell T̃i is composed of κ small
transfer matrices Tj ; thus, it can be written as

T̃i =
κi+κ−1∏

j=κi

(
E − Vj −1

1 0

)

=
(

E − V κi −1
1 0

)(
E −1
1 0

)κ−1

. (5)

The Lyapunov exponent indicates the exponential rate of
growth of the transfer-matrix product, which is defined as

γ (E ) = lim
L→∞

1

L
ln

⎛
⎝

∣∣∣∣∣∣
∣∣∣∣∣∣
L−1∏
j=0

Tj

∣∣∣∣∣∣
∣∣∣∣∣∣
⎞
⎠

= lim
L→∞

1

L
ln

(∣∣∣∣∣
∣∣∣∣∣
N−1∏
i=0

T̃i

∣∣∣∣∣
∣∣∣∣∣
)

, (6)

where ||·|| is the norm of the matrix, determined by the
maximum of the absolute value of eigenvalues. For localized
states, γ (E ) > 0, whereas for nonlocalized states γ (E ) = 0
[12,44]. The Lyapunov exponent is widely used in studies
of Anderson localization and mobility edges [12,44–49].
In the present work, we use the Lyapunov exponent to
determine the critical energies separating ergodic states
and weakly ergodic states since the weakly ergodic states
in this work have γ > 0, which is different from ergodic
states with γ = 0. Since the height of the Wannier-Stark
ladder is finite in the present work, T̃i ≈ T̃i+1 for L → ∞
according to Eq. (5), which results in the fact that the
transfer-matrix product can be converted to ||∏N−1

i=0 T̃i|| =
||φN−1�N−1φ

†
N−1φN−2�N−2φ

†
N−2 · · · φ0�0φ

†
0 || ≈

||φN−1
∏N−1

i=0 �iφ
†
0 || ≈ ||∏N−1

i=0 �i|| = ∏N−1
i=0 ||T̃i||, where

φ and � are matrices composed of the eigenstates and
eigenvalues of the transfer matrix T̃ , respectively. Thus, we
find that the Lyapunov exponent is approximated as

γ (E ) ≈ lim
L→∞

1

L
ln

(
N−1∏
i=0

∣∣∣∣T̃i

∣∣∣∣). (7)

By a direct computation, γ (E ) for κ = 1 and κ = 2 can be
obtained as

γ (E ) ≈ lim
L→∞

1

L

N−1∑
i=0

ln(max{|ε1|, |ε2|})

= lim
L→∞

1

L

N−1∑
i=0

∣∣∣∣∣ ln

(∣∣∣∣∣
−μi +

√
μ2

i − 4

2

∣∣∣∣∣
)∣∣∣∣∣, (8)

where ε1 and ε2 are eigenvalues of T̃i and ε1 = 1/ε2 due to
the determinant |T̃i| = 1. μi = E − Vi for κ = 1, and μi =
E2 − 2EVi − 2 for κ = 2. Evidently, γ (E ) = 0; the condition

gives |−μi+
√

μ2
i −4

2 | = 1 for any i, which can be satisfied if
|μi| � 2 for any i. Here, |μi| = 2 corresponds to the critical
energies, and |μi| < 2 gives the energy interval for ergodic
states. Since the nonzero potential is linear, |μi| � 2 for any
i can be guaranteed as long as both the head (i = 0) and end
(i = N − 1) of the ladder satisfy |μi| � 2. Thus, according to
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|μ0(Ec1)| = 2 and |μN−1(Ec2)| = 2, we can find that critical
energies for κ = 1 are at

E/t =
{

2,

− 2 + Vmax/t
(9)

and those for κ = 2 are at

E/t =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0,

2,

Vmax/t−
√

(Vmax/t )2+16
2 ,

Vmax/t .

(10)

It needs to be emphasized that the above derivation is based
on T̃i ≈ T̃i+1, which requires the height of the Wannier-Stark
ladder to be finite.

