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Dynamics of quasiholes and quasiparticles at the edges of small lattices

Xikun Li ,1,2 Błażej Jaworowski ,3 Masudul Haque ,4,2,5 and Anne E. B. Nielsen 3,2

1School of Physics and Optoelectronic Engineering, Anhui University, Hefei, Anhui 230601, China
2Max-Planck-Institut für Physik komplexer Systeme, D-01187 Dresden, Germany

3Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark
4Institut für Theoretische Physik, Technische Universität Dresden, D-01062 Dresden, Germany

5Department of Theoretical Physics, Maynooth University, County Kildare, Ireland

(Received 1 June 2023; revised 30 October 2023; accepted 11 January 2024; published 7 February 2024)

We study quench dynamics of bosonic fractional quantum Hall systems in small lattices with cylindrical
boundary conditions and low particle density. The states studied have quasiholes or quasiparticles relative to the
bosonic Laughlin state at half-filling. Pinning potentials are placed at edge sites (or sites close to the edges) to trap
quasiholes and qausiparticles. The potentials are then turned off, and because the edges of fractional quantum
Hall systems host chiral edge modes, we expect chiral dynamics of the quasiholes and quasiparticles. We
numerically show that chiral motion of the density distribution is observed and robust for the case with positive
potentials (quasiholes), but that there is no noticeable chiral motion for negative potentials (quasiparticles).
The comparison of the numerical ground states with model lattice Laughlin wave functions suggests that both
positive and negative potentials do create and pin anyons that are not necessarily well separated on small lattices.
Initializing the dynamics with the model state also shows the lack of chiral dynamics of quasiparticles. Our
results suggest that, in small lattices with low particle density, quasiparticles are strongly adversely affected in
dynamical processes, whereas quasiholes are dynamically robust.
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I. INTRODUCTION

A fascinating aspect of topologically ordered phases of
matter is that they support anyonic quasiparticles with frac-
tional exchange statistics [1]. Anyons appear, e.g., as charged
excitations of fractional quantum Hall (FQH) systems in two-
dimensional electron gases subject to strong magnetic fields
[2]. The robustness of exchange statistics against local noise
makes anyons an interesting platform for topological quan-
tum computation, which has motivated much work towards
realizing anyons in different physical systems [3,4]. Various
models hosting FQH physics and anyons have been proposed
for different physical platforms [5–10]. Both the fractional
charge [11–14] and the fractional statistics [15] of anyons
have been observed experimentally.

Ultracold atoms in optical lattices provide a versatile setup
to study collective quantum physics [16–19]. Several lattice
models displaying FQH physics and schemes for implemen-
tations in ultracold atoms have been proposed [20–27], and
recently a FQH system with two particles on 16 sites was
realized experimentally [28]. Moreover, it has been claimed
that anyons can be created and trapped with pinning potentials
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at specific positions [29–32], and that the braiding of anyons
can be realized by adiabatically moving the potentials [33,34].

It is a crucial question whether the characteristic fea-
tures of FQH systems in two-dimensional electron gases still
hold for small lattice systems with low particle densities, or
what features should be chosen to characterize FQH states in
such systems [31,32]. Small lattice systems are ideal testing
grounds from both experimental and computational view-
points: Experimentally, the manipulation of single sites and
single atoms [19,35] provides tools to observe the FQH effect
in small lattices (if we know what to observe) and, computa-
tionally, the exponentially growing size of the Hilbert space
puts a limit on the system sizes that can be studied. Proposals
for probing the fractional charge and fractional statistics in
small optical lattices have been made [31,33,34,46]. It is, how-
ever, an open question whether known results for solid-state
systems with macroscopic numbers of electrons are still true
for small (or even medium) size lattice systems with dozens
of sites and few particles. Finite-size effects can influence the
results in various ways, for example, by making it impossible
to separate the anyons sufficiently, or by altering the energy
spectrum. Another issue is that, due to low site occupancies,
the process of pinning or localizing quasiparticles could excite
an uncontrolled amount of excitations.

One of the characteristic features of FQH states is the
presence of chiral modes at the edges. This result was initially
derived for large continuum systems (long-wavelength limit)
[36], but numerical calculations have shown chiral motion of
quasiholes in small continuum systems [37,38] and chiral mo-
tion of “full” particles in (relatively large) lattice systems [39].
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In addition, even very small lattice systems retain some degree
of similarity to the continuum, which is seen in the counting of
the edge states [40]. It is therefore relevant to ask whether the
chiral motion of charges such as quasiparticles and quasiholes
can be observed in small lattice systems, comparable to the
ones used in experiments [28].

Here, we investigate whether quasiholes (quasiparticles)
can be pinned by positive (negative) potentials in small lat-
tices and whether chiral dynamics along the edge is present
in the quench dynamics (i.e., after turning off the pinning
potential). We consider hard-core bosonic FQH systems with
filling factor ν = 1

2 and place pinning potentials at or near the
edges of the lattice. The hard-core constraint is the U/J → ∞
limit, where U is the onsite interaction, and J is the hopping
strength. In practice, when U/J is large enough, the hard-
core constraint is a good approximation (for negative pinning
potentials V0, we also need |V0| � U ). This results in the
creation of density depletions (increases), which we interpret
as quasiholes (quasiparticles) due to the accumulated excess
density being close to ±0.5 and due to high overlap with
model wave functions. For the lattice sizes considered in this
work, i.e., dozens of sites, we observe chiral motion of quasi-
holes. We also find that the chiral motion is robust in the sense
that it is observed for a range of lattice sizes and for various
strengths and locations of the potentials. On the contrary, we
do not observe chiral dynamics for the quasiparticles.

We find that the ground states with potentials (both positive
and negative) have high overlaps with model lattice Laughlin
states with anyons, suggesting that in both cases we do cre-
ate anyons. This suggests that the absence of chiral motion
for negative potentials stems from complexities arising in
the dynamics of quasiparticles, presumably involving a large
number of highly excited states. Thus, we show that in these
setups (small lattices and low particle densities) there are
substantial differences between the dynamics of quasiparticles
and the dynamics of quasiholes.

The paper is structured as follows. In Sec. II, we introduce
the model. In Sec. III, we consider the case with positive
potentials and demonstrate chiral motion of the density distri-
bution in the quench dynamics. In Sec. IV, we study the case
with negative pinning potentials and find no chiral motion of
the density distribution. In Sec. V, we compare the ground
state of the Hamiltonian with potentials with model lattice
Laughlin states with anyons, showing that the overlap is high.
In Sec. VI, we expand on the proposed explanation of our
main observations and conclude the paper by pointing out
implications of our results. Appendix A explains the model
lattice wave functions used in Sec. V, and Appendix B shows
how to relate them to continuum Laughlin wave functions.

II. MODEL

We consider an interacting Hofstadter model with hard-
core bosons on a two-dimensional square lattice. The sites are
at the positions �ri = a(xi, yi ), where a is the lattice constant,
xi ∈ {1, 2, . . . , Nx}, and yi ∈ {1, 2, . . . , Ny}. The Hamiltonian
takes the form

H0 = −J
∑
〈k, j〉

c†
kc je

2π i
φ0

∫ �rk
�r j

�A·d�r
, (1)

where the sum is over all k and j for which the sites at �rk

and �r j are nearest neighbors. Note that each pair of neighbors
appears twice in the sum. The operator ck annihilates a boson
at site �rk , φ0 = h/e is the flux quantum, h is Planck’s con-
stant, e is the elementary charge, and �A is the vector potential
corresponding to a uniform magnetic field B perpendicular to
the plane of the lattice. The strength of the nearest-neighbor
hopping is set to J = 1 for simplicity. The interaction between
bosons is included implicitly by enforcing the hard-core con-
dition, i.e., allowing at most one boson per site.

