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Vortex dynamics and turbulence in dipolar Bose-Einstein condensates
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Quantum turbulence indicators in dipolar Bose-Einstein condensed fluids, following emissions of vortex-
antivortex pairs generated by a circularly moving detuned laser, are being provided by numerical simulations of
the corresponding quasi-two-dimensional Gross-Pitaevskii formalism with repulsive contact interactions com-
bined with tunable dipole-dipole strength. The critical velocities of two variants of a circularly moving obstacle
are determined and analyzed for vortex-antivortex nucleation in the form of regular and cluster emissions.
The turbulent dynamical behavior is predicted to follow closely the initial emission of vortex-antivortex pairs,
relying on the expected Kolmogorov classical scaling law, which is verified by the spectral analysis of the
incompressible part of the kinetic energy. Within our aim to provide further support in the investigations to
date of quantum turbulence, which have been focused on nondipolar Bose-Einstein condensates, we emphasize
the role of dipole-dipole interactions in the fluid dynamics.
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I. INTRODUCTION

Dipole-dipole interactions, which are manifested between
particles with permanent electric or magnetic dipoles, have
attracted a lot of interest in cold-atom physics. They are ex-
pected to lead to novel kinds of degenerate quantum gases
even in the weakly interacting limit. The theoretical founda-
tion with related progress can be found in review articles, as in
Refs. [1,2]. The control of effective atom-atom dipole interac-
tions under reasonable laboratory conditions was shown to be
possible in Ref. [3] and following seminal theoretical works
reporting the tunability of such interactions [4–6]. Soon after
that, the remarkable observations of dipolar Bose-Einstein
condensates (BECs) with isotopes of chromium (52Cr) [7–9],
dysprosium (164Dy) [10,11], and erbium (168Er) [12,13] were
reported. Along with this new exciting branch for investiga-
tions opened in cold-atom physics [2,14–18], the production
of another dipolar BEC with an isotope of europium (151Eu)
was recently reported [19]. Besides their quite different char-
acteristics, the dipole-dipole and contact s-wave interactions
provide leading-order nonlinear effects, with the dipole-dipole
interactions (DDIs) being anisotropic with long-range behav-
ior, opposing the short-range contact interactions. In the case
of polar atoms, both can be varied widely, from repulsive to
attractive, such that they are convenient parameters to con-
trol experimental realizations of confined BECs. In order to
manipulate s-wave contact interactions in cold-atom physics,
Feshbach resonance mechanisms have been extensively em-
ployed [20], since the first experimental observation of these
resonances in a BEC [21]. When considering polar atoms, we
can further control their interactions, either via the magnitude

*ssabari01@gmail.com
†kishor.bec@gmail.com
‡lauro.tomio@unesp.br

of the external (magnetic or electric) field being applied, or
by modulating the alignment of this field with the intrinsic
atomic dipole moments, which allows tuning the magnitude
and sign of the DDI [6,22]. Concerning the stability of dipo-
lar BECs, among the several studies following Ref. [9], the
dynamical stabilization was explored by time modulation of
scattering length and using the interplay between nonlinear
interactions [23–25]. Noticeable is the increased interest in
binary dipolar mixtures, exploring miscible and immiscible
regimes [26,27], with an experimental realization (using er-
bium and dysprosium) reported in Ref. [28]. Along with these
studies, the intensive investigations of rotational properties
and vortex dynamics with binary dipolar atoms [29–35] aim
to provide a platform to access plenty of other many-body
quantum phenomena, such as the possible creation of long-
lived quantum-droplet states and expected connections with
superfluidity in BECs.

Quantum vortices in a BEC [15] can be created only at a
minimum critical angular velocity, when energetically favor-
able, different from their occurrence in normal fluids. Within a
realistic experiment, the critical rotation for vortex nucleation
can be larger due to dynamical instabilities at the boundaries.
In superfluid and superconductor phase transitions, quantum
vortices play a prominent role, as known since discoveries
related to helium superfluidity [36] and at high-temperature
superconductors [37]. Beyond that, they are commonly ob-
served and investigated in a wide range of contexts going
beyond cold-atom physics, such as on exciton-polariton con-
densates [38], on polariton superfluids [39], and in optics
[40,41]. Quantized vortices have been nucleated in BECs
through several techniques, such as rotating the trapping po-
tential or thermal cloud [42] (in experiments consistent with
following up numerical analysis [43,44]), stirring the conden-
sate with a blue- or red-detuned laser beam [45–49], moving a
condensate past a defect [50], rapid quench phase transitions
of a cooling condensate [51], or decay instability of a soliton
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[52]. More recently, vortex nucleations have been applied
to lattice configurations [53], by predicting vortex positions
along low-density paths separating the sites.

Within a recently reported experiment, by applying a
moving Gaussian obstacle in a BEC [54], the authors have
shown that a tangle of quantized vortices can be produced.
As known from classical fluid dynamics, vortex tangles are
understood as a signature of turbulence, with the structure of
turbulence being already associated with the flow of incom-
pressible viscous fluids by Kolmogorov [55]. Since Onsager’s
ground-breaking theoretical work linking turbulence with
point-vortex dynamics in a two-dimensional (2D) fluid [56],
it has been hoped that the simple fundamental rules behind
quantum theories, together with the recent experimental ad-
vances in studying vortex dynamics in superfluids, will aid
in understanding the nature of turbulence. As pointed out
in 1963 by Feynman et al. [57], the analysis of circulating
turbulent fluids is one of the most important problems in
nature, left over a hundred years with nobody really having
been able to analyze it mathematically, satisfactorily still to
be solved in spite of its importance. Subsequently, with ex-
pectation that some light on the general solution of classical
turbulence can be found in the so-called quantum turbu-
lence (QT), the similarities between classical turbulence with
superfluidity and QT have been explored in several works
and reviews [58–61], which are mainly concerned with the
large classical length scales, as compared with the charac-
teristic quantum length scale found by the spacing between
vortex lines.

After many years of research with superfluid helium sys-
tems, QT became a well-established field for investigation,
motivating numerous new insights and developments regard-
ing its possible universality [58]. The discovery of links
between classical and quantum turbulence has remained a
strong motivating factor for QT research, with particular in-
terest in cold-atom physics, considering the actual available
experimental possibilities, being a platform for probing and
studying superfluid flows [62,63]. In this regard, on the way
to understanding the superfluidity phenomenon, the critical
speed below which there is no longer dissipation in a fluid
was studied considering a BEC experiment of sodium atoms
[45]. The formation of clusters of like-sign vortices has been
studied extensively in 2D quantum fluids [49,64–69], with
the phenomenon being related to the inverse energy cascade
[70,71] and large structure produced as the energy is trans-
ferred from a small to a large spatial scale. The dynamical
production and decay of turbulence and vorticity was studied
in Ref. [72] by assuming a stirred atomic BEC, within an
investigation that was further explored recently in Ref. [73]
for binary coupled systems. With QT being understood as a
complex dynamics of quantized vortices being reconnected,
the recent experimental study on turbulent motion in quantum
fluids is also noticeable, reported in Ref. [74], in which the
authors consider a regime in quantum fluids where the role of
vortex reconnections for turbulence can be neglected. From
theoretical side, there is also a recent numerical simulation
in Ref. [75], considering Kolmogorov and Kelvin wave cas-
cades within a generalized model for quantum turbulence,
that includes beyond-mean-field corrections. Furthermore, on
the progress and status of QT investigations in BECs, we

highlight the reports [76,77], in which more related references
can be found.