To verify the predictions of Eqs. (9) and (10), we numer-
ically calculate the Lyapunov exponent using the following
method from the original definition [44]:

γ (E ) = lim
L→∞

1

L
ln(|�L−1|/|�0|)

= lim
L→∞

1

L
ln

( |�L−1|
|�L−2|

|�L−2|
|�L−3| · · · |�1|

|�0|
)

= lim
L→∞

1

L

L−2∑
j=0

ln

( |� j+1|
|� j |

)
, (11)

where |� j | = √|ψ j+1|2 + |ψ j |2 is the norm of the vector.
Note that the Lyapunov exponent here is over the entire chain.
For weakly ergodic states, the wave function lives on a finite
fraction of all the sites with a higher-than-exponential decay,
and one may investigate the site-dependent Lyapunov expo-
nent to characterize its properties, as shown in Appendix E. In
this work, the Lyapunov exponent of the entire chain works
well to separate ergodic states from other states. In detail, we
first choose a normalized vector

�0 =
(√

2/2√
2/2

)
(12)

as the initial vector and set the initial Lyapunov exponent to
γ (E ) = 0. Then, we iterate j from zero to L − 2 to calculate
the Lyapunov exponent according to Eq. (11) using the fol-
lowing steps:

(1) Normalize the vector � j at site j; the normalized vector
is still denoted as � j .

(2) Calculate the next vector � j+1 = Tj+1� j using Eq. (3).
(3) Calculate the Lyapunov exponent γ (E ) = γ (E ) +

1
L ln(|� j+1|/|� j |) = γ (E ) + 1

L ln |� j+1| since � j was nor-
malized in the first step.

Here, we do not adopt the analytical method in Ref. [27]
since the weakly ergodic states separated from ergodic states
by critical energies are localized at the head or the end of
the lattice chain. This causes the results in Ref. [27] to be no
longer available in the present work; details are shown in the
Appendix B.

FIG. 2. Spectra and critical energies as a function of Vmax. The
color represents the value of ln |γ (E )|. The dark (light) region corre-
sponds to the ergodic (weakly ergodic) region. The value of Vmax here
is far from meeting the requirements for achieving strong Wannier-
Stark localization. The solid and dashed red and black lines mark the
critical energies separating ergodic states from weakly ergodic states.
(a) κ = 1 and (b) κ = 2. L = 500.

IV. RESULTS

The main results are shown in Fig. 2, in which we use the
original Lyapunov exponent defined by Eq. (11) to charac-
terize critical energies. In Fig. 2(a), we consider the linear
potential for κ = 1. Two critical energies are at E/t = 2
and E/t = −2 + Vmax/t for Vmax/t < 4, which agrees with
Eq. (9). As Vmax increases, the region of ergodic states is
compressed gradually. For Vmax/t > 4, the ergodic states dis-
appear, and all states in the spectrum are weakly ergodic
states in Fig. 2(a). When the strength of the potential is
enhanced further, the system enters the strong-Wannier-Stark-
localization region, where the particle localizes in about a
single lattice [26,39,40]. In the thermodynamic limit, Vmax →
∞ for arbitrarily finite V ; thus, it can be concluded that
arbitrarily finite V can cause the system to enter Wannier-
Stark localization, which is consistent with Refs. [31–34].
It is worth mentioning that from the perspective of energy
conservation, ergodic states and weakly ergodic states can
also be understood as scattered states and bound states [50];
thus, critical energies can also be obtained by analyzing eigen-
values [34]. In Fig. 2(b), we consider the mosaic potential
for κ = 2. There are four critical energies for Vmax/t < 2,
and two of them disappear for Vmax/t > 2; only E/t = 0
and E/t = [Vmax/t −

√
(Vmax/t )2 + 16]/2 survive. These two

critical energies approach each other as Vmax increases. Thus,
for a large Vmax, ergodic states only exist at E/t ≈ 0.

