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Effects of atom losses on a one-dimensional lattice gas of hard-core bosons
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Atom losses occur naturally during cold atoms experiments. Since this phenomenon is unavoidable, it is
important to understand its effect on the remaining atoms. Here we investigate a toy model: a lattice gas of
hard-core bosons subject to K-body losses (where K = 1, 2, 3, . . . , is the number of atoms lost in each loss
event) on K neighboring sites. In particular, we investigate the effect of losses on the rapidity distribution ρ(k) of
the atoms. Under the assumption that losses are weak enough so that the system relaxes between two loss events,
we are able to determine the loss functional F [ρ](k) encoding the loss process for K-body losses. We derive
closed expressions for the cases of one- and two-body losses and show their effects on the evolution of the total
number of particles. Then we add a harmonic trapping potential and study the evolution of the position-dependent
rapidity distribution of this system by solving numerically the evolution equation for one-, two-, and three-body
losses.
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I. INTRODUCTION

During the past two decades, cold atom experiments have
become a key simulation platform to investigate the physics
of low-dimensional quantum many-body systems [1]. While
these experiments are typically well isolated and their dynam-
ics at short times is well approximated by unitary dynamics,
cold atom setups are always subject to atom losses. The effects
of the losses on the dynamics of the gas can become impor-
tant at longer times, and they are typically hard to describe
theoretically. Cold atom experiments involve various loss pro-
cesses, for instance, one-body losses resulting from scattering
with background thermal atoms [2], which can be signifi-
cant. Inelastic two-body collisions can occur naturally or be
intentionally engineered, leading to two-body losses [3–10].
Three-body losses, where a highly bound diatomic molecule
is formed, are invariably present and typically dominate the
overall loss process [11–13]. In principle, loss processes in-
volving more than three atoms also exist. In particular, losses
involving four atoms were reported in Refs. [14,15]. Loss
processes can sometimes be controlled and engineered [16]
to bring out physical phenomena such as cooling [17–24] and
the quantum Zeno effect [25–39].

Despite the relevance of loss processes, a consistent gen-
eral theory describing the effects of losses on the dynamics
does not exist yet. One standard way to model atom losses is
to use the Lindblad equation [25,26,40–42]. Several studies
inspected the interplay between the unitary dynamics and
the lossy one in both bosonic [25,26,40,43,44] and fermionic
gases [44–51].

In one spatial dimension, several ultracold gases are in-
tegrable or nearly integrable, including continuous gases
of bosons [52–56] or fermions [57,58], sometimes with
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multiple components [59,60], but also lattice gases like hard-
core bosons [61,62] or the Fermi-Hubbard model [63]. The
question of losses in those integrable gases is particularly
interesting. An integrable model admits a macroscopic num-
ber of conserved charges in comparison with nonintegrable
models where, typically, only the energy and the number
of particle are conserved. Due to this large set of con-
served quantities, an isolated integrable system has a singular
property: the stationary states of the system are modeled
by generalized Gibbs ensembles (GGE). A GGE is con-
structed by maximizing the entropy under the constraints
imposed by all conservations laws [64]. However, under
dissipative processes like atom losses, the conserved quanti-
ties of an integrable system are not conserved anymore, as
the coupling between the system and its environment typ-
ically causes integrability breaking [65]. In principle, one
then expects that integrability breaking leads to thermaliza-
tion at very long times, possibly with a prethermalization
phenomenon at intermediate timescales [66]. Some studies
seem to confirm the thermalization, but other works suggest
otherwise [17].

Motivated by the outstanding challenge of developing a
general theory of the effects of losses on the dynamics of
integrable gases, here we introduce a toy model where we can
theoretically investigate the effects of K-body losses (K � 1)
on the dynamics of the simplest such gas. We propose to
investigate hard-core bosons on a lattice (a famous model of
integrable quantum gas dynamics that has been extensively
studied theoretically [67–72] and realized experimentally
[61,62]) subject to weak K-body atom losses: whenever K
atoms occupy K neighboring sites, they can escape the system
with some rate (Fig. 1).