We consider a square lattice with open boundary conditions
in the x direction and periodic boundary conditions in the y
direction. This cylinder topology provides two parallel edges
without corners, and hence is particularly suitable for studying
chiral dynamics along the edges. We use the Landau gauge

�A = B(0, x − x0, 0), (2)

where x0 = a(Nx + 1)/2, which ensures that the vector poten-
tial vanishes at the center of the system. Note that a2B = αφ0,
where α is the number of flux quanta per plaquette.

We consider half-filling ν = 1
2 in this paper, where the

filling factor ν is the number of particles divided by the num-
ber of flux quanta penetrating the lattice. (Note that ν = 1

2
is the filling fraction of the lowest Hofstadter band, and not
the lattice filling fraction or average particle density, which
is considerably smaller in our case.) If there are quasiholes
(quasiparticles) present, they each count for ν particles (−ν

particles) when computing ν. The number of flux quanta is α

times the number of plaquettes Nplaq in the lattice. Altogether,
we hence have

ν = M + ν
∑

k pk

αNplaq
, (3)

where M is the number of particles and pk = +1 (pk = −1)
if the kth anyon is a quasihole (quaisparticle). At the edge
appearing due to the open boundary conditions in the x di-
rection, there are ambiguities in how to count the amount
of flux through the lattice, and this ambiguity is significant
for small lattices. It was suggested in [31] that the choice
Nplaq = (Nx − 1)Ny is best for creating and stabilizing a FQH
droplet in small lattice systems, and we hence also use this
way of counting the flux here. We compute α from (3) with
ν = 1

2 , and this gives us the vector potential �A appearing in
the Hamiltonian.

Since we are considering the ν = 1
2 Laughlin state, a quasi-

hole corresponds to half a particle missing in a local region,
and a quasiparticle corresponds to half a particle extra in a
local region. We would like the anyons to be pinned at par-
ticular positions to begin with and local pinning potentials are
a standard approach to do that. Adding a potential term Vjn j

to the Hamiltonian, where n j = c†
j c j is the particle-number

operator, results in an energy penalty for a particle to sit at
the jth site if Vj > 0 and the opposite for Vj < 0. A natural
way to try to trap two quasiholes is hence to reduce the
number of particles M by one and add positive potentials on
two sites. Similarly, one could try to trap two quasiparticles
by increasing the number of particles M by one and putting
negative potentials on two sites. Note that M + ν

∑
k pk is

unchanged in this process, and hence α is also unchanged.
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The Hamiltonian with potentials is

H = H0 +
∑

j

Vjn j, (4)

where only two of the Vj are nonzero.
Below we shall investigate quench dynamics. We take the

initial state at time zero to be the ground state |ψ (0)〉 ≡ |E0〉H

of the Hamiltonian (4) with trapping potentials present. At
time zero, we turn off the trapping potentials to start the
quench dynamics, and after a time t , the state has evolved into

|ψ (t )〉 = exp (−iH0t/h̄)|ψ (0)〉. (5)

With the purpose of investigating properties of |ψ (t )〉, we
define the density distribution at time t as

ρ j (t ) = 〈ψ (t )|nj |ψ (t )〉 − M + ν
∑

k pk

N
. (6)

The first term 〈ψ (t )|nj |ψ (t )〉 on the right-hand side is the
expectation value of the number of particles on site j in the
state |ψ (t )〉, and the second term is the average number of
particles per site when there are M + ν

∑
k pk particles in the

system. Note that
∑

j ρ j (t ) = −ν
∑

k pk , so
∑

j ρ j (t ) = −1
for two quasiholes and

∑
j ρ j (t ) = +1 for two quasiparticles

at half-filling.
FQH systems tend to have uniform density in the bulk,

and hence nonzero ρ j (t ) can appear due to edge variations
or density disturbances due to a potential. To eliminate the
edge variations, we shall also sometimes consider the excess
particle density

ρ̃ j (t ) = 〈ψ (t )|nj |ψ (t )〉 − 〈n j〉0, (7)

where 〈n j〉0 is the expectation value of n j computed in the
ground state of H0 with M + ν

∑
k pk particles.

Our computations involve exact diagonalization. We con-
sider three particles for the case without anyons to ensure that
the dimension of the Hilbert space is not too large. When
trapping potentials are present, we have M + ν

∑
k pk = 3,

i.e., M = 2 bosons for the case of positive potentials (two
quasiholes), and M = 4 bosons for the case of negative poten-
tials (two quasiparticles). We present results for the real-time
dynamics of the lattice system with N = Nx×Ny = 7×7 sites.
We have numerically checked that the dynamics is quali-
tatively the same in other lattices of comparable size, e.g.,
N = 7×11, N = 11×9, etc. We concentrate on initial states
for which the trapping potentials are located at particular sites.
Two cases are considered: case (i), in which the two sites are
placed on the middle of the left and right edges, i.e., the sites
(1a, 4a) and (7a, 4a) for the 7×7 lattice; case (ii), in which
the two sites are moved one site into the bulk from the left and
right edges, i.e., (2a, 4a) and (6a, 4a) for the 7×7 lattice.

III. QUASIHOLES

We first consider the case of quasiholes, with positive po-
tentials used to pin (localize) them. We choose the following
configuration: the number of sites is N = 7×7, the number
of particles in the system with positive potentials is two,
the number of fluxes per plaquette is α = 1

7 , and positive
potentials with strength V0 are introduced on the sites (1a, 4a)
and (7a, 4a). In contrast to the case of quasiparticles, which

FIG. 1. Effects of the pinning potential in the quasihole case with
two particles. (a) Particle density 〈ni〉V0 for the site (1a, 4a) (at the
edge) versus potential strength V0. (b) Squared overlap O2

V0
between

the ground state of the total Hamiltonian H with potentials and the
lowest eigenstates of the Hamiltonian H0 without potentials. V0 is in
units of hopping strength J .

is shown and discussed in the following section, the chiral
motion along the y axis is clearly demonstrated in the case
with positive potentials. Moreover, the observed chiral motion
is quite robust in the sense that it does not depend on the
strength of the potentials or their precise location on the edge.
For example, we obtain similar results if we instead put the
potentials on the sites (2a, 4a) and (6a, 4a). We also find that
the chiral motion persists for a very long time.

We first investigate the effect of the potential strength V0

on the system by considering the particle density

〈ni〉V0 = 〈ψ (0)|ni|ψ (0)〉 (8)

at site i and the overlap

OV0 = |〈En|ψ (0)〉| (9)

between the ground state |ψ (0)〉 of the total Hamiltonian H
with potentials, and the nth eigenstate |En〉 of the Hamiltonian
H0 with the same number of particles. If H0 has several degen-
erate eigenstates |En〉m at a given energy En, their total overlap
is given by

OV0 =
√∑

m

|〈ψ (0)|En〉m|2. (10)

The squared overlap O2
V0

measures the percentage that the
eigenstate |En〉 (or, in case of degeneracy, all the states at
energy En) contributes during the quench dynamics given the
initial state is |ψ (0)〉.