In Fig. 3, we show typical Lyapunov exponents and wave
functions for κ = 1 (left panels) and κ = 2 (right panels).
In both cases, the Lyapunov exponent γ (E ) = 0 for er-
godic states, whereas γ (E ) > 0 for weakly ergodic states in
Figs. 3(a) and 3(b). The numerical solution of the Lyapunov
exponent coincides well with Eq. (8), indicating that the ap-
proximation T̃i ≈ T̃i+1 is reasonable. The analysis of the error
caused by the approximation is shown in the Appendix F.
Figure 3(c) and 3(d) show that wave functions extend
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FIG. 3. Lyapunov exponents γ (E ) and wave functions ψ j for
κ = 1 (left panels) and κ = 2 (right panels). The gray dashed lines
mark critical energies at E/t = 0 and E/t = 2.0 in (a), whereas those
in (b) mark critical energies at E/t = 1−√

17
2 , E/t = 0, E/t = 1, and

E/t = 2.0. L = 500. Vmax/t = 2.0 in the left panels, and Vmax/t =
1.0 in the right panels.

throughout the whole chain for ergodic states, whereas wave
functions are trapped in an interval smaller than L for weakly
ergodic states. Note that wave functions of weakly ergodic
states are at the opposite partitions in Figs. 3(c) and 3(d); this
is because the distribution of weakly ergodic states is energy
dependent. In the Appendix E, we show that the weakly er-
godic state exhibits higher-than-exponential decay in the tail;
thus, the Lyapunov exponent should be γ (E ) → ∞ for the
decay distance of the wave function Xdecay → ∞. However,
due to the fact that Xdecay is limited by the finite system size,
the Lyapunov exponent is finite in the present work.

In order to more accurately describe the properties of
eigenstates, we further investigate the fractal dimension of the
wave function, which is associated with the inverse participa-
tion ratio (IPR)

∑
j |ψ j |4 and defined as

D = − ln (IPR)

ln L
. (13)

In the thermodynamic limit, D = 1 for ergodic states,
D = 0 for localized states, and 0 < D < 1 for fractal states
[4,51–55], i.e., critical states in other works [56–59]. Evi-
dently, the regions with larger fractal dimensions in Figs. 4(a)
and 4(b) are consistent with the regions where γ (E ) = 0 in
Figs. 3(a) and 3(b). And the discontinuous variations in the
derivative of D exactly correspond to the critical energies
marked by gray dashed lines. In Figs. 4(c) and 4(d), we do
the scaling analyses of IPR for ergodic states and weakly
ergodic states. By using IPR ∝ (1/L)D to fit the data, one
can find that D = 1 for ergodic states, whereas D is slightly
less than 1 for weakly ergodic states at finite sizes. Referring
to Refs. [8,9,27,34,38], one may expect D = 1 for weakly
ergodic states in the thermodynamic limit. The fractal di-

FIG. 4. Fractal dimension D and the scaling analysis of IPR for
κ = 1 (left panels) and κ = 2 (right panels). The gray dashed lines in
(a) and (b) mark the same critical energies as those in Figs. 3(a) and
3(b), respectively. The legends in (c) and (d) indicate the target eigen-
value E . The largest size in (c) and (d) is L = 25 600. Vmax/t = 2.0
in the left panels, and Vmax/t = 1.0 in the right panels.

mension of weakly ergodic states can also be estimated by
assuming the wave function with excitation uniformly dis-
tributed over 	 sites of the lattice [27]. Thus, IPR can be
estimated by the relation IPR ∼ 1/	. For 	 = f L with any
finite 0 < f < 1, where f is an L-independent prefactor, the
fractal dimension can be written as D = 1 + ln( f )/ ln(L).
In the thermodynamic limit L → ∞, the fractal dimension
D → 1.