Nevertheless, it is worthwhile to point out that most of the
above-mentioned studies on QT rely only upon nondipolar
atomic cases. Besides the actual increasing interest in vortices
being generated in quantum dipolar gases [2,31,78–80], as
well as all other BEC investigations using dipolar atomic sam-
ples [16,17], the possibility of quantum turbulence in dipolar
BECs remains almost unexplored, except from a previous
study in Ref. [81] characterizing turbulence in the context
of a dipolar Bose gas condensing from a highly nonequilib-
rium thermal state, without external forcing. Therefore, we
understand it as timely to investigate the possible occurrence
of QT in a dipolar BEC submitted to a stirring mechanism.
As detailed in the next sections, the occurrence of turbulence
is characterized in our study by assuming defined regions
of atom-atom parameters, as the repulsive contact s-wave
and dipole-dipole interactions. However, our analyses are not
limited to the given values and can be extended to a larger
range of parameters. For that, we consider a circular stir-
ring mechanism to initially produce the dynamics leading to
vortex-pair production, which eventually produces turbulence
in the condensed quantum fluid. Furthermore, in order to
bring out the impact of the DDI, we vary the strength of the
DDI by tuning the dipole angle defining the direction of the
external magnetic field, as will be shown. Thus, we hope this
work can be helpful for experimental realizations of QT in
dipolar BECs.

The paper is structured as follows: In Sec. II, together with
our notation, we set the basic Gross-Pitaevskii (GP) stirring
model formalism with dipole-dipole interactions, with Sec. III
furnishing the main results related to the vortex nucleation
considering two stirring models. In Sec. IV, following a de-
tailed analysis on the vortex dynamics through the kinetic
energy spectra, we provide some evidences of quantum tur-
bulence occurring when vortex-antivortex pairs start to be
nucleated. Finally, Sec. V presents our final considerations
and conclusions.

II. GROSS-PITAEVSKII STIRRING MODEL
WITH DIPOLE-DIPOLE INTERACTION

In the mean-field approximation of a dilute dipolar BEC of
atoms with mass m, assuming two-body contact interactions
between the N atoms, the following three-dimensional (3D)
time-dependent GP equation is obtained for the wave function
�(r, t ) normalized to one [2,14]:

ih̄
∂�(r, t )

∂t
=

(
− h̄2

2m
∇2 + V (r, t ) + g3D|�(r, t )|2

)
�(r, t )

+ N
∫

d3r′Udd(r − r′)|�(r′, t )|2�(r, t ), (1)

where g3D ≡ 4π h̄2asN/m (with as being the atom-atom
s-wave scattering length) is the cubic nonlinear contact
parameter. Udd(r − r′) provides the nonlocal long-range
dipole-dipole interaction between atoms at distances |r − r′|,
with V (r, t ) being an external confining harmonic trap supple-
mented by a time-dependent stirring interaction, to be detailed
in this section. As considering the time-dependent mean-field
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formalism (1) with possible vorticities, a convenient defined
parameter related to the N-body density is the healing length,
given by the inverse of the square root of the chemical po-
tential μ (ξ ≡ h̄/

√
mμ), obtained by equating the quantum

pressure and the interaction energy.

Dipole-dipole interaction

The long-range interaction between dipolar atoms with
magnetic moments μA, located at r and r′, when considering
the tunability of the magnetic dipolar interaction in quantum
gases, is detailed in Ref. [6]. With direction defined by an
angle α, an external magnetic field B(t ) is applied, which
is a combination of a static component (B cos α)ẑ in the z
direction, with a fast-rotating (with frequency �) transversal
component B sin α[cos(�t )x̂ + sin(�t )ŷ], such that within a
cycle the atoms can be considered as remaining near the same
position. Given this condition, an average of the interaction
can be performed within a period, which provides an extra
factor (3 cos2 α − 1)/2 multiplying the original dipole-dipole
potential aligned along the z direction. This procedure results
in the cylindrically symmetric DDI

Udd(r − r′) = μ0μ
2
A

4π

(1 − 3 cos2 θd )

|r − r′|3
(

3 cos2 α − 1

2

)
, (2)

where μ0 is the permeability of free space, and θd is the
angle between the z axis and the vector position of the
dipoles r − r′. The angle α defines the inclination of the
dipole moments μA relative to the z direction. In our quasi-2D
confinement (with most of the atoms close to the transversal
plane), the r − r′ can be assumed in a plane perpendicular to
the z direction, with θd ≈ 90◦. Therefore, the angle α turns
out to be the key parameter in Eq. (2) to manipulate and
alter effectively the DDI (independently of the μA values),
from repulsive (when α < αM) to attractive (when α > αM)
interactions, where αM ≈ 54.7◦ is known as the magic angle
(when the DDI is reduced to zero). In our numerical approach,
we consider 168Er as the sample atom in the choice we made
for the magnetic moment μA that gives the maximum repul-
sive value of the DDI strength (when α = 0), with μA = 7μB

(where μB is the Bohr magneton). By changing the dipolar
atom, together with the respective masses, the maximum DDI
strength has to be readjusted correspondingly. The more re-
cently dipolar atom produced in a BEC experiment, the 151Eu,
has about the same value (μA = 7 µB) as 168Er, with 164Dy and
52Cr having μA = 10 µB and 6 µB, respectively.

Confining potential perturbed by moving circular obstacle

The confining trap potential V (r, t ) is defined within a
model that contains a cylindrically symmetric harmonic in-
teraction, with longitudinal and radial frequencies ωz and
ωρ , respectively, and large aspect ratio λ = (ωz/ωρ )2 ∼ 100,
perturbed in the transversal direction by a time-dependent
penetrable Gaussian-shaped potential VG(x, y, t ), expressed
by

V (r, t ) ≡ mω2
ρ

2
[(x2 + y2) + λz2] + VG(x, y, t ), (3)

FIG. 1. Graphical representation, in arbitrary units, of a bell-
shaped laser stirring penetrable obstacle, with Gaussian format
defined by Eqs. (4) and (5), circularly moving inside a BEC fluid
with velocity r0ν and radius r0.

where

VG(x, y, t ) ≡ A(t ) exp

(
− [x − x0(t )]2 + [y − y0(t )]2

2σ 2

)
(4)

models a possible experimental realization with a stirring
mechanism that uses a laser-detuned 2D obstacle moving
circularly within a fixed radius r0 and given frequency
ν. In the above Gaussian distributions, x0(t ) ≡ r0 cos(ν t )
and y0(t ) ≡ r0 sin(ν t ) give the instant position of the ob-
stacle in the 2D plane, with σ being the corresponding
standard radial deviation (close to half width of the distri-
bution). The amplitude (strength) of the perturbation, A(t ), is
represented by

A(t ) ≡ A0[1 + ε sin(ωA t )] = A0

[
1 + ε sin

(ωA

ν
νt

)]
, (5)

within two variant types, with respect to the time dependence:
For type I, A(t ) = A0 is invariant (ε = 0), and for type II, A(t )
vibrates with frequency ωA and displacement factor ε 	= 0. In
both cases, A0 is assumed to be close to 90% of the stationary
chemical potential μ. In Fig. 1, we have a pictorial repre-
sentation of the quasi-2D condensate with the moving laser
obstacle.

Our approach to producing the dynamics relies on consid-
ering the Gaussian-shaped time-dependent interaction (4) in
the GP formalism (7), for a condensed dipolar system with the
DDI (2) having the strength controlled by the angle α. There-
fore, once the trap aspect ratio λ and the atom-atom two-body
scattering length are fixed, besides the DDI parameter α, the
other main parameters are the ones of the Gaussian model (4),
namely, the amplitude A(t ) (in the two variant types), width
σ , position r0, and angular frequency ν. The choice of the
parameters, such as r0 and the two-body repulsive interaction
as, were fixed after some preliminary investigation leading
to the production of vortex pairs. Within this purpose, hav-
ing the repulsive contact interaction driving the original size
of the condensate, the radial position should be kept not close
to the center (where the circular speed will come out being
unrealistically high for vortex production), as well as not in
the very-low-density region (where the expected increasing
vortex numbers occur in a nonuniform region of the quantum
fluid). We are aware that, by considering as and r0 fixed, the
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parameter α must be restricted within some limits to keep
repulsive the total interaction (sum of contact and dipolar),
within a condensate with radius enough larger than r0, for the
analysis of the vortex dynamics.