In Fig. 1(a) we plot the particle density 〈ni〉V0 at site
(1a, 4a). Due to the symmetry under π rotations (inversion),
the density at this site is equal to the density at site (7a, 4a).
We observe that the particle density at site (1a, 4a) is quite
small even when the potential is not strong, say, V0 = 0.5. In
addition, 〈ni〉V0 drops quickly as V0 increases. This is expected
since the particle density on the site should go to zero when
there is a large positive potential on the site.

In Fig. 1(b) we show the squared overlap between the
initial state |ψ (0)〉 and the zeroth, first, and second excited
states of H0. The ground state |E0〉 of H0 is nondegenerate,
while the first excited state is twofold degenerate |E1〉1,2. This
degeneracy is not lifted even with a very strong potential, say,
V0 = 10 000. We can see that the overlap of the ground state
dominates over all other overlaps of the excited states. We find
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FIG. 2. (a) Quench dynamics of the density distribution (6) for
the quasihole case. The size of the lattice is 7×7, and the number
of particles is two. The trapping potentials are located at the sites
(1a, 4a) and (7a, 4a), i.e., at the left and right edges, and have
strength V0 = 100. The flux density is α = 1

7 . (b) The density dis-
tribution of the second column of sites, counted from the left, as a
function of time for the quench dynamics shown in (a). A staircase
pattern is seen, which means that there is chiral motion. Time is in
units of inverse of hopping strength, i.e., h̄/J .

that O2
V0

> 0.9604 for the ground state for all V0 > 0. We note
that this means that there is a large overlap between states with
pinned and unpinned quasiholes, as the ground state with two
particles has two unpinned quasiholes.

In Fig. 2 we show the quench dynamics of the system with
positive potentials. In Fig. 2(a) we observe that the density
distribution moves chirally around the edge (the y axis) in
addition to the dispersion along the edge. Meanwhile, there
is little density spreading into the bulk sites. This is differ-
ent from the dynamics observed in the models studied in
Refs. [39,41] where the particles spread into larger regions
in the bulk on longer timescales. In our work, however, the
density depletion hardly spreads into the bulk anymore after
a short time t = 1. The leftmost and rightmost columns (edge
columns) do not show much visible variation in density, so
it is convenient to use the second column (column next to
the edge) to track and visualize the density dynamics. In
Fig. 2(b) we take snapshots of the density distribution of the
second column of sites counted from the left, and concatenate
snapshots at different instants to form a space-time plot. This
visualizes the chiral motion of the density distribution which
is seen as a “staircase” pattern in such a plot. The observed
chiral dynamics suggests that we have a quasihole propagating
along each of the two edges.

This picture is supported by monitoring the excess density
along the edges. We observe that even during long periods
of quench dynamics the sum of (7) over the sites along the

two leftmost (rightmost) columns of sites equals 1
2 with a

good accuracy, ρ̃edge = ∑
i:xi�2 ρ̃i(t ) ≈ −0.49. The total ex-

cess density corresponding to half a particle near each edge is
consistent with the expectation that quasiholes are created and
trapped. We note, however, that the system is inversion sym-
metric, and there is one particle missing compared to the case
without potentials, so a similar density pattern could in prin-
ciple also arise in nontopological systems. The interpretation
of the density depletions as quasiholes is further corroborated
by the analysis of model wave functions in Sec. V. The nearly
constant value of ρ̃edge over time suggests that the quasiholes
stay confined to the edges as they evolve in time.

We find similar results as above when we examine the
quench dynamics for various sizes of the lattice, different
locations of the trapping potentials (at the edges or one site
away from the edges), and various potential strengths V0.
In fact, we find that ρ̃edge ≈ −0.5 even if no potentials are
present (V0 = 0), although in such a case the excess density is
spread uniformly in the y direction and hence chiral motion is
not visible. But, as soon as the potentials are strong enough
to create a discernible “bulge” of the excess charge near their
locations, the chiral motion can be observed. We verified that
this is the case even for weak potentials, such as V0 = 0.5.

Moreover, the chiral motion is also observed for values of
the flux density, say, α = 6

49 , which deviate slightly from the
correct value α = 1

7 . (In fact, if we replace Nplaq with N in
Eq. (3) we get the filling factor 1

2 for α = 6
49 . The ambiguity

in defining the magnetic flux through the lattice, when edges
are present, is thus not a severe problem for the considered
systems.) These results indicate that the chiral dynamics of
quasiholes pinned by the positive potentials is quite robust in
small lattices. In addition, we observe that the chiral motion
of the quasiholes persists for a large timescale t > 700.

If the flux density deviates much from the correct value
α = 1

7 , one would expect that the chiral motion is absent. In
Fig. 3, we show the quench dynamics of the system with the
same configurations in Fig. 2, but with the flux density α = 3

10 .
As expected, no chiral motion is observed.

Furthermore, we consider an extreme case in which the
magnetic field is turned off, α = 0. The result is shown in
Fig. 4. In this case, there is no chiral motion. Instead, we
observe that the density distribution at the sites of the left (and
right) half of the lattices split into two parts with equal weight,
and two regions of depleted density move with opposite chi-
rality (upward and downward directions).

IV. QUASIPARTICLES

In this section, we consider the case with four particles. We
use negative potentials for creating the initial state. In this way
we attempt to spatially localize quasiparticles. We find that the
trapped objects have total excess particle density close to 0.5,
as quasiparticles are expected to, but that they do not display
clear chiral dynamics.

In Fig. 5(a), we show the particle density at site (1a, 4a)
as a function of the potential strength −V0. As −V0 increases,
〈ni〉V0 grows and eventually converges to its maximum possi-
ble value, which is 1. This is expected because the stronger
the onsite negative potential is, the more the energy is reduced
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FIG. 3. (a) Snapshots of the time-evolving density distribution
(6) for the system with quasiholes and a flux density α = 3

10 , sig-
nificantly different from the “correct” value α = 1

7 . The trapping
potentials (V0 = 100) are at the edges (1a, 4a) and (7a, 4a). (b) The
density distribution of the second column of sites, counted from the
left, as a function of time for the quench dynamics shown in (a). The
lack of a clear staircase pattern signals the absence of chiral motion.
Time is in units of inverse of hopping strength, i.e., h̄/J .

by having a particle on that site. We avoid potentials close to
zero as |ψ (0)〉 has a degeneracy for V0 = 0.

In Fig. 5(b) we show the squared overlap O2
V0

between the
initial state |ψ (0)〉 and the lowest eigenstates of H0 with four
particles as a function of |V0| = −V0. The ground states of
H0 are doubly degenerate, and thus the overlap is calculated
using (10). As −V0 increases, more and more higher excited
states have appreciable overlap and thus contribute to the
quench dynamics. We observe that the overlaps with respect
to |En〉 depend substantially on |V0|, and many of them have
comparable magnitude. The total overlap with respect to the
doubly degenerate ground state |E0〉1,2 decreases rapidly with
−V0; its magnitude does not dominate over other eigenstates
for −V0 � 1.5. This behavior is very different from the case of
quasiholes trapped by positive potentials, shown in Fig. 1(b).
In that case the ground state dominates even for large
potentials.