We stress that experimentally realistic loss processes in
optical lattices usually involve atoms on the same lattice site,
so, strictly speaking, only the K = 1 version of our toy model
is of experimental relevance. For K � 2, we are not aware
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FIG. 1. We consider a lattice gas of hardcore bosons (pink dots)
that can jump from site to site. Two bosons cannot be on the same
site. Losses are represented by the large black arrow which connects
the bosons chain to its environment (blue background). Here we
show the situation for one-body losses (K = 1), two-body losses
(K = 2), and three-body losses (K = 3). For each cases, K consec-
utive atoms are removed and are lost in the “environment.” In this
paper losses are modeled by the Lindblad equation (2).

of existing experimental setups that could engineer our K-
site loss processes. However, from a theoretical perspective
this model is very natural. Here our goal is to understand
how integrability breaking caused by such loss events affects
the dynamics of the gas. Of course, under atom losses, the
stationary state at very long times is always the vacuum.
However, what we want to investigate is how the vacuum is
approached, and in particular, whether or not to the gas is in
a quasistationary thermal state. We investigate, for instance,
the mean density n(t ) = 〈N (t )〉 /L (where N is the number of
atoms and L is the number of lattice sites) for different initial
states and observe different nontrivial behaviors depending on
the number K of atoms lost in each loss event. In particu-
lar, for two-body losses (K = 2), we analytically show that
n(t ) ∝ 1/t or ∝ 1/t1/2, depending on a specific property of
the initial state (see below). More generally, for other values
of K � 2 our numerical results are in agreement with a power-
law decay n(t ) ∝ tα where the exponent α typically depends
on the initial state, and generically differs from the mean-field
result 1/(K − 1). This observation holds also if we add a har-
monic potential; however, in that case the exponent α changes
and is different from the one found in the homogeneous
case.

The paper is organized as follows. In Sec. II we define
the model and discuss our assumptions. Our main hypoth-
esis of slow losses and fundamental concepts such as the
rapidity distribution and the loss functional are introduced.
In Sec. III we present our calculation of the loss functional
for K-body losses, which crucially depends on the parity
of K . In Sec. IV we investigate the effect of atom losses
on the rapidity distribution and on the mean density in the
homogeneous gas by combining analytical and numerical cal-
culations. In Sec. V, we add a harmonic trapping potential.
We use a hydrodynamic-like approach similar to general-
ized hydrodynamics [73,74] where we incorporate the loss
functional (following similar proposals in Refs. [40,43]), and
design a numerical method for solving the resulting evolution

equation for the rapidity distribution in the gas. We conclude
in Sec. VI.

II. MODEL

A. Definition: Lattice Tonks-Girardeau gas with K-body losses

We consider a lattice Tonks-Girardeau gas subject to atom
losses. Each site j ∈ Z is occupied by either zero or one
boson. We write σ+

j /σ−
j for the operator that creates or anni-

hilates a boson on site j. Because of the hard-core constraint,
these operators do not satisfy the usual bosonic canonical
commutation relations. Instead, they satisfy the algebra of
Pauli matrices (σ+

j )2 = (σ−
j )2 = 0 and [σ+

i , σ−
j ] = δi, jσ

z
j .

We consider the hard-core boson (HCB) Hamiltonian with
nearest-neighbor hopping

HHCB = −1

2

∑
j∈Z

(σ+
j σ−

j+1 + σ+
j+1σ

−
j ). (1)

This Hamiltonian generates the unitary part of the evolution
of the gas. In addition, we assume that the gas is subject to
incoherent K-body loss processes, with K a positive integer.
To describe the losses, we assume that the dynamics is Marko-
vian and we consider the following Lindblad equation for the
density matrix ρ̂:

˙̂ρ(t ) = −i[HHCB, ρ̂(t )]

+�
∑
j∈Z

(
Lj ρ̂(t ) L†

j − 1

2
{L†

j L j, ρ̂(t )}
)

. (2)

Here � is a constant that sets the loss rate, while the Lindblad
operators

Lj =
K−1∏
l=0

σ−
j+l (3)

remove K bosons from the K consecutive sites j, j +
1, . . . , j + K − 1.

We stress that, with these loss terms, the model is not
exactly solvable, so it is necessary to develop some effective
approaches to tackle it.

B. Adiabatic losses, effective description by slow motion
of the charges

To simplify the description of the system, we follow the
approach of the authors of Ref. [40]. There the approach
was developed for losses in a continuous gas, and it was
based on the assumption that the losses were slow, so that
the gas remained in a GGE with parameters that slowly drift
in time (see, e.g., Ref. [75] for a review). A similar descrip-
tion of slowly evolving nearly integrable systems with weak
integrability breaking previously appeared in Refs. [76–78].
Following these ideas, here we also assume that the loss pro-
cesses occur on very long times compared to the relaxation
timescale due to the unitary evolution of the gas. In that limit,
the gas has time to reach a local stationary state after each
loss event. To efficiently exploit that assumption, we look at
the slow dynamics of the conserved charges.