In the remaining part of this section, we first express the
3D GP equation (1) in dimensionless form, following by
a reduction of the formalism to two dimensions, which is
validated by a large aspect ratio λ. By keeping our notation
close to the one used in Ref. [33] (for binary BEC with DDI),
with the frequency and length units given by ωρ and �ρ ≡√

h̄/(mωρ ), the full-dimensional variables are replaced by the
corresponding dimensionless ones, as r/�ρ → r, ωρt → t ,
as/�ρ → as, and �3/2

ρ � → �. Also, by factoring the energy
unit h̄ωρ , the trap interaction (3) and the stirring potential (4)
will remain having the same formal expression, which means
V (r, t )/(h̄ωρ ) → V (r, t ) and A(t )/(h̄ωρ ) → A(t ). Therefore,
in dimensionless quantities, Eq. (1) is replaced by

i
∂�(r, t )

∂t
=

(
− 1

2
∇2 + V (r, t ) + g|�(r, t )|2

)
�(r, t )

+ gdd

[∫
d3r′ 3 cos2 α − 1

2|r − r′|3 |�(r′, t )|2
]
�(r, t ),

(6)

where g ≡ g3D/(h̄ωρ�
3
ρ ) and gdd ≡ Nμ0μ

2
A/(4π h̄ωρ�

3
ρ ). In

terms of a defined dipole length add ≡ μ0μ
2/(12π h̄ω�2

ρ ), we
can write gdd as gdd = 3N (add/�ρ ). The stability of a dipolar
BEC depends on the external trap geometry; e.g., a dipolar
BEC is stable or unstable depending on whether the trap is
pancake or cigar shaped, respectively. The instability usu-
ally can be overcome by applying a strong pancake-like trap
with repulsive two-body contact interaction. The external trap
helps to stabilize the dipolar BEC by imprinting anisotropy on
the density distribution. So, with the dynamics of the dipolar
BEC strongly confined in the axial direction (λ � 1), �(r, t )
can be decoupled as

�(r, t ) ≡ χ (z)ψ (ρ, t ) ≡
(

λ

π

)1/4

exp

(−λz2

2

)
ψ (ρ, t ),

where ρ ≡ (x, y) ≡ (ρ cos θ, ρ sin θ ), allowing the dynam-
ics in the z direction to be integrated out. This procedure
is straightforward for nondipolar BEC systems. However,
we still need to perform the 2D reduction of the DDI
configuration-space term, which is followed by the double z
integration. Apart from the DDI parameter gdd, the 2D expres-
sion for the DDI is given by [26]

V (d )(ρ − ρ′) =
∫

dzdz′|χ (z)|2|χ (z′)|2 3 cos2 α − 1

2|r − r′|3 . (7)

Given the corresponding Fourier transforms to the momentum
space (kρ, kz ), for this potential, being Ṽ (d )(kρ ), for the axial
density ñ(kz ), as well as for the 2D densities, ñ(kρ ), we have
the following identification [22]:∫

dρ′V (d )(ρ − ρ′)|ψ ′|2 = F−1
2D [Ṽ (d )(kρ )̃n(kρ )]. (8)

In the 2D momentum space, the DDI can be expressed as
the combination of two terms, considering the orientations
of the dipoles α and projection of the Fourier transform in

momentum space. One term is perpendicular, with the other
parallel to the direction of the dipole inclinations [26,32],
expressed by

h⊥
2d (kρ ) = 2 − 3

√
π

2λ
kρ exp

(
k2
ρ

2λ

)
erfc

(
kρ√
2λ

)
, (9)

h‖
2d (kρ ) = −1 + 3

√
π

2λ

k2
x

kρ

exp

(
k2
ρ

2λ

)
erfc

(
kρ√
2λ

)
, (10)

with erfc(x) being the complementary error function of x. For
the parallel term, the projection of the polarizing field onto the
x-y plane is assumed in the x direction. By considering that
all directions θk are possible, and kx = kρ cos θk in Eq. (10),
for a polarization field rotating in the (kx, ky) plane, we can
average k2

ρ cos2 θk , replacing this term by k2
ρ/2. By combining

the two terms according to the dipole orientations α, the to-
tal 2D momentum-space DDI, Ṽ (d )(kρ ) = cos2(α)h⊥

2d (kρ ) +
sin2(α)h‖

2d (kρ ), becomes proportional to h⊥
2d (kρ ):

Ṽ (d )(kρ ) = 3 cos2 α − 1

2
h⊥

2d (kρ ). (11)

Therefore, with the dipolar term in the Fourier-transformed
momentum space, we obtain the effective 2D equation for the
dipolar BEC as

i
∂ψ

∂t
=

{
−1

2
∇2

ρ + ρ2

2
+ VG + gs|ψ |2

+ gdd

∫
d2kρ

4π2
eikρ ·ρ̃ ñ(kρ )Ṽ (d )(kρ )

}
ψ, (12)

where ψ ≡ ψ (ρ, t ) is the 2D wave function, normalized to
one, gs ≡ √

8πλasN/�ρ , and VG ≡ VG(ρ, t ) given by Eq. (4).
In these dimensionless units, for a circularly moving obstacle,
we can conveniently write VG as

VG(ρ, t ) = A(t ) exp

[
−ρ2 + r2

0 − 2ρ r0 cos(θ − νt )

2σ 2

]
.

(13)

From this expression, we notice that the period T for a com-
plete one-loop circular movement (potential returning to the
same value) is given by T = 2π/ν, such that we could replace
νt by 2πt/T , with t given in terms of the loop period T . For
the solution of Eq. (12), in order to investigate the vortex
nucleation and dynamics of the vortex-pair productions in
the dipolar BECs, we need to combine the usual split-step
Crank-Nicolson method with the fast Fourier transform ap-
proach [82]. In our numerics, we have used a 256 × 256 grid
size with �x = �y = 0.1 for both x and y (units �ρ), with
time step �t = 0.0001ω−1

ρ . Furthermore, we have confirmed
that the results are not affected by doubling the aforemen-
tioned grid sizes and grid spacing. Along with our study,
we also kept fixed the following parameters related to the
atom-atom interactions and stirring Gaussian model: as =
50a0, add = 66a0, N = 1.5 × 104, A0 = 36h̄ωρ , r0 = 3.5�ρ ,
and σ = 1.5�ρ , where a0 = 5.29177 × 10−11 m is the Bohr
radius and �ρ = 1 × 10−6 m. The choice of these parameters
is motivated by possible experimental realization considering
the dipolar 168Er, with two-body scattering length repulsive
enough such that the effect of the dipolar interaction can
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better be evaluated by changing the tilting DDI angle α. The
radial position of the obstacle (r0) inside the condensate was
arbitrarily chosen at an approximate average distance between
the center and the border limits of the condensate, considering
that the critical velocities for the production of vortex pairs are
given by vc = r0νc. By varying the r0 position inside the main
part of the condensed fluid, one can verify that no vortex pairs
can be produced when r0 → 0.