Consequently, we have determined critical energies sep-
arating weakly ergodic states from ergodic states. Here, we
complete the entire phase diagram of the mosaic system by
referring to the previous work on strongly Wannier-Stark-
localized states [26]. It should be clearly pointed out that
the Lyapunov exponent cannot distinguish between weakly
ergodic and strongly Wannier-Stark-localized states because
γ (E ) > 0 for both two states. Although the fractal dimensions
of ergodic states and weakly ergodic states are both D = 1
in the thermodynamic limit, there are differences between
them at finite sizes; thus, we utilize the fractal dimension to
characterize different phases for mosaic potentials. As shown
in Fig. 5, the red solid lines are the critical energies obtained
in the present work, while the white dashed line is the “mo-
bility edge” in Ref. [26]. These two types of critical energies
separate the spectra into three regions: D ≈ 1 for the ergodic
region (region I), D ≈ 0 for the strongly Wannier-Stark-
localized region (region II), and the remaining region is the
weakly ergodic region (region III). It is worth mentioning that
recent work showed that all states are Wannier-Stark-localized
states with the exception of (κ − 1)-isolated extended states
[27]. This conclusion is not contradictory to the present work
since we employ a finite-height Wannier-Stark ladder where
Vmax does not depend on the size, while the earlier work used
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FIG. 5. The entire phase diagram of the mosaic potential with
κ = 2. Different phases are diagnosed by the fractal dimension. Red
solid lines and the white dotted line mark critical energies from
Eq. (10) and Ref. [26], respectively. The color represents the value
of the fractal dimension. L = 2000.

an infinite-height one with Vmax ∝ L. More explicitly, when
L → ∞, Vmax is finite in the present work, whereas Vmax →
∞ in Ref. [27]. These two types of potentials (Vmax is finite or
infinite) can both be realized in experiments, corresponding
to the weak and strong linear potentials [35–37], respectively.
Furthermore, we use the potential interval [0, Vmax], whereas
Ref. [27] used a potential interval containing positive and
negative values that is symmetric about zero. Crucially, our
results show that critical energies highly depend on Vmax and
the system with a finite-height Wannier-Stark ladder is a good
platform for the observation of the coexistence of ergodic
states and weakly ergodic states.

Above we set the location of the supercell as i =
0, 1, 2, . . . , N − 1; here, we consider a more general case
by setting i = x, x + 1, x + 2, . . . , x + N − 1. Obviously, al-
tering x does not change the width of the nonzero potential
	V = κV (N − 1). In Fig. 6, we fix κ = 2 and 	V/t = 6 to
study the effect of x on the number of ergodic states. By taking
i = x, x + 1, x + 2, . . . , x + N − 1 in the above method of
calculating the critical energies, one can obtain that in addition
to E/t = 0, ergodic states can also exist in the energy regions

Ṽmax < E < (Ṽmin +
√

(Ṽmin)2 + 16)/2, x < −N − 1

2
,

(Ṽmax −
√

(Ṽmax)2 + 16)/2 < E < Ṽmin, x � −N − 1

2
, (14)

where Ṽmax = 2V (x + N − 1) and Ṽmin = 2V x. By a direct
computation, Ṽmax = [Ṽmin +

√
(Ṽmin)2 + 16]/2 and [Ṽmax −√

(Ṽmax)2 + 16]/2 = Ṽmin give the critical cases xc1 = 4(N −
1)/(	V/t )2 − (N − 1) and xc2 = −4(N − 1)/(	V/t )2, re-
spectively. Thus, we find that ergodic states only survive
at E/t = 0 for κ = 2 for xc1 < x < xc2. Typically, only one
ergodic state survives at E/t = 0 for x = −250. On the con-

FIG. 6. (a) The number of ergodic states Nergodic as a function of
x. (b) The spectrum as a function of x. L = 1000, 	V/t = 6, κ = 2,
and V/t = 	V/[κ (N − 1)t] = 3/499. The red and blue dashed lines
in (a) indicate xc1 = −444 and xc2 = −55, respectively. The black
and red solid dots in (a) correspond to the potential settings in
Ref. [27] and in Ref. [26], respectively.

trary, the number of ergodic states is more than one for
x > xc2 and x < xc1. For x = 0 in Fig. 6, the number of
ergodic states is about 270. To show how the number of
ergodic states changes with x intuitively, we calculate the
product of the wave function at the beginning and end of the
lattice h = |ψ0ψL−1| in Fig. 6(b). For ergodic states, one may
expect |ψ0| > 0 and |ψL−1| > 0, resulting in h > 0. Different
from that result, h = 0 for weakly ergodic states and strongly
Wannier-Stark-localized states. Evidently, different settings of
potential intervals have a significant impact on the number of
ergodic states. The nonzero potential with zero symmetry is
not conducive to the existence of ergodic states.