In Fig. 6 we demonstrate the quench dynamics for nega-
tive potentials located at the edges with strength V0 = −100
which is huge compared to the hopping strength. In Fig. 6(a)
we show the dynamics of the density distribution, and in
Fig. 6(b) we plot the density distribution of the first column
of sites, counted from the left, as a function of time. The
particle density (7) in the initial state has an excess density
of ρ̃edge(0) = ∑

i:xi�2 ρ̃i(0) ≈ 0.51 in the two leftmost (two
rightmost) columns of sites. That is, at the beginning of
the dynamics we have an excess density of approximately a
half of a particle (this time with opposite sign) located near
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FIG. 4. (a) Snapshots of the density distribution (6) for the quasi-
hole case in the absence of the magnetic field, i.e., α = 0. The
trapping potentials (V0 = 100) are located at the edge sites (1a, 4a)
and (7a, 4a). (b) The density distribution of the second column of
sites, counted from the left, as a function of time for the quench
dynamics shown in (a). When the magnetic field is turned off, the
model has mirror symmetry both between up and down and between
left and right, and hence there is no chiral motion. Time is in units of
inverse of hopping strength, i.e., h̄/J .

each edge, consistent with the expectation that we trapped
quasiparticles. Again, we note that the system has inversion
symmetry, and there is one particle extra compared to the
case without potentials, so a similar excess density could also
appear without the presence of topology. Further support that
quasiparticles are trapped is presented in Sec. V.

A significant difference from the results in Sec. III appears
when the density evolves in time. From Figs. 6(a) and 6(b),
we observe no chiral motion of the density distribution, but
patterns that are different from the case of quasiholes. We

FIG. 5. Effects of pinning potential in the quasiparticle case with
four particles. (a) Particle density 〈ni〉V0 at site (1a, 4a) versus poten-
tial strength −V0. (b) Squared overlap O2

V0
between the ground state

of the total Hamiltonian H with potentials and the lowest eigenstates
of the Hamiltonian H0 without potentials. V0 is in units of hopping
strength J .
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FIG. 6. (a) Snapshots of the density distribution (6) in the quasi-
particle case. The trapping potentials (strength V0 = −100) are at the
edge sites (1a, 4a) and (7a, 4a). A different color scale has been used
in this plot because the particles spread into the bulk sites on a longer
timescale. (b) The density distribution of the leftmost column of sites
as a function of time for the quench dynamics shown in (a). No
staircase pattern is seen, which signals the absence of chiral motion.
Time is in units of inverse of hopping strength, i.e., h̄/J .

find that, during quench dynamics the excess density roughly
splits into two parts and each of them move in opposite
directions. Meanwhile, in contrast to the quasihole case, the
excess density spreads into the bulk with much weight in the
beginning, but stops spreading more into the bulk sites after
some time.

In addition, we have varied V0 and also varied the positions
of the trapping potentials, e.g., at the edges, or one or two sites
away from the edge. We have not observed clear chiral motion
in any of these cases. Furthermore, we find that the patterns
of quench dynamics for negative potentials vary substantially
as we change the strength and/or locations of the pinning
potentials, which was not the case for quasiholes trapped by
positive potentials. We also tried to use pinning potentials over
a block of sites to create quasiparticles as in [31]. Also in that
case, we have not seen clear chiral motion.

V. MODEL QUASIPARTICLE STATE

Could the difference between the dynamics for positive
and negative potentials arise because the former succeeds in
pinning anyons, and the latter does not? To further study
the question whether the trapped objects are quasiholes and
quasiparticles, we here discuss a model wave function with
anyonic excitations [42–44].

We write the position of site j as a complex number ξ j =
x j + iy j . Then, we define a mapping from a cylinder to a
complex plane: z j = exp(2πξ j/Ly), where Ly is the circum-
ference of the cylinder (for a square lattice with unit lattice
constant we have Ly = Ny). For brevity, we write all z j’s as

a vector z = [z1, z2, . . . , zN ]. Like any state of a hard-core
boson system, the model lattice Laughlin state |ψmodel〉 can
be written in the occupation number basis

|ψmodel〉 = 1

C

∑
n

ψmodel(z, n)|n〉, (11)

where n = [n1, n2, . . . , nN ] is the vector of the occupation
numbers of each site, with nj ∈ {0, 1}, |n〉 is the cor-
responding basis state, ψmodel(z, n) are the unnormalized
wave-function coefficients, and C is the normalization con-
stant. For a model lattice Laughlin state without anyons on a
cylinder [42,43], the coefficients are

ψmodel(z, n) = δ(qM + p+ + p− − Nη)
∏

j

χ
n j

j

×
∏

j

z
p−n j

j

∏
j<k

(z j − zk )γ jγk . (12)

Here, δ(qM + p+ + p− − Nη) is the Kronecker delta fix-
ing the charge neutrality, i.e., the number of particles M
(with M = ∑

j n j) and γ j = (qn j − η)/
√

q, with η being
the flux assigned to each site (in our case, we put η = α).
The integer q determines the topological order of the wave
function and in our case q = 2. The gauge factors χ j are
arbitrary complex numbers with |χ j | = 1. We note that in
this work we use the word “gauge” in two meanings: the
Landau gauge (2) of the hoppings of the Hofstadter model
(1), and the factors χ j of the model wave functions. To avoid
confusion, we will always refer to the latter as “the gauge
factors χ j .”

The real numbers p−, p+ have to fulfill the relation

p+ = p− − q + 2η. (13)

We note that the formulation in [42,43] of the lattice Laughlin
states on a cylinder did not contain p− and p+. The origin
and meaning of these parameters is described in Appendix A,
while the relation of (12) to the continuum states is described
in Appendix B.

In our calculations, we want to use a state with a given M,
N and η = α. Thus, we determine p− from a combination of
the charge neutrality condition and (13),

p− = 1
2 [(N − 2)η − q(M − 1)], (14)

and then p+ from (13).
Some properties of (12), such as the particle density and

the topological order, are independent from the gauge factors
χ j . Its overlap with the ground state of the Hofstadter model,
however, strongly depends on χ j . Therefore, we optimize
these factors numerically to maximize the overlap. For the
7×7 system with M = 3 and α = 1

7 , we obtain the squared
overlap |〈ψ (0)|ψmodel〉|2 ≈ 0.984 after optimization.

We can add anyonic excitations to the state (12). They are
characterized by the integers pk (see Eq. (3)), with pk = 1
and −1 corresponding to a basic quasihole and quasiparticle,
respectively, and the complex positions ωk ∈ C. Note that the
complex positions are not required to coincide with lattice
sites [44]. After mapping to the complex plane, these locations
transform into wk = exp(2πωk/Ly). The wave function with
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FIG. 7. The locations and strengths of the potentials that we
optimize to increase the overlap of the ground state of the Hamil-
tonian with negative V0 with the model wave function (15) with two
quasiparticles. During the optimization, V0 = −100 stays constant,
while VA and VB are adjusted. V0 is in units of hopping strength J .

anyons is then

ψmodel(z, n, w, p)

= δ

(
qM + p+ + p− +

∑
k

pk − Nη

) ∏
j

χ
n j

j

∏
j

z
p−n j

j

×
∏
j,k

(z j − wk )pkn j
∏
j<k

(z j − zk )γ jγk . (15)

The wk have the braiding properties expected for anyons in
systems with Laughlin-type topology when the wk remain
well separated during the entire braiding process [44]. This
is true even if pk is negative; while such a wave func-
tion does not have a consistent continuum limit [45], it
is a valid quasiparticle ansatz on lattices with finite lattice
constant, yielding correct quasiparticle charge and statistics
[44]. On small lattices with low densities, the changes in
the particle density caused by the anyons may not be fully
separated.

We consider two examples in a 7×7 system with η = α =
1
7 : two quasiholes (M = 2) and two quasiparticles (M = 4).
In both cases, we place the anyons at the same positions
as the pinning potentials in Secs. III and IV (plus a small
shift to avoid infinities in (15)). We use the same χ j as in
the M = 3 case (i.e., we do not reoptimize them). The re-
sulting squared overlaps with ground states of the Hofstadter
model with potentials (V0 = ±100) are |〈ψ (0)|ψmodel〉|2 ≈
0.976 and |〈ψ (0)|ψmodel〉|2 ≈ 0.977 for quasiholes and quasi-
particles, respectively.