III. VORTEX NUCLEATION BY STIRRING
GAUSSIAN POTENTIAL

This section is concerned with the dynamical production of
vortex dipoles and vortex clusters by the time-dependent stir-
ring interaction. To obtain a stable ground state density profile,
in our simulations Eq. (12) is first solved by using imaginary
time (t → −it ), without the Gaussian obstacle (A(t ) = 0).
Next, this solution is evolved in real time with the obstacle
(A(t ) 	= 0). Once the shape of the Gaussian model for the
obstacle (amplitude and width) is considered fixed, with its
radial position inside the condensate, the principal model pa-
rameters are the strength of the DDI and the angular frequency
ν of the obstacle, implying in a corresponding linear velocity
v = νr0. We have considered two types of simulations, with
type II (ε 	= 0) differing from type I (ε = 0) by additionally
verifying the effect of vibration (with frequency ωA) in the
amplitude of the obstacle.

A. Critical velocities: Phase diagrams

With the circular movement of the obstacle fixed at a
constant radial position r0, the numerical simulation starts (at
t = 0) with a linear ramping of the time-dependent amplitude
A(t ) of the stirring interaction, from A(t ) = 0 to A(t ) = A0,
within the time interval �T = 0.0025ω−1

ρ = 25�t . Along the
simulation, this value A0 remains fixed in the case of the type
I model, whereas time vibrates with frequency ωA in the case
of the type II model. The obstacle inside the condensate is
assumed moving with a constant frequency ν. Once the model
interaction parameters are considered, as the two-body contact
as and dipole-dipole strength (provided by add and the angle
α), our results for the two defined stirring models, related to
the production of vortex-antivortex pairs and vortex clusters,
are resumed in the two panels shown in Fig. 2, in which we
provide diagrams for the DDI angles α as functions of the
rotation frequency ν (v = r0ν). Figures 2(a) and 2(b) are,
respectively, for nonbreathing (ε = 0) and breathing (ε = 0.4
with ωA = 2ωρ) modes of the Gaussian obstacle. Also, in the
time-dependent expression of the amplitude (5), we assume
A0 = 36h̄ωρ (which is about 90% of the chemical potential μ)
and σ = 1.5�ρ . Considering such moving penetrable obsta-
cles, the vortices are created in the form of dipoles consisting
of two vortices with opposite circulations, within a dynamical
process qualitatively different from the typical hard cylinder
case, where vortices can also be generated individually due to
the vortex pinning effect in the density-depleted region [54].
Within this process, for fixed values of α, critical velocities
can be verified for the production of vortex-antivortex pairs,
or vortex clusters, defining three regions: (A) with no vortex,
(B) with vortex-antivortex pairs emerging in distinguishable

FIG. 2. Diagrams for α (angles for DDI strengths) versus ν (ro-
tational frequencies) for (a) type-I and (b) type-II models, described
by Eq. (4), with (a) ε = 0 and (b) (ε, ωA) = (0.4, 2ωρ ) (with A0 =
36h̄ωρ and σ = 1.5�ρ in both cases). The critical rotational frequen-
cies for emergence of the first vortex pair are given by the thick solid
lines separating regions A and B. With type II following a behavior
similar to type I, panel (a) shows more explicitly how the critical
ν for Nvv̄ = 1 is obtained by interpolating exact results (indicated
by stars). The long-dashed lines are for increasing number of vortex
pairs, as indicated. The separation between regions B (vortex dipoles)
and C (vortex clusters) is represented by a blurred band line in both
panels. Other common parameters are r0 = 3.5�ρ (obstacle location),
as = 50a0, add = 66a0, and N = 1.5 × 104.

time-gap intervals, and (C) with vortex pairs emerging as
clusters (in indistinguishable time intervals, almost simulta-
neously). In the panels of Fig. 2, considering the given fixed
parameters, the separation between regions A and B is pro-
vided by solid thick lines that interpolate precise numerical
results (shown by stars in the case of the type I model). By
increasing even more the frequency ν, another critical border
transition can be approximately verified, when the vortex pairs
start emerging as clusters. Figure 2(a) shows more explicitly
how the vortex pairs produced in the first cycle (Nvv̄) change
by increasing ν. The first thick solid line (Nvv̄ = 1, for α

versus ν) interpolates exact critical points obtained in our
calculation, represented by stars. The other long-dashed lines
are visual guides for the verified increasing Nvv̄ as α increases
with ν.

The dynamical process of the vortex nucleation can be
understood as follows: When the Gaussian obstacle moves
faster than a critical velocity vc, energy is transferred into the
BEC density by changing the superfluid velocity field near
the obstacle. As the accumulated energy E exceeds a certain
threshold Ev , the energy will dissipate via vortex-antivortex
emission [54], represented by the thick solid line between
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regions A and B, as described above, or via vortex-antivortex
clusters for even larger velocities of the obstacle. Furthermore,
a remark has to be made related to the observed number of
pairs, Nvv̄ , in our simulations: once the vortex dipoles are
produced in the first cycle, by keeping the same rotational
speed the number of vortices produced in the next cycles is
clearly reduced, which can be explained by the changes in the
fluid dynamics as the time flows. The production of vortex
pairs occurs more easily with the obstacle rotating inside an
originally stationary uniform fluid. As the time flows, the fluid
near the obstacle is not anymore in the same stationary state
as it happens when starting the first loop. For different com-
binations of dipolar and contact interactions, a more detailed
analytical investigation on this dynamics is being considered
in a following related work, in which the plan is to investigate
the interaction between the produced vortex pairs and their
persistency inside the fluid.

By examining in more detail the type-I model [Fig. 2(a)],
when the repulsive DDI is at the maximum (α = 0), the
minimum critical frequency to produce one pair in the first
cycle (Nvv̄ = 1) is verified as νc ≈ 0.57ωρ , with the number
of pairs increasing almost linearly up to ν ≈ 1.2ωρ , when the
vortex-cluster productions start to occur (with more than one
pair at each instant of time). For the type-II case, as shown in
Fig. 2(b), the critical frequency to producing vortex dipoles at
α = 0◦ is νc ≈ 0.4ωρ , with Nvv̄ increasing with ν up to ≈1ωρ

when the pairs start being produced as clusters. The shifted
region borders to lower values of ν (by going from type-I to
type-II models) are consistent with the extra dynamics due
to the amplitude vibration. By reducing the repulsive DDI,
with increasing α’s, in both cases νc is consistently reduced,
as shown for α going from 0◦ to 35◦. In fact, this behavior
is expected considering the other parameters that are kept
fixed. With the condensate size being reduced (as the contact
interaction remains at as = 50a0), the radial position of the
moving obstacle, fixed at r0 = 3.5�ρ , ends up being located in
relatively less-dense region of the condensate.

In all given numerical simulations represented in Fig. 2,
except for the Gaussian amplitude and DDI angle, the other
parameters are kept fixed, with the trap aspect ratio λ = 100,
interaction strengths (add = 66a0 and as = 50a0), and the
number of atoms N = 1.5 × 104, as indicated in the caption
of Fig. 2. Here, we should remind that the assumed mag-
netic moment, μA = 7 µB, implies 168Er or 151Eu (with the
corresponding change in the mass unit) as the atomic sample,
such that the angle α must be correspondingly shifted when
considering another dipolar species (such as 164Dy or 52Cr).
The critical velocities (r0νc) are verified being approximately
constant for reasonable changes of r0 inside the condensate,
such that no vortex pairs are produced near r0 = 0.