V. CONCLUSION

In summary, we have studied the transition in one-
dimensional systems subjected to finite-height linear and
mosaic potentials. In the present work, by exploiting the
property that the nearest-neighbor transfer matrices are ap-
proximately equal, we introduced a method to obtain the
Lyapunov exponent and exactly determine critical energies
separating weakly ergodic states from ergodic states in both
cases. Especially, in the latter case, we demonstrated a richer
phase diagram relative to previous work, including an ergodic
region, a weakly ergodic region, and a strong-Wannier-Stark-
localization region. We found that critical energies are highly
dependent on the height of the ladder and the region of ergodic
states is compressed as the height of the ladder increases.
Importantly, we found that the number of ergodic states is
regulated by the potential interval. By adjusting the poten-
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tial from symmetry about zero to asymmetry, the number of
ergodic states increases significantly. These interesting fea-
tures will bring new perspectives to a wide range of
localization and disorder-free systems.
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APPENDIX A: PROBING WITH
THE DYNAMICAL EVOLUTION

To dynamically identify ergodic states, weakly ergodic
states, and strongly Wannier-Stark-localized states, we inves-
tigate the dynamical evolution |�(τ )〉 = e−iHτ |�(0)〉 of the
initial state |�(0)〉 and the fidelity f = |〈�(τ )|�(0)〉|2, as
done in Ref. [29]. First, we set Vmax = 10 for a weak mosaic
potential. In Fig. 7(a), the wave function spreads to the entire
chain during time evolution when the energy of the initial state
is in the ergodic region. On the contrary, Fig. 7(b) shows that
when the energy of the initial state is in the weakly ergodic
region, the wave function oscillates periodically with time.
This phenomenon is the well-known Bloch oscillation [60].
The fidelities corresponding to the wave functions in Figs. 7(a)
and 7(b) cause f (τ ) to drop to zero after long-time evolu-
tion, and the local information of the initial state is erased in
Fig. 7(d), whereas f (τ ) periodically oscillates to preserve the
local information in Fig. 7(e). Second, we set Vmax = 103 for
a strong mosaic potential to study the dynamical evolution of
strongly Wannier-Stark-localized states. In Fig. 7(c), the wave
function does not change obviously during time evolution
because the amplitude of the Bloch oscillation is suppressed.
Correspondingly, in Fig. 7(f) the fidelity remains f ≈ 1.0, and
the local information is stored for any time.

APPENDIX B: THE BOUNDARY EFFECT

To illustrate why we do not use the results in Ref. [27], we
do the following analysis. We start from the transfer matrix in
the main text,

T̃i =
(

E − V κi −1
1 0

)(
E −1
1 0

)κ−1

. (B1)

By using Sylvester’s law, it can be written as

T̃i =
(

E − V κi −1
1 0

)(
sin(κω)

sin ω

− sin[(κ−1)ω]
sin ω

sin[(κ−1)ω]
sin ω

− sin[(κ−2)ω]
sin ω

)
, (B2)

where the complex angle satisfies ω = arccos E
2 . This transfer

matrix can be abbreviated as

T̃i =
(

S11 S12

S21 S22

)
, (B3)

FIG. 7. The wave functions after time evolution |�(τ )|2 (left
panels) and the corresponding fidelities f (τ ) (right panels) as a
function of time τ . In (a) and (d), the particle is at j = L/2 in the
initial state, whereas it is at j = L/2 + 1 in (b), (c), (e), and (f).
Vmax/t = 10 in (a), (b), (d), and (e), while Vmax/t = 103 in (c) and
(f). L = 500, and κ = 2. To indicate the wave functions clearly, we
control the range of the color bar from 0.0 to 0.05 in the left panels.

where

S11 = sin(κω)

sin ω
(E − V κi) − sin[(κ − 1)ω]

sin ω
,

S12 = − sin[(κ − 1)ω]

sin ω
(E − V κi) + sin[(κ − 2)ω]

sin ω
,

S21 = sin(κω)

sin ω
,

S22 = − sin[(κ − 1)ω]

sin ω
. (B4)