Therefore, the ground states of the Hofstadter model states
are similar to the model states, but not perfectly equal to them.
To check whether the discrepancy is the reason for the lack of
chiral dynamics in the quasiparticle case, we also compute the
quench dynamics generated by the hopping Hamiltonian H0

(Eq. (1)) with the model state (15) with two quasiparticles as
the initial state. The results are quite similar to Fig. 6, i.e., we
do not observe clear chiral dynamics.

We note that we can increase the overlap between the
quasiparticle state of the Hofstadter model and the model
lattice Laughlin quasiparticle state by introducing auxiliary
potentials VA and VB at the nearest-neighboring sites of the
original potentials (see Fig. 7), and optimize them to max-
imize the overlap. In such a way, we obtained the squared
overlap |〈ψ (0)|ψmodel〉|2 = 0.993. However, using the ground

state with the optimized potentials as the initial state also does
not lead to chiral dynamics.

The results presented in this section suggest that the differ-
ence between the cases of positive and negative potentials is
not related to the ability to pin anyons, as both quasiholes and
quasiparticles seem to be successfully created and pinned by
the pinning potentials.

VI. DISCUSSION AND CONCLUSIONS

We have studied quench dynamics in small lattices with
cylindrical boundary conditions, using interacting (hard-core)
bosons subjected to the Hofstadter Hamiltonian. We con-
sidered particle numbers appropriate to both two quasiholes
(M = 2) and two quasiparticles (M = 4), relative to a FQH
state with filling factor ν = 1

2 . In the two cases we used
positive and negative pinning potentials so that the initial
positions of the quasiholes and quasiparticles are localized
near the edges of the lattices. The quench dynamics begins
when the trapping potentials are turned off. One expects to
observe chiral motion of the excess density due to the pres-
ence of chiral edge modes. Our results for the two cases
are very different. While it is generally easy to observe
chiral motion of quasiholes (negative excess density), and
the observed chiral dynamics are quite robust, we have not
found clear chiral motion of quasiparticles (positive excess
density).

The absence of the chiral motion of quasiparticles was
further verified by investigating the quench dynamics with the
model lattice Laughlin state as the initial state. Moreover, we
introduced auxiliary potentials in the Hofstadter model to op-
timize the overlap between the ground state of the Hofstadter
Hamiltonian and the model lattice Laughlin state. The chiral
dynamics was still absent.

Why is there such a pronounced difference between the
quasihole and quasiparticle cases? Due to the small particle
densities, the details of pinning are quite different in the two
cases: locally decreasing the density is a very different process
compared to locally increasing the density. In the former case
(quasiholes, negative excess density) there is a natural limit to
how far the local density 〈ni〉V0 can be reduced since 〈ni〉V0

is small already for V0 = 0. In the latter case (quasiparti-
cles, positive excess density), the site density can increase
enormously, all the way up to 1, leading to the excitation of
many high-energy modes whose nature might be unrelated
to FQH physics. Notice that this is true with the hard-core
constraint U/J → ∞. These high-energy contributions can be
expected to mask or disturb the topological and chiral physics
that FQH quasiparticles should show. This difference between
the two cases is mirrored in the overlaps shown in Figs. 1(b)
and 5(b).

This difference raises the possibility that the pinning of
quasiparticles might be disrupted, unlike the pinning of quasi-
holes. However, the comparison with model quasiparticle
states (Sec. V) indicates that both positive and negative poten-
tials pin the anyons successfully. We therefore conclude that
the difference must come from the contributions of excited
states in the dynamics: the quasihole dynamics is dominated
by the ground state, while the quasiparticle dynamics involves
a number of highly excited states, as indicated in Figs. 1(b)
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and 5(b). The disruption of chiral dynamics is a dynamical
effect.

The absence of chiral motion suggests that the dynamics
of quasiparticles in small lattices with low particle densi-
ties, of the sizes considered in this work, is different from
that in large lattices, and from that in two-dimensional elec-
tron gases. This has important implications for the study of
FQH physics in novel platforms such as that of Ref. [28],
where the particle density and system size might be naturally
small. Our results indicate that, in such situations, quasipar-
ticle dynamics is fragile as there is a natural tendency to
create substantial additional (possibly unwanted) excitations
when localized quasiparticles are created. Remarkably, the
difficulty with observing quasiparticle features shows up pri-
marily in the dynamics, and not necessarily in creating or
pinning them.

This work opens up a number of questions: (1) Our con-
jectured explanation above suggests that quasiparticles and
quasiholes would behave more similarly if the average par-
ticle density (lattice filling) were close to 1

2 . It would be
worthwhile to check this explicitly; however, in our setup
this is computationally too challenging. Systems with larger
numbers of sites and particles can be studied using tensor
network methods [47]. (2) A detailed understanding of how
the dynamical behaviors change with system size (e.g., with
constant density or with constant particle number) is currently
lacking. An intriguing question is whether chiral motion of
quasiparticles become readily observable for large lattice sizes
even when the particle density remains small. (3) It would also
be interesting to investigate how the presence or absence of
inversion symmetry affects the excess density and dynamics
in small systems. (4) We here considered the case of Abelian
anyons. In future work it would be interesting to study the
quench dynamics of FQH systems which host non-Abelian
anyons.
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APPENDIX A: INVERSION-SYMMETRIC LATTICE
LAUGHLIN WAVE FUNCTIONS ON A CYLINDER

In this Appendix, we derive the expression (12) and con-
dition (13) from the known expressions for lattice Laughlin
wave functions [42,43] by demanding inversion symmetry.

Let us start by considering a planar system of N sites at
locations described by complex numbers z j = x j + iy j , with
j = 1, 2, . . . N , populated by M particles: either by hard-core
bosons or fermions. To each site, we assign a flux η ∈ R in
units of the flux quantum, so the total number of flux quanta
in the system is Nη. We also place a compensating charge of
η/q (in units where a single particle has charge −1) at each
site, in analogy to a continuum Landau level where a uniform
background charge is used.

FIG. 8. (a) The average particle number as a function of the
(nonperiodic) coordinate x for a 5×5 square lattice, for the “naive”
implementation of a q = 2, M = 2 lattice Laughlin wave function on
a cylinder, i.e., Eq. (A1) with z j = exp(2πξ j/Ly ) and η = 4

25 . (b) The
same quantity for the modified wave function (12) with p− given by
(14), and q, M, and η the same as in (a).

According to [42,43], the coefficients of a lattice Laughlin
wave function on a plane [see Eq. (11)] are

ψmodel(z, n)

= δ(qM − Nη)
∏

j

χ
n j

j

∏
j<k

(z j − zk )γ jγk (A1)

[see below Eq. (12) for an explanation of the notation]. One
can add one or more anyonic excitations to (A1) [43,44],
which transforms it into

ψmodel(z, n, w, p)

= δ

(
qM +

∑
k

pk − Nη

) ∏
j

χ
n j

j

∏
j,k

(z j − wk )pkn j

×
∏
j<k

(z j − zk )γ jγk , (A2)

where, similarly to (15), pk ∈ Z and pk/q is the charge of the
kth anyon. The coordinate wk ∈ C is its position. Both pk and
wk are external parameters of the wave functions. Note that
wk is not required to be equal to one of the z j , but can take
any value in the complex plane.