The results shown in Fig. 3, for the chemical potential
μ and total energy E [Fig. 3(a)], with the corresponding
root-mean-square (rms) radius [Fig. 3(b)], as functions of the
DDI angle α, without the Gaussian obstacle, are helpful to
estimate the more convenient radial position for the obstacle
in the following simulations with the obstacle. As verified,
by inspecting both Figs. 3(a) and 3(b), the rate of changing
for μ is approximately the same as the rate of changing for
〈r2〉. As the position of the obstacle approaches the center,
the frequency ν needs to increase, such that for r0 → 0 no

FIG. 3. (a) Effect of DDI (α) variations on the ground-state
chemical potential (μ) and energy (E ), with (b) the corresponding
rms radius (

√
〈r2〉). For α < 54.7◦ the DDI is repulsive, whereas for

α > 54.7◦ it is attractive. The two indicated circles in (b) refer to the
necessary change in the contact interaction as to keep the respective
condensed clouds with about the same size.

vortex can be created by the stirring. Therefore, in principle,
one could conclude that larger values of r0 will be more
favorable for the production of vortex dipoles or vortex clus-
ters, implying the obstacle located in the low-density region
of the trap. However, this possible choice will bring us the
role of the other constraints we have to consider, such as the
contact atom-atom interaction. By assuming fixed and repul-
sive as = 50a0, the DDI parameter α is controlling the size
(and corresponding the chemical potential) of the condensate.
So, we need to keep the DDI repulsive enough (α < αM);
otherwise, with α > αM the stirring position will be located
in the too-low-density region, or even outside the condensate,
as one can verify by considering α � 70◦, when the rms
radius of the condensate becomes smaller than r0. With these
concerns, restricted by the parameter regions in our study
of vorticity, α was chosen enough smaller than the magic
angle 54.7◦.

As to keep the study of the dynamics in similar condi-
tions, considering the size of the condensed cloud, with μ

and 〈r2〉 not deviating more than about 20% from their max-
imum values by varying the interaction parameters (contact
and DDI), we have verified as appropriate to keep the DDI
limited to the repulsive region, with α between 0◦ and 35◦.
This, obviously, is restricted by the other model parameters
that are kept fixed in our study, such as the contact interaction
and position of the obstacle. By going to the attractive DDI
region, in order to maintain the size of the condensate in stable
conditions, as well as it not being too small considering the
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FIG. 4. For the type-I (ε = 0) rotating obstacle at r0 = 3.5, this figure shows time snapshots of full numerical results for the 2D densities
(levels indicated by color bars), with the production of vortex-antivortex pairs (upper row) and vortex clusters (middle and lower rows),
in the first cycle, as indicated: νt = π/4 (a1, b1, c1) until νt = 2π (a6, b6, c6). The rotation frequencies and DDI angles are, respectively,
(ν, α) = (0.8ωρ, 0◦) (top row), (1.5ωρ, 0◦) (middle row), and (1.5ωρ, 30◦) (bottom row). Other fixed parameters (not explicitly indicated) are
the same as the ones given in the caption of Fig. 2. The vortex (−) and antivortex (+) signs are indicated in the first four panels of the upper
row, respectively.

position of the obstacle, one needs necessarily to increase the
repulsive contact interaction, such as going to as = 177a0, as
shown in Fig. 3(b). As an alternative, for a smaller stable
cloud, one could reduce the radial position of the obstacle.
Following our vortex dynamics study, in Sec. III B, a com-
parative analysis is also provided for two condensates with
equivalent rms and μ, with the DDI of one of the condensates
reduced to zero.

B. Vortex dynamics within the condensate

In this section, we select some specific parameters for
which we can verify more clearly the associated dynamics
in the formation of the vortex-antivortex pairs, by following
the evolution of the densities. The differences between the
two types of stirring approaches rely only on the additional
dynamics introduced by a periodic variation in the amplitude
g of the stirring interaction, given by Eq. (5). In view of that,
we can first resume our main results for the case in which
the amplitude is kept constant, followed by an analysis of
the type-II case (when the amplitude is vibrating). For this
purpose, we present Fig. 4 considering the type-I model, im-
mediately followed by the corresponding discussion for the
type-II model, in order to verify possible additional effects
(if any) introduced by the periodic vibration of the stirring
amplitude.

Figure 4 shows three rows of snapshot density plots ob-
tained from full numerical calculations considering the type-I
Gaussian model for the stirring. These results illustrate the
nucleation of the vortex dipoles and vortex clusters during

the movement of the nonbreathing penetrable Gaussian ob-
stacle with two different frequencies (ν = 0.8ωρ and 1.5ωρ)
and two DDI angles (α = 0◦ and 30◦). The Gaussian obstacle
with its position is represented in each of the panels by the
hollow (minimum density) moving anticlockwise inside the
fluid. In the upper row of panels, for ν = 0.8ωρ , which is
picked from region B in Fig. 2(a), the Gaussian obstacle
nucleates the vortices in the form of vortex dipoles. The
nucleation starts close to t = 1ω−1

ρ [or νt = π/4, as verified
in Fig. 4(a1)]. In the other two rows, for ν = 1.5ωρ , which
are picked from region C in Fig. 2(a), the Gaussian obstacle
nucleates the vortices in the form of clusters. In these cases,
with two different DDI angles, the nucleation starts before,
close to t = 0.5ω−1

ρ [or νt = π/4, as verified in Figs. 4(b1)
and 4(c1)].

In order to appreciate how the vortex-antivortex pairs, as
well as vortex clusters, are emerging, we show six snapshots
for the first cycle, with νt going from π/4 up to 2π . As
verified in the first row, with α = 0◦ and ν = 0.8ωρ , we have
the production of about three vortex-antivortex pairs within
a cycle. For the stirring model, a constant amplitude A0 =
36h̄ωρ is assumed in this case. More specifically, the first
row [ν = 0.8ωρ , with α = 0◦] corresponds to region B of the
upper panel of Fig. 2, with the vortex-antivortex pairs being
produced regularly at different time intervals, as the obstacle
moves anticlockwise around the circle. The second and third
rows refer to the vortex-cluster production region C in the up-
per panel of Fig. 2, with ν = 1.5ωρ and α = 0◦ (second row)
and 30◦ (third row), when vortex clusters are being produced
(more than one pair at each time interval). Corresponding to
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ν = 0.8ωρ and 1.5ωρ , the respective stirring velocities are
v = 2.8 and v = 5.25. They are selected in correspondence
with the results previously shown in the upper panel of Fig. 2.
The effect of the rotation ν can be seen by comparing the
first with the second row, as ν is changed to 1.5ωρ with α

having the same value. Similarly, to see the effect of α, we
consider the case with ν = 1.5ωρ , with the second and third
rows varying α from 0◦ to 30◦. In this case, the difference
is quite visible in the contour plots of the densities, as well as
the dynamics of the emerged vortex and antivortex. Reflecting
the fact that the repulsive DDI for α = 0◦ is stronger than for
α = 30◦, we can observe that the vortex-antivortex pairs repel
each other more strongly in the case that α = 0◦ [compare, for
example, the positions of the emerged vortices in Fig. 4(b4)
with the ones in Fig. 4(c4)].

One should notice that, differently from the case in which
the obstacle moves linearly inside the condensate [83], the
production of the vortex-antivortex pairs occurs with each
vortex of the pair emerging at a slightly different time.
This can be understood considering that the density distri-
bution of the BEC fluid around the obstacle is not the same
in both sides. Within a counterclockwise stirring rotation,
as the fluid is denser in the internal left side, the emerg-
ing vortex [indicated by (−) in Figs. 4(a1)–4(a4)] takes a
slightly longer time to emerge than the associated antivortex
[indicated by (+)].

Considering the type-II model, according to the results
previously pointed out in Fig. 2 for the critical rotational
velocities necessary for vortex-antivortex pair productions,
due to the additional dynamics introduced by the amplitude
vibration, more vortex pairs are verified emerging in a cycle
than the ones observed in Fig. 4. These results can already
be verified by examining the two diagrams shown in Fig. 2.
For the type-II case, considering A0 = 36h̄ωρ and ε = 0.4,
the amplitude is vibrating from A = 21.6 [when sin(ωAt ) =
−1] until A = 50.4 [when sin(ωAt ) = 1]. With ωA = 2ωρ , the
oscillating period is 5/2 times the stirring cycle frequency,
when ν = 0.8ωρ , and 4/3 in case ν = 1.5ωρ . Therefore,
the production of vortex pairs and vortex clusters occurs at
shorter time intervals in the case of the type-II model, as the
quantum fluid is more affected by the Gaussian amplitude
vibration.