Utilizing det S = S11S22 − S12S21 = 1, we get the recursive
relation of the amplitudes ψi as

ψi+1 + ψi−1 = (S11 + S22)ψi

=
[

2 cos(κω) − sin(κω)

sin ω
V κi

]
ψi. (B5)

For i → ∞, the above recursive relation is expressed as

ψi+1 + ψi−1 = sin(κω)

sin ω
V κiψi. (B6)
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FIG. 8. (a) and (b) Spatial distribution of the 250th eigenstate
and the 10th eigenstate. (c) and (d) Wave functions and fractal di-
mensions for different boundary conditions. L = 500, Vmax/t = 6,
and κ = 1 in (a) and (b). L = 500. Vmax/t = 2.0, and E/t ≈ 3.048
in (c), corresponding to Fig. 3(c) in the main text. L = 2000, and
Vmax/t = 2.0 in (d), corresponding to Fig. 4(a) in the main text.
For m = 10, i = m − 2

V/t = m − 2(L−1)
Vmax/t < 0; thus, the red dashed line

indicating i = m − 2
V/t is not shown in (b).

The recursive relation of Bessel functions is given by

Ji+1(x) + Ji−1(x) = 2i

x
Ji(x). (B7)

Taking into account that the wave function is energy level
dependent, one can obtain the set of solutions to Eq. (B6),

ψ
(m)
i = (−1)i−mJi−m(�), (B8)

where m is the energy-level index and

� = 2

V κ

sin ω

sin(κω)
. (B9)

The properties of the Bessel functions show that Ji−m is
mainly localized in the interval |i − m| < �, which is used
to estimate the IPR in Ref. [27]. To check the localization
properties of the eigenstate, we choose κ = 1 as an example.
In this case, � simplifies to � = 2/V ; thus, the mth eigen-
state is mainly localized within (m − 2/V ) < i < (m + 2/V ),
which is verified in Fig. 8(a). However, it can also be found
that not all eigenstates satisfy the above localization interval.
Typically, we plot the 10th eigenstate for the same parame-
ters in Fig. 8(b), in which the localization interval violates
Eq. (B9) derived from Ref. [27]. This can be understood be-
cause the distribution of the eigenstate is affected by the drop
between the end and the head of the lattice chain. Remarkably,
the weakly ergodic states, separated from ergodic states by
critical energies in our work, are localized at the head or the
end of the lattice chain; thus, they cannot be described by the
analytical solution in Ref. [27] and also do not follow certain
conclusions in Ref. [27]. In Figs. 8(c) and 8(d), we show
the wave functions and fractal dimensions for open boundary

FIG. 9. (a) IPR versus 1/L. (b) d (ln IPR)/d (ln L) versus 1/L.
κ = 1, Vmax/t = 2, and the largest size is L = 300 000. Here, we use
the state-of-the-art shift-invert algorithm.

conditions (OBCs) and periodic boundary conditions (PBCs),
and we can see that the boundary effect is not obvious.

APPENDIX C: THE SCALING BEHAVIOR
OF IPR FOR WEAKLY ERGODIC STATES

In the main text, we stated that the fractal dimension of
weakly ergodic states is slightly less than 1 for finite system
size. Typically, D = 0.89 for E/t ≈ −1 in Fig. 4(c) in the
main text. This fractal dimension is obtained by fitting data
with sizes less than L = 25 600. Here, we use the state-of-the-
art shift-invert algorithm to make the size reach 300 000 and
fit the data again. Figure 9(a) indicates D = 0.922, which is
larger than the fractal dimension extracted from small system
sizes. This implies that the fractal dimension of the weakly
ergodic state requires a very large system size to converge.
Intuitively, we show the slope d (ln IPR)/d (ln L) as a function
of 1/L in Fig. 9(b). For ergodic states IPR ∝ (1/L), the slope
d (ln IPR)/d (ln L) should be −1, whereas for critical states

FIG. 10. Fractal dimension D and the fraction f for κ = 1 (left
panels) and κ = 2 (right panels). In (a) and (b), the abscissa indicates
the normalized energy-level index, where k is the energy-level index.
Here, we alter the system size L from L = 10 000 to L = 40 000 in
(c) and (d).
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FIG. 11. (a) ln |ψi| as a function of i. (b) The site-dependent
Lyapunov exponent γi(E ) as a function of i. κ = 1, and L = 500.
Vmax/t = 2.0. The gray dashed lines in (a) and (b) indicate i = 263.
The value of the wave function for i < 170 is less than double
precision in (a).