Equations (A1) and (A2) can be generalized to a cylinder
[42,43]. Let us consider a plane of size Lx×Ly, whose upper
and lower edges are glued to make a cylinder (i.e., y is the
periodic direction, and Ly is the circumference of the cylin-
der). If ξ j and ωi are the coordinates of sites and anyons,
respectively, within the Lx×Ly rectangle, then the substitution
z j = exp(2πξ j/Ly), w j = exp(2πω j/Ly) turns (A1) and (A2)
into cylinder wave functions [42].

It was shown that these cylinder wave functions have
Laughlin-type topological order [42,43]. However, while the
particle density in the continuum cylinder wave function with
no anyons seems to be invariant under inversion [48], in the
lattice cylinder wave function it is not (except from the special
case η = q/2). An example for a 5×5 square lattice with
q = 2 and M = 2 is shown in Fig. 8(a). The figure shows the
average particle number at a given x coordinate, defined as
n(x) = ∑

j δ(x − x j )〈ψmodel|n j |ψmodel〉.
The lack of inversion symmetry is alarming for two rea-

sons. First, in real quantum Hall systems exchanging the left
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and right sides of the cylinder should not matter. Second, on
the plane, the lattice wave functions approach the continuum
wave function in the limit of η → 0 (i.e., infinite number of
sites per flux quantum) [42]. Similar arguments should apply
for a cylinder [43], and if this is indeed the case, we should
explain why the inversion invariance does not exist for general
η and is restored at η = 0.

In the following, we will show that the inversion invariance
of (A1) on a cylinder can be restored at any η by choosing
the numbering of the sites appropriately and adding appro-
priate charges, described by the numbers p−, p+ ∈ R, at the
coordinates w− = 0 and w+ = ∞, respectively. They should
be understood as infinitely thin, immobile flux tubes. If we
plot the complex numbers z j on the plane, they form rings of
different radii. The flux tube at (w− = 0) is at the center of
the rings, while the flux tube at (w+ = ∞) is located
outside the rings, infinitely far away. As a result, the effects of
the charge p+ appear only in the charge neutrality condition
[43]. The wave function is thus given by (12) (but so far, we
have not determined the values of p− and p+).

In our considerations, we will permute and modify the z j

and n j . Therefore, we will write the individual arguments
explicitly, i.e.,

ψmodel(z, n)

= ψmodel(z1, z2, . . . , zN ; n1, n2, . . . , nN ). (A3)

Inversion of the coordinates ξ j around the point ξc transforms
ξ j − ξc → −(ξ j − ξc) and hence

z j → c/z j, (A4)

where c = e4πξc/Ly . For now, we will consider a general lattice,
which is not necessarily inversion invariant. As an intermedi-
ate step, we will investigate when

ψmodel(z1, z2, . . . , zN ; n1, n2, . . . , nN )

∝ ψmodel

(
c

z1
,

c

z2
, . . . ,

c

zN
; n1, n2, . . . , nN

)
. (A5)

We demand proportionality instead of equality because the
wave functions are unnormalized.

Under the transformation (A4), we have

z j − zk → c

z j
− c

zk
= −c

z j − zk

z jzk
(A6)

and ∏
j<k

(z j − zk )γ jγk

→
∏
j<k

(−c)γ jγk
∏
j<k

(z jzk )−γ jγk
∏
j<k

(z j − zk )γ jγk . (A7)

Let us look closer at the arising factors. We have∏
j<k

(−c)γ jγk =
∏
j =k

(−c)γ jγk/2

=
∏
j,k

(−c)γ jγk/2
∏

j

(−c)−γ 2
j /2

= (−c)
(p++p− )2−(q2−2qη)M−η2N

2q , (A8)

where we used the facts that
∑

j γ j = −(p+ + p−)/
√

q (from
the charge neutrality condition) and that n2

j = n j as n j ∈
{0, 1}. Because M and N are constant, this term can be ab-
sorbed into normalization, so we can ignore it. Similarly,∏

j<k

(z jzk )−γ jγk =
∏
j,k

(z jzk )−γ jγk/2
∏

j

z
γ 2

j

j

=
∏
j,k

z
−γ jγk/2
j

∏
j,k

z
−γ jγk/2
k

∏
j

z
qn2

j −2ηn j+η2/q
j

=
∏

j

z
γ j

p++p−
2
√

q

j

∏
k

z
γk

p++p−
2
√

q

k

∏
j

z
(q−2η)n j+η2/q
j

=
∏

j

z
(q−2η+p++p− )n j−η(p++p−−η)/q
j . (A9)

Thus, the transformed wave-function coefficients are propor-
tional to

ψmodel

(
c

z1
,

c

z2
, . . . ,

c

zN
; n1, n2, . . . , nN

)

∝ δ(qM + p+ + p− − Nη)
∏

j

χ
n j

j

∏
j

z
(q−2η+p+ )n j

j

×
∏
j<k

(z j − zk )γ jγk . (A10)

By comparing the wave functions before and after the trans-
formation, we find that (A5) is true if the condition (13) is
enforced.

Equation (A5) says that the wave function is the same if we
put the jth site at z j for all j or we put the jth site at c/z j for
all j. Here, we are, of course, interested in the case, where the
lattice itself has inversion symmetry such that the inversion
maps the set of lattice coordinates to itself. We choose the
numbering of the sites such that the inversion maps site j into
site N + 1 − j, i.e.,

z j = c

zN+1− j
, (A11)

to avoid complications with branch cuts. We have not yet
shown that the wave function is invariant under inversion, as
the wave function does not map to itself under inversion, but
rather to the wave function in which the sites are numbered
from N to 1 rather than from 1 to N .

The only part of the wave function that is affected by the
ordering of the coordinates is the factor

∏
j<k (z j − zk )γ jγk ,

which transforms as∏
j<k

(z j − zk )γ jγk

→
∏
j>k

(z j − zk )γ jγk =
∏
j<k

(−1)γ jγk
∏
j<k

(z j − zk )γ jγk (A12)

when we reverse the ordering of the numbering. It follows
from (A8) with −c replaced by eiπ that

∏
j<k (−1)γ jγk is a

global phase factor, and hence reversing the ordering of the
numbering leaves the wave function unchanged up to a global
phase factor. Combining this result with (A5), we conclude
that if we number the sites such that inversion maps z j to
zN+1− j , then the wave function is invariant under inversion
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up to a global factor that can be absorbed in the normalization
constant.

This reasoning can be generalized to the case of a wave
function with anyons, if the anyons are distributed in an
inversion-symmetric way (that is, there are pairs of anyons
with the same pk’s, located at wk’s being related by inversion
symmetry).

Finally, we comment on different choices of η, p+, and p−.
When (13) is enforced, the charge neutrality relation qM +
p+ + p− − Nη = 0 of the wave function without anyons be-
comes

q(M − 1) + 2p− = Nη − 2η. (A13)

For example, if p− = 0, then, as η → 0 at constant Nη, we
obtain the relation

q(M − 1) = Nη. (A14)

This is similar to the relation between particle number and flux
in the continuum Laughlin state on the sphere, where “−1” is
related to the “shift” quantum number [49].

To compare the model lattice Laughlin state to the exact
diagonalization results, we set η = α. Then, (A14) is typically
not fulfilled, i.e., p− = 0. If we have a given η, M, and N , the
correct p− can be determined from (A13), and is equal to (14).