By verifying that the results for the densities are not sig-
nificantly different in both cases, in Fig. 5 we have selected
parameters considering region B of Fig. 2, with rotational
frequency ν = 0.8ωρ , presenting our results in a 3D illus-
trative format, for the dynamics observed without (type I)
and with (type II) amplitude vibration. The choice of the two
DDI angles has the purpose of verifying how the dynamical
behavior of the produced vortex pairs is changed by going
from a more repulsive α = 5◦ to a less repulsive α = 25◦
condition. Figures 5(a) and 5(b) refer to type I (nonbreathing
mode, ε = 0), with Figs. 5(c) and 5(d) referring to type II
[breathing mode, with (ωA, ε) = (2ωρ, 0.4)]. In both cases,
we select identical time snapshots, with νt slightly larger
than 3π (second loop). By comparing the left with the right
panels, in both cases, the obstacles (radially fixed at r0) are
moving inside regions of the respective condensates that have
relatively slightly different densities: It is in a denser region
in case α = 5◦, because the radius is larger than for α = 25◦.

FIG. 5. Results obtained for the 2D densities (|ψ |2, in l−2
ρ

units), given in 3D plots, with corresponding projections in the
x-y plane (units �ρ), for [(a) and (b)] type-I (ε = 0) and [(c) and
(d)] type-II (ωA = 2ωρ, ε = 0.4) models. We consider two sets of
DDI angles α = 5◦ [(a) and (c)] and 25◦ [(b) and (d)], with fixed
rotational frequency (ν = 0.8ωρ), as indicated. They represent the
vortex-antivortex production in region B (shown in Fig. 2), with
identical arbitrary time such that νt is slightly larger than 3π . The
other parameters are, respectively, the same as given in the caption
of Fig. 2.

In other words, by keeping fixed the radius r0, to study the
dynamics within similar conditions we need to restrict the
values of the DDI to reasonable not-too-large angles, such
that the obstacle remains moving in similar density regions
of the condensate. By taking larger values of α the system
will be more attractive (unless, to compensate, we change
another interaction parameter, such as the scattering length)
with the obstacle position moving in a too-low-density region
(as close to the radial border limits) of the condensate. As
comparing with Fig. 4, where we choose α = 0◦ and α = 30◦,
the motivation in changing slightly the angles, as shown in
Fig. 5, is to appreciate how the vortices are emerging by
slightly decreasing the DDI (with α going from 0◦ to 5◦) or
slightly increasing (with α going from 30◦ to 25◦).

C. Role of DDI in the dynamics

For a comparative study on the role of DDI for the vorticity
and turbulence, we need to consider two condensates such
that one of them is without DDI. For that, by starting with a
simulation in which as = 50a0, the maximum DDI is obtained
at α = 0, as indicated by the red circle inside Fig. 3(b). As to
compare with this case, in the other simulation we consider
α fixed at the magic angle, implying the DDI is zero. But,
as we need to consider condensates with about the same
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FIG. 6. Snapshots of densities obtained with maximum DDI
(α = 0, at left) and without DDI (α = αM = 54.7◦, at right) obtained
near two cycles (4π ). At right as = 177a0, in order to have both
clouds with about the same rms radius. A corresponding gif-movie
animation is presented in the Supplemental Material [84].

radial extension, such that the obstacle position will not be
in the low-density region, we have to assume a larger value
as = 177a0 in order to have both condensates with about the
same sizes. This second case is indicated by a magenta circle
in Fig. 3(b). Resulting from this comparative simulation, we
have two snapshots in Fig. 6, which are taken when the ro-
tation finishes two cycles (4π ). By looking to the dynamics
from t = 0, in both cases (with and without DDI) we observe
that the initial production of vortices occurs in a very similar
way (slightly faster in the case of DDI), implying that the
critical velocities verified in Fig. 2 are mainly due to the
changes in chemical potential and rms radius. However, after
the first cycle it is also visible in the dynamics that the case
with α = 0 (maximum DDI) presents stronger fluctuations
in the cloud, absent for the nondipolar case, reflecting the
different characteristics of the interactions in the fluid. In fact,
in a more close inspection by varying the rotation speed ν of
the obstacle, considering two extreme cases with equivalent
condensed cloud sizes, one in which the DDI is zero (pure
contact interactions with as = 177a0) and the other in which
the contact interaction is zero (pure DDI, with add = 91a0

and α = 0), it was verified that the production of vortex-
antivortex pairs requires smaller rotation speed in the case
of pure DDI.

In the Supplemental Material [84], we include explic-
itly our results obtained for the dynamics, with ν = 0.8ωρ ,
through an animation in which we can observe the time
evolution of both condensed systems in the process of vortex-
antivortex emission, with (α = 0) and without (α = αM) DDI,
from νt = 0 to νt = 2π . When removing the DDI, the con-
tact interaction has to be redefined (from as = 50a0 to as =
177a0) in order to maintain both condensates having about
the same size, with the obstacle kept fixed at r0 = 3.5�ρ . Still,
the similarity of the two cases when started the dynamics with
the obstacle indicates that the kinds of interactions (contact or
DDI) are not so relevant for the initial formation of the vortex-
antivortex pairs in the condensate, provided that both densities
are initially found in the same conditions, having about the
same sizes. As the number of vortex pairs being created as
time flows is drastically reduced, within this comparison, one
can draw the conclusion that the vorticity and turbulence are
mainly affected by the size of the condensed cloud, instead of

the two kinds of interactions we consider (DDI or contact).
However, apart from the initial vortex production, in view
of the different observed dynamics inside the fluid, a more
dedicated conclusive investigation may be required. As the
results we report rely only on the numerical solution of the
corresponding circular-stirred GP formalism with two-body
contact and dipolar interactions, without the assumption of
possible beyond-mean-field corrections, a more prospective
analysis may not be difficult, but it is outside the scope of
the present work.

IV. SPECTRAL DYNAMICS AND QUANTUM
TURBULENCE IN STIRRED BEC WITH DDI

Our aim in this section is to characterize the possible emer-
gence of turbulent behavior in the dipolar condensate, by full
numerical investigation of the evolution and behavior of the
vortices within a spectral analysis. The results of our study are
illustrated by selecting two different rotational frequencies of
the obstacle (considering regions B and C in the two panels
of Fig. 2), with repulsive DDI strengths being typified by two
distinct angles α. In particular, the choice to keep the DDI
repulsive enough was determined by the other choices for the
model parameters, such as the contact interaction and radial
position of the circularly moving obstacle.