IPR ∝ (1/L)D with 0 < D < 1, the slope d (ln IPR)/d (ln L)
should be −D. In Fig. 9(b), d (ln IPR)/d (ln L) decreases as
the system size increases, which means that even if the size
reaches 300 000, the fractal dimension still does not converge.

APPENDIX D: THE NUMBER OF DIFFERENT STATES

The mobility edge separating extended states and localized
states should satisfy the requirement that the number of ex-
tended states and localized states is a finite fraction of all
the states. Strictly speaking, the case in Ref. [27] with only
a limited number of extended states and an infinite number
of localized states cannot be called mobility edges. Here, we
show the fractal dimension D as a function of the normal-
ized energy-level index k/L in Figs. 10(a) and 10(b), where
k is the energy-level index. These two plots correspond to
Figs. 4(a) and 4(b) in the main text. One can find that the
proportions of ergodic states and weakly ergodic states do
not obviously change with size. More intuitively, we show
the fraction ( f = N/L, where N denotes the number of the
ergodic or weakly ergodic states and L is the number of all
states) as a function of the system size in Figs. 10(c) and 10(d).
The finite f of weakly ergodic states and ergodic states in the
thermodynamic limit indicates that the ratio between them is
finite.

FIG. 12. The error caused by the approximation for ergodic
states and weakly ergodic states. κ = 1, and Vmax/t = 2. E/t = 0 in
(a) and E/t = 3 in (b) correspond to the ergodic state and the weakly
ergodic state, respectively.

APPENDIX E: THE DECAY OF THE WEAKLY ERGODIC
STATES AND THE SITE-DEPENDENT

LYAPUNOV EXPONENT

In Fig. 11(a), we show the typical wave function of weakly
ergodic states. The wave function decays as i decreases
starting from i = 263. Here, the value of the wave function for
i < 170 is less than double precision, i.e., |ψi| < 10−16 for i <

170; thus, we choose 170 < i < 263 to analyze the wave func-
tion. The fitting gives |ψi| = exp[−0.04881(263 − i)1.468 −
2.495], showing a higher-than-exponential decay. For a wave
function that decays as |ψx| = exp[−axb + c] (b > 1), the
Lyapunov exponent should be infinity for the decay distance
of the wave function x → ∞. In our work, we find γ (E ) is
a finite value because x is limited by the finite system size.
In Fig. 11(b), we plot the site-dependent Lyapunov exponent
γi(E ) = ln ||T̃i|| [the Lyapunov exponent of the entire chain
can be written as γ (E ) = 1

L

∑
i γi(E )]. One can find that the

nonzero value of γi(E ) is at i < 263, which is consistent with
the region where the wave function decays in Fig. 11(a). For
i > 263, the site-dependent Lyapunov exponent γi(E ) = 0,
agreeing with the region where the wave function extends
in Fig. 11(a). Here, we also fit γi(E ), which is well fitted as
γi(E ) = 0.07139 × (263 − i)0.472.

APPENDIX F: THE ERROR CAUSED
BY THE APPROXIMATION

To determine the error caused by the approximation
between Eqs. (6) and (7), we define the error as δ =
1
L ln(||∏N−1

i=0 T̃i||) − 1
L ln(

∏N−1
i=0 ||T̃i||). In Figs. 12(a) and

12(b), we show the errors as a function of the system size
L for ergodic states and weakly ergodic states, respectively.
Although δ oscillates with the size, one can find that δ decays
exponentially as the size increases; thus, it can be expected
that δ → 0 for L → ∞. In other words, the approximation is
reasonable, and Eqs. (6) and (7) in the main text are equivalent
for L → ∞.
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