We note that in the above calculations the total flux Nη is
different from the total flux used in Eq. (3), i.e., Nη = αNplaq.
This is because in this Appendix we assign a flux η to a given
site, while in Eq. (3) the flux α is assigned to a given plaquette
(and we have to set η = α so that the flux encircled when
going around a plaquette is the same in both cases).

APPENDIX B: RELATION BETWEEN LATTICE
AND CONTINUUM PARTICLE DENSITIES

In the following, we will compare the particle density in
the lattice wave function (12) to the case of the continuum
Laughlin wave function. This can serve as a sanity check
for (12), as in the limit η → 0 we expect it to converge to
the continuum wave function. Also, it connects (12) to the
commonly used concepts such as single-particle Landau level
orbitals.

The continuum Laughlin wave function [48] is given by

�(�′
1, �

′
2, . . . �

′
M )

=
∏
j<k

(Z ′
j − Z ′

k )q exp

(
−

∑
j X ′2

j

2l ′2
B

)
, (B1)

where �′
j = X ′

j + iY ′
j are the coordinates of the particles,

Z ′
j = exp(2π�′

j/L′
y), and l ′

B is the magnetic length. We use
primed symbols for the lengths and coordinates in the contin-
uum system to stress that in principle they can be measured
in different units than in the lattice case. A schematic plot
of particle density as a function of X ′ in the case of q = 2,
M = 2, and L′

y = 2
√

π l ′
B is shown in Fig. 9(a).

It is instructive to view (B1) in terms of single-particle
lowest Landau level orbitals on a cylinder [48]. These orbitals

0 X

(a)

(b)

(c)

(d)

(e) (f)

...

......

...
′

FIG. 9. The relation between continuum and lattice systems for
the example with q = 2, M = 2, and L′

y = 2
√

π l ′
B described in the

main text. The many-body wave function, with x-dependent particle
density shown schematically in (a), is composed out of three single-
particle orbitals with m = 0, 1, 2 [the blue ones in (b)]. The cylinder
is drawn schematically in (c), with blue and gray lines denoting the
Gaussian centers of the orbitals. The blue region of the cylinder
located between the centers of the zeroth and second orbitals contains
q(M − 1) = 2 flux quanta. The ellipses “. . . ” in (b) and (c) mean
that the cylinder extends infinitely in both positive and negative x
directions. The blue and green regions contain a total number of six
flux quanta. In (d) we show the blue and green regions unwound
to a plane. The circumference of the cylinder is chosen in such a
way that the blue region is a square. In (e) and (f) we show the site
positions for the analogous lattice systems with total flux Nη = 2
and 6, respectively, for an Nx×Ny = 10×10 lattice.

are labeled by an integer m and given by

φm(X ′,Y ′) = exp

(
2π i

mY ′

L′
y

)

× exp

⎡
⎣− 1

2l ′2
B

(
X ′ − 2πml ′2

B

L′
y

)2
⎤
⎦, (B2)

which consist of a plane wave in the y direction and a Gaussian

centered at 2πml ′2B
L′

y
in the x direction. The density profiles of

these orbitals, as a function of the X ′ coordinate, are shown
schematically in Fig. 9(b), and the position of their Gaussian
centers on the cylinder (the gray and blue rings) in Fig. 9(c).
The basis for (B1) is constructed out of orbitals with m =
0, 1, . . . , q(M − 1).

The region between the Gaussian centers of the nearest-
neighbor orbitals always contains one flux quantum. There-
fore, the x distance between the Gaussian centers depends on
L′

y. As the circumference of the cylinder decreases, the orbitals
get more separated, and the nearly uniform quantum Hall state
transforms into a charge density wave [48] (in the example in
Fig. 9(a), the inhomogeneity of the density is already quite
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developed, with high density on the m = 0, 2 orbitals and low
density on the m = 1 orbital).

We also note that (B1) is in fact defined on an infinite
cylinder. However, we can also restrict (B1) to a finite cylinder
by truncating the domain of �′

j to some finite range and
normalizing the wave function appropriately. One possible
choice is to set the cylinder borders to the centers of m = 0
and m = q(M − 1) orbitals, in such a way that the system is
pierced by q(M − 1) flux quanta, in accordance with (A14).
In our M = 2 example, this is the blue region in Fig. 9(c),
also shown in Fig. 9(d) after unwinding to a plane. It contains
two flux quanta. However, we can also use a bigger system,
which would allow us to observe the Gaussian “tails” at the
edges. For example, we can study a system thrice as large (six
flux quanta), denoted by combined green and blue regions in
Figs. 9(c) and 9(d). Since we focus on the systems where the
particle density is inversion invariant, we consider only cases
where the lengths added before the center of m = 0 orbital
and after the center of m = q(M − 1) orbitals are the same
(i.e., that the two green regions in Figs. 9(c) and 9(d) have the
same size). We do not restrict the total flux to be an integer,
i.e., the edges of the domain do not have to lie at the Gaussian
centers as in Fig. 9.

Now, knowing the meaning of various parameters of the
continuum wave function, we propose that to match the parti-
cle densities of continuum and lattice wave functions, we have
to do the following:

(1) obtain the magnetic length lB of the lattice system to
establish a common length scale,

(2) match the circumferences L′
y/l ′

B = Ly/lB (i.e., the dis-
tance between the Gaussian centers),

(3) match the total flux through the system (i.e., the extent
of the system in the x direction),

(4) match the center of symmetry (i.e., shift the x coordi-
nates so that the center of both systems are at x = 0),

not necessarily in this order (it depends on which parame-
ters of which system we want to vary).

As an example, let us consider finding lattice systems
corresponding to the M = 2 continuum wave function from
Fig. 9 defined on the blue region (two flux quanta). We will
consider a rectangular lattice of a fixed size Nx×Ny in terms
of unit cells, with a unit cell of size a×1, where a will be
adjusted in the process. We have N = NxNy and Ly = Ny.
Thus, by doing step 2 (i.e., demanding L′

y/l ′
B = Ly/lB), and

recalling that for the system from Fig. 9 we had L′
y = 2

√
π l ′

B,
we find lB = Ny/(2

√
π ). From step 3 we get that Nη = 2, and

hence η = 2/N . Now, let us look again at the magnetic length.
Equation (12) does not refer to it explicitly, but we can infer
the relation of lB to the unit-cell size by considering a loop
and comparing its area to the encircled flux (for simplicity,
we treat the flux as uniformly distributed in space). A unit
cell of size a × 1 corresponds to η flux quanta, so we must
have a = 2πηl2

B. In this way, we determined the shape of the
lattice.

FIG. 10. Comparison of the rescaled particle density for the ex-
ample with q = 2, M = 2, and L′

y = 2
√

π l ′
B described in the main

text for the total flux of (a) two flux quanta and (b) six flux quanta.
The x coordinate is measured in units of the magnetic length of the
given system.

Next, we find p− from (14). Figure 10(a) shows the com-
parison of the particle densities for continuum and lattice for
various Nx × Ny. In the plot, the x coordinate is plotted in units
of magnetic length of the respective system and shifted so
that the center of the system is at x = 0. The particle density
is normalized so that its integral is equal to M (in the case
of lattice systems, we plot ρ(x) = 〈n(x)〉lB/a). The densities
are calculated exactly for sufficiently small systems and using
Monte Carlo for the largest ones. It can be seen that there is
a good match between the lattice and continuum wave func-
tions, especially in the center. Notable mismatches, especially
near the edges, exist only for the cases with small Ny. As Ny

approaches Nx, the mismatch vanishes almost completely.
Similarly, we can repeat the procedure for the combined

blue and green regions of Fig. 9 (six flux quanta), with the re-
sult shown in Fig. 10(b). Again we obtain a good match, with
small but visible mismatches for small Nx. While in the case
of two flux quanta and small Ny the density near the edges sig-
nificantly departed from the continuum values, here we do not
observe such an effect, probably because the system is more
elongated, or because the density at the edges is very small.