Towards an understanding of possible quantum turbulence
in a quantum fluid as a cold-atom system described by the
mean-field GP theory, one of the main characterizations to
look for is the Kolmogorov classical scaling law k−5/3 in the
incompressible kinetic energy spectrum [55], as pointed out in
several works and reviews in this direction [58,76,77]. As re-
ported already in Ref. [85], considering nonlinear Schrödinger
equation solutions with possible implications in experiments
for helium superfluid, it was found that low-temperature
superfluid turbulence follows approximately Kolmogorov’s
scaling. The vorticity dynamics of the superflow was shown
to be similar to that of the viscous flow, including vortex re-
connection. Directly connected with cold-atom experiments in
the last 15 years, vorticity and QT were reported in oscillating
BECs in Refs. [50,86]. In nonuniform BECs the occurrence
of QT was investigated numerically in Ref. [87]. The ac-
tual increasing interest in the QT investigations in cold-atom
physics can be traced from Refs. [88–96], having as a strong
motivating factor possible links between QT and its classical
counterpart. Therefore, by assuming the Kolmogorov scaling
behavior of the kinetic energy spectrum as a parameter for
a universal description of turbulence, one has to character-
ize the length scales by considering the necessary stationary
states with enough number of vortices being produced. For
the analysis of vorticity and the occurrence of turbulence in
an ensemble of particles, the relevant quantity is the associated
kinetic energy, which can be decoupled in two terms, consid-
ering the compressibility. The key concepts concerned with
the energy spectra of vortex distributions in 2D QT, together
with a discussion on similarities and differences with 2D
classical turbulence, have been explored for a homogeneous
compressible superfluid in Ref. [97]. For our present analysis
of the energy spectra, in the next section we follow some
details provided more recently in Refs. [73,98]. Of particular
interest in our case is the investigation of a dipolar confined
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BEC system, which is under external laser stirring periodic
perturbation.

A. Kinetic energies: Compressible-incompressible
decomposition

From the GP equation (12), which provides the time-
dependent density solution n(ρ, t ), the total energy is

E (t ) =
∫

d2ρ

[
1

2
|∇ρψ |2 + ρ2

2
+ VG(ρ, t )n(ρ, t )

]
+ gs

2

∫
d2ρ n2(ρ, t ) + Edd, (14)

where Edd refers to the DDI contribution. The total kinetic en-
ergy contribution, EK ≡ ∫

d2ρ[ 1
2 |∇ρψ |2], is the main term we

are concerned with in this section. Its time evolution relies on
the density contributions. By considering the related current
density j(ρ, t ) in terms of the velocity field v(ρ, t ), we have
j(ρ, t ) = n(ρ, t )v(ρ, t ), or

v(ρ, t ) = 1

2i |ψ |2 [ψ�∇ρψ − ψ∇ρψ
�]. (15)

The associated kinetic energy term, being expressed by

EK (t ) = 1

2

∫
d2ρ n(ρ, t ) |v(ρ, t )|2, (16)

can be decomposed into compressible E (c)
K (t ) and incompress-

ible E (i)
K (t ) parts. For that, we define the density-weighted

velocity field u(ρ, t ) ≡ √
n(ρ, t )v(ρ, t ), that can be split into

an incompressible part, u(i) ≡ u(i)(ρ, t ), satisfying ∇ρ · u(i) =
0, and a compressible one, u(c) ≡ u(c)(ρ, t ), satisfying ∇ρ ×
u(c) = 0. Therefore, with u(ρ, t ) = u(i)(ρ, t ) + u(c)(ρ, t ), the
two parts of the kinetic energy can be defined by

EK (t ) = E (i)
K (t ) + E (c)

K (t ) ≡ 1

2

∫
d2ρ [|u(i)|2 + |u(c)|2].

(17)

Associated with these energies, due to the time-dependent
stirring interaction, an effective torque is experienced by the
system, which can be obtained from the corresponding z
component of the operator τ = r × F = −r × ∇VG, which in
polar coordinates is reduced to

τz(ρ, t ) = − ∂

∂θ
VG(ρ, t ). (18)

In correspondence with previously presented results on
the production of vortex dipoles, vortex clusters, as well as
the time evolution of the densities, by considering the above
formalism for the total EK , compressible E (c)

K , and incom-
pressible E (i)

K kinetic energies, we present some sample results
next, by considering some specific significant values of the
parameters, guided by the previously obtained results reported
in Fig. 2. The long-time evolution of the total kinetic energy
is first shown in two panels given in Fig. 7. For that, we
choose α = 0◦ and α = 30◦ for the angle controlling the DDI
strength, corresponding both to repulsive interactions with a
maximum at α = 0◦. For the stirring periodic frequency, we
have assumed ν = 0.8ωρ and ν = 1.5ωρ . The stirring is ap-
plied at a fixed distance given by r0 = 3.5, implying velocities

FIG. 7. Time evolutions of the total kinetic energies for the
(a) type-I and (b) type-II stirring models. In both cases, the results
are for two sets of rotational velocities (ν = 0.8ωρ and 1.5ωρ) and
DDI α angles (α = 0◦ and 30◦), as indicated close to the respective
lines.

v0 = 2.8 and 5.25, respectively. As shown in Fig. 2, for the
two types of dynamics of the stirring, the case with ν = 0.8ωρ

refers to the sector where we have vortex dipole production,
whereas the case with ν = 1.5ωρ refers to the region with
vortex cluster production. Apart from the fact that type II
is more energetic than type I, expected due to the stirring
vibration in addition to the circular velocity, we observe that
both types have similar general behavior as related to the
DDI, with type II being more sensible to α in the long-time
evolution than type I for higher velocities. However, when
considering low velocities (vortex-dipole production region),
both cases are almost unaffected by the DDI strength. For both
types I and II, fast stabilization of the total energy is obtained
with low speed.

With Fig. 7, we illustrate the time evolution of the total
kinetic energies for the type-I stirring model, considering two
values for the frequency, and two values for the DDI, respec-
tively given by ν = 0.8ωρ and 1.5ωρ and α = 0◦ and 30◦. We
choose only this case to show the long-time behavior of the
kinetic energies when increasing the stirring velocities. Simi-
lar behavior can be verified for the type-II model. As seen, the
kinetic energy EK increases significantly when we increase
the strength of ν from the vortex-dipole region (ν = 0.8ωρ)
to the vortex-cluster region (ν = 1.5ωρ). With respect to the
DDI variation, measured by the parameter α (stronger DDI
implying α = 0), one can notice that the kinetic energy is
reduced as we increase the DDI from α = 30◦ to α = 0.

In the next results we discuss, we are more concerned with
the not-large period of time, below t = 20ω−1

ρ , in which we
can associate turbulence behaviors of the condensed fluid. The
time-evolution results for the total (EK ), compressible (E (c)

K ),
and incompressible (E (i)

K ) kinetic energies are presented in
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FIG. 8. Time evolution of the total (EK , black dotted lines), com-
pressible (E (c)

K , blue dashed lines), and incompressible (E (i)
K , red solid

lines) kinetic energies (in h̄ωρ units) for type-I (left-hand panels) and
type-II (right-hand panels) stirring motion of the Gaussian obstacle.
The rotational frequencies ν(= 0.8ωρ, 1.5ωρ ) and DDI angles α(=
0◦, 30◦) are indicated inside the respective panels. The insets show
the corresponding long-time behaviors. The time intervals, identified
in the bottom panels, are common to all panels.

Fig. 8, respectively, for the type-I (left) and type-II (right) stir-
ring models. For both cases, the results are displayed in three
panels, considering two frequencies and two DDI parameters,
such that (ν, α) = (0.8ωρ, 0◦) (top panels), (1.5ωρ, 0◦) (mid-
dle panels), and (1.5ωρ, 30◦) (bottom panels). In these cases,
the corresponding long-time behaviors are kept in the insets.
Reminding that the compressible parts of the kinetic energy,
E (c)

K , are associated with the sound-wave productions, with
the incompressible ones, E (i)

K , related to the vorticity of the
fluid and turbulence, we noticed that in the short-time inter-
val (1 < ωρt < 15) the compressible part remains increasing
slowly, whereas the incompressible part is increasing much
faster, following EK . This can be taken as being related to
the increasing vorticity, with energies being transferred to
vortex production and turbulence. In this regard, one can also
verify that for smaller stirring rotation (upper panel), which is
related to the vortex-dipole productions, the compressible part
keeps much lower than the incompressible part even for the
longer time interval, in contrast with the case that ν = 1.5ωρ

(see the middle and bottom panels), which is related to the
vortex-cluster productions.

By comparing the results shown for the type-I stirring
model, in Fig. 8 (left), with the ones obtained for the type-II
model, in Fig. 8 (right), the main difference relies on the
increasing amount of kinetic energy, as the general behavior is
similar. Particularly for higher velocities, we notice a signif-
icant increase in the compressible part of the kinetic energy,
which is due to the vibration of the Gaussian obstacle.

FIG. 9. Incompressible kinetic energy spectra, E (i)(k), obtained
for the [(a1)–(d1)] type-I and the [(a2)–(d2)] type-II models, as func-
tions of the dimensionless kξ (where ξ is the healing length). The
rotation frequencies ν (0.8ωρ and 1.5ωρ) and DDI angles α (0◦

and 30◦) are indicated inside the respective panels. At each panel,
the E (i)(k) results refer to averaging over ten samples in the vortex
emission regimes identified in Fig. 8 (left) (for type I) and Fig. 8
(right) (for type II). The straight blue dot-dashed and black dotted
lines are guidelines to follow the respective k−5/3 and k−3 behaviors.

B. Quantum turbulence: Kolmogorov’s energy spectrum

The emergence of a scaling law in the kinetic energy
spectrum is analyzed through our displayed results pre-
sented in Fig. 9, for two types of stirring models (I and
II), where we verify that the classical Kolmogorov behav-
ior k−5/3 can be characterized in the initial time interval
t � 15ω−1

ρ , with the kinetic energy spectra being averaged
over ten samples of the vortex regime evolution. As shown,
the power-law behavior k−5/3 is modified to k−3 when going
to the ultraviolet regime, which is in agreement with the
energy spectra study of vortex distributions in 2D quantum
turbulence provided in Ref. [97]. In view of the simi-
larity with the counterpart classical scaling law behavior,
we understand these results are quite indicative of quan-
tum turbulence for dipolar BECs in the dynamics of the
vortex-antivortex pair production. The present results provide
further support to the characterization of quantum turbulence
in superfluids [99], which has been found when consid-
ering simulations of a nonlinear Schrödinger equation in
correspondence with the previously known Navier-Stokes
equation solutions for low-temperature superfluids and in-
compressible viscous fluids [85]. As we have essentially
shown, Kolmogorov’s scaling behavior (recognized as a fun-
damental concept in classical turbulence) is also emerging
in a dynamic spectral analysis of a dipolar BEC under stir-
ring circular interaction, providing further support to quantum
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turbulence, as a description of energy distribution in turbulent
flows.

V. CONCLUSIONS

By considering a quasi-2D trapped dipolar Bose-Einstein
condensate submitted to a circularly moving Gaussian ob-
stacle (simulating a laser stirring perturbation), we report
the occurrence of quantum turbulence within the dynami-
cal process of vortex-antivortex pair emission. The pieces of
evidence for quantum turbulence are provided by the momen-
tum spectral analysis of the incompressible kinetic energy,
in which the expected characteristic classical Kolmogorov
power-law behavior for turbulence, k−5/3, was verified in a
momentum interval such that 0.2 � kξ � 7 (where ξ is the
healing length). As it happens in the classical fluid dynamics
counterpart, the spectral power-law behavior changes to k−3

when going to the ultraviolet regime. This dynamical process
occurs within a period of time just after the initial production
of vortex-antivortex pairs (t � 15ω−1

ρ ). Two variants of stir-
ring dynamics are assumed for the moving Gaussian-shaped
penetrable obstacle in our model approach (type I and type II),
being applied to a dipolar condensate confined by a quasi-2D
harmonic trap. For the type-I model, the obstacle moves with
constant rotational frequency at a fixed given radius inside the
condensed fluid, with its amplitude A0 assumed to be close
to 90% of the stationary chemical potential μ. For the type-II
model, we kept the same conditions, except that the amplitude
is vibrating with frequency larger than the stirring rotational
one, in order to verify the effect of an additional dynamics
provided by the obstacle. Once given the nonlinear (contact
and dipolar) interactions, the rotation frequency is the main
variable to be considered for the dynamics inside the dipolar
quantum fluid.

The critical velocities for the nucleation of vortex-
antivortex pairs, in both model approaches, are established
by solving the corresponding nonlocal two-dimensional GP
equation in real time. For higher rotations of the obstacle, a
second transition in the dynamics is also verified with the pro-
duction of vortex clusters (identified when more than one pair
emerges at each time within the rotation cycles). By assum-
ing fixed repulsive contact interactions between the atoms,
the critical velocities are verified with respect to the dipole
orientation angle α, which can alter the DDI from positive
(maximum at α = 0) to negative values (90◦ � α � 54.7◦).
However, restricted by the fixed model parameters, as the
contact interaction and radial position of the obstacle, we
choose in the present simulations α values compatible with
repulsive dipole-dipole interactions (α < 54.7◦), such that the
dynamical study on vortex-antivortex emission remains under
the same conditions.

To illustrate the interplay between contact and DDI in
the dynamics, as well as to verify the role of DDI in our
investigations, we select one case in which the repulsive
DDI is at the maximum (α = 0, with the previously fixed
contact interaction, as = 50a0), for comparison with another
case in which the DDI is completely removed (α = 54.7◦, but
compensating the missing repulsive interaction with a larger
scattering length, as = 177a0). As our simulations show, the
vortex and antivortex emerge dynamically in almost identical

form in both cases, slightly faster in the case of nonzero DDI,
indicating the critical velocities are mainly due to the con-
densate stationary observables such as the chemical potential
and rms radius. However, even before one cycle is completed,
a quite different dynamics inside the fluid is revealed when
comparing the two cases, which becomes more obvious for
longer-time evolution, reflecting the kind of atom interactions.
As verified, the DDIs are responsible for more fluctuations
inside the fluid density, affecting the propagation of the
vortex pairs.

The dynamics of vortex-antivortex production are further
explored by spectral analysis, with the characterization of
turbulent dynamics, which is verified from the initial time
interval of the vortex emission regime, when the incom-
pressible and compressible parts of the kinetic energy start
deviating from each other (near t ≈ 2ω−1

ρ in our simula-
tions). In this study, we have first considered in detail the
long-time evolution of the kinetic energy, by separating the
corresponding compressible and incompressible parts. From
classical fluid dynamics, it is understood that vortex tangles
are usually signatures of turbulence associated with the flow
of incompressible viscous fluids. Therefore, by concentrating
our spectral analysis on the incompressible kinetic energy
part, obtained by averaging over several samples in the time
evolution, the characterization of the turbulence behavior was
established by verifying that the incompressible kinetic en-
ergy E (i)(k) follows approximately the classical Kolmogorov
power law k−5/3 [55] in the momentum region kξ � 5 (where
ξ is the healing length), changing to k−3 as k goes to the
ultraviolet region, consistent with previous studies [97]. Our
results are presented by considering stirring rotational fre-
quencies associated with condensate regions at which we
have vortex-antivortex (vortex-dipole) pairs and vortex-cluster
productions. For that, we consider low and high rotational
velocities r0ν (with r0 fixed) represented by ν = 0.8ωρ and
ν = 1.5ωρ , respectively, using two values for the angle α that
provides repulsive DDI strengths: α = 0◦ (DDI maximized)
and α = 30◦. As clarified, our simulations have contemplated
only repulsive DDI, through the angle α, restricted by the
other model parameters, as the contact atom-atom interaction
and the fixed radial position of the obstacle. However, in
principle one can also investigate the dynamics with attractive
DDIs, by shifting the contact interactions to larger values, as
indicated by the example we are providing in our simulations
when the DDI is set to zero. Together with a more detailed
investigation on the critical velocities under different com-
binations of the contact and dipolar atom-atom interactions,
these are possible straight investigations that can be done,
even before considering beyond-mean-field effects.
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