If one considers a Hofstadter model (1) with the gauge (2),
then one can compare the particle densities in the ground state
and the model wave function in an analogous way. Matching
the wave functions to compute the overlap is also possible,
but more complicated. The model wave function has to be
centered at the m = 0 orbital, which can be achieved by a shift
of the X ′

j coordinates together with a modification of the phase
of (B1) (the phase transformation does not affect the particle
density).
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[31] M. Račiūnas, F. N. Ünal, E. Anisimovas, and A. Eckardt, Creat-
ing, probing, and manipulating fractionally charged excitations
of fractional Chern insulators in optical lattices, Phys. Rev. A
98, 063621 (2018).

[32] B. Wang, X.-Y. Dong, and A. Eckardt, Measurable signatures
of bosonic fractional Chern insulator states and their fractional
excitations in a quantum-gas microscope, SciPost Phys. 12, 095
(2022).

[33] E. Kapit and E. Mueller, Exact parent Hamiltonian for the
quantum Hall states in a lattice, Phys. Rev. Lett. 105, 215303
(2010).

[34] E. Macaluso, T. Comparin, R. O. Umucalilar, M. Gerster, S.
Montangero, M. Rizzi, and I. Carusotto, Charge and statistics
of lattice quasiholes from density measurements: A tree tensor
network study, Phys. Rev. Res. 2, 013145 (2020).

[35] M. F. Parsons, F. Huber, A. Mazurenko, C. S. Chiu, W.
Setiawan, K. Wooley-Brown, S. Blatt, and M. Greiner, Site-
resolved imaging of fermionic 6Li in an optical lattice,
Phys. Rev. Lett. 114, 213002 (2015).

[36] X. G. Wen, Chiral Luttinger liquid and the edge excitations
in the fractional quantum Hall states, Phys. Rev. B 41, 12838
(1990).

[37] T. Graß, B. Juliá-Díaz, and M. Lewenstein, Quasihole dynamics
as a detection tool for quantum Hall phases, Phys. Rev. A 86,
053629 (2012).

[38] J. Li, D. Ye, C.-X. Jiang, N. Jiang, X. Wan, and
Z.-X. Hu, Anyonic braiding via quench dynamics in fractional
quantum Hall liquids, Phys. Rev. B 105, 195311 (2022).

[39] X.-Y. Dong, A. G. Grushin, J. Motruk, and F. Pollmann, Charge
excitation dynamics in bosonic fractional Chern insulators,
Phys. Rev. Lett. 121, 086401 (2018).

[40] F. Binanti, N. Goldman, and C. Repellin, Edge mode spec-
troscopy of fractional Chern insulators, arXiv:2306.01624.

[41] D. K. Nandy, M. Haque, and A. E. B. Nielsen, Few-particle
dynamics of fractional quantum Hall lattice models, Phys. Rev.
B 101, 205305 (2020).

[42] H.-H. Tu, A. E. B. Nielsen, J. I. Cirac, and G. Sierra, Lattice
Laughlin states of bosons and fermions at filling fractions 1/q,
New J. Phys. 16, 033025 (2014).

[43] I. Glasser, J. I. Cirac, G. Sierra, and A. E. B. Nielsen, Lattice
effects on Laughlin wave functions and parent Hamiltonians,
Phys. Rev. B 94, 245104 (2016).

023312-12

https://doi.org/10.1038/nature08522
https://doi.org/10.1038/nature08582
https://doi.org/10.1103/PhysRevX.1.021014
https://doi.org/10.1103/PhysRevLett.113.080403
https://doi.org/10.1038/nature25000
https://doi.org/10.1146/annurev-conmatphys-031218-013604
https://doi.org/10.1126/science.267.5200.1010
https://doi.org/10.1038/38241
https://doi.org/10.1103/PhysRevLett.79.2526
https://doi.org/10.1126/science.1099950
https://doi.org/10.1038/s41567-019-0441-8
https://doi.org/10.1038/nphys138
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/PhysRevLett.111.185301
https://doi.org/10.1088/0034-4885/79/5/054401
https://doi.org/10.1016/S0038-1098(03)00314-4
https://doi.org/10.1103/PhysRevLett.94.086803
https://doi.org/10.1103/PhysRevA.76.023613
https://doi.org/10.1103/PhysRevLett.106.236804
https://doi.org/10.1103/PhysRevA.84.053605
https://doi.org/10.1103/PhysRevLett.108.256809
https://doi.org/10.1103/PhysRevLett.110.185301
https://doi.org/10.1103/PhysRevB.96.201103
https://doi.org/10.1038/s41586-023-06122-4
https://doi.org/10.1103/PhysRevB.83.195306
https://doi.org/10.1103/PhysRevB.89.115124
https://doi.org/10.1103/PhysRevA.98.063621
https://doi.org/10.21468/SciPostPhys.12.3.095
https://doi.org/10.1103/PhysRevLett.105.215303
https://doi.org/10.1103/PhysRevResearch.2.013145
https://doi.org/10.1103/PhysRevLett.114.213002
https://doi.org/10.1103/PhysRevB.41.12838
https://doi.org/10.1103/PhysRevA.86.053629
https://doi.org/10.1103/PhysRevB.105.195311
https://doi.org/10.1103/PhysRevLett.121.086401
https://arxiv.org/abs/2306.01624
https://doi.org/10.1103/PhysRevB.101.205305
https://doi.org/10.1088/1367-2630/16/3/033025
https://doi.org/10.1103/PhysRevB.94.245104


DYNAMICS OF QUASIHOLES AND QUASIPARTICLES AT … PHYSICAL REVIEW A 109, 023312 (2024)

[44] A. E. B. Nielsen, I. Glasser, and I. D. Rodríguez, Quasielectrons
as inverse quasiholes in lattice fractional quantum Hall models,
New J. Phys. 20, 033029 (2018).

[45] A. Patra, B. Hillebrecht, and A. E. B. Nielsen, Continuum limit
of lattice quasielectron wavefunctions, J. Stat. Mech. (2021)
083101.

[46] N. S. Srivatsa, X. Li, and A. E. B. Nielsen, Squeezing anyons
for braiding on small lattices, Phys. Rev. Res. 3, 033044
(2021).

[47] M. P. Zaletel, R. S. K. Mong, and F. Pollmann, Topological
characterization of fractional quantum Hall ground states from
microscopic hamiltonians, Phys. Rev. Lett. 110, 236801 (2013).

[48] E. H. Rezayi and F. D. M. Haldane, Laughlin state on stretched
and squeezed cylinders and edge excitations in the quantum
Hall effect, Phys. Rev. B 50, 17199 (1994).

[49] X. G. Wen and A. Zee, Shift and spin vector: New topological
quantum numbers for the Hall fluids, Phys. Rev. Lett. 69, 953
(1992).

023312-13

https://doi.org/10.1088/1367-2630/aab5d0
https://doi.org/10.1088/1742-5468/ac0f63
https://doi.org/10.1103/PhysRevResearch.3.033044
https://doi.org/10.1103/PhysRevLett.110.236801
https://doi.org/10.1103/PhysRevB.50.17199
https://doi.org/10.1103/PhysRevLett.69.953