For convenience, from now on we focus on a finite sys-
tem of L � 1 sites, with periodic boundary conditions. The
Hamiltonian HHCB commutes with an infinite set of Hermitian
operators Qa, a = 0, 1, 2, . . . , that can be constructed using
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the Jordan-Wigner mapping to noninteracting fermions (see
Sec. II C for details). These operators also commute among
themselves [Qa, Qb] = [HHCB, Qa] = 0. Moreover, they are
local in the sense that Qa = ∑L

j=1 qa, j where qa, j is a charge
density operator that has compact support (i.e., it acts on a
finite number of sites around j).

The time evolution of the expectation value 〈Qa〉(t ) =
tr[ρ̂(t )Qa] is obtained from Eq. (2)

˙〈Qa〉(t ) = �

2

L∑
j=1

〈L†
j [Qa, Lj] + [L†

j , Qa]Lj〉(t ). (4)

Moreover, the hermiticity of Qa implies 〈[L†
j , Qa]Lj〉 =

〈L†
j [Qa, Lj]〉∗. Thus,

˙〈Qa〉(t ) = �

L∑
j=1

Re 〈L†
j [Qa, Lj]〉(t ). (5)

This equation is exact and it is a direct consequence of Eq. (2).
Notice that, in this form, it is not particularly useful because
to evaluate the right-hand side (r.h.s.) one needs to know the
exact density matrix ρ̂(t ).

Now comes the crucial step. Importantly, the operator
L†

j [Qa, Lj] is local because both the operator Lj and the charge
density qa, j have compact support. This, together with the
assumption of slow losses, allows us to use the idea of local
relaxation in the system. Namely, we expect that, under uni-
tary evolution, the density matrix of a small subsystem quickly
relaxes to a GGE. Expectation values of local observables can
then be evaluated with respect to the GGE density matrix

ρ̂GGE,{〈Qa〉} ∝ e− ∑
a βaQa , (6)

where the Lagrange multipliers βa are fixed by the expec-
tation values of the charges 〈Qa〉, which must be equal to
tr[ρ̂GGE,{〈Qb〉} Qa]. Evaluating the r.h.s. of Eq. (4) in the GGE
density matrix leads to a closed evolution equation for the
slow motion of the charges induced by the losses

d

dt
〈Qa〉 = �

L∑
j=1

Re 〈L†
j [Qa, Lj]〉GGE,{〈Qb〉}. (7)

It is this evolution equation that we study in great detail in this
paper. For lattice HCB, the description is further simplified by
specifying the form of the conserved charges Qa. This is what
we do next by introducing the distribution of rapidities.

C. Slow evolution of the rapidity distribution

Hard-core bosons can be mapped to free fermions by a
Jordan-Wigner transformation

σ+
j =

j−1∏
i=1

(−1)c†
i ci c†

j , σ−
j =

j−1∏
i=1

(−1)c†
i ci c j . (8)

Here the operators c†
j/c j create or annihilate a fermion on

site j. They satisfy the canonical anticommutation relations
{ci, c†

j } = δi j . Under the Jordan-Wigner mapping, the Hamil-
tonian (1) becomes

HHCB = −1

2

L∑
j=1

(c†
j c j+1 + c†

j+1c j ). (9)

Moreover, the fermions satisfy antiperiodic (or periodic)
boundary conditions if the number of particles N in the system
is even (or odd):

c†
L+1 = (−1)N−1c†

1. (10)

The Fourier modes are

c†(k) = 1√
L

L∑
j=1

eik jc†
j , (11)

with k ∈ 2π
L (Z + 1

2 ) if N is even and k ∈ 2π
L Z if N is odd.

Either way the Hamiltonian reads

HHCB =
∑

k

ε(k)c†(k)c(k), (12)

with ε(k) = − cos k.
It is clear from the form (12) that any operator of the form

Q[ f ] =
∑

k

f (k)c†(k)c(k), (13)

for any function f (k) commutes with the Hamiltonian HHCB.
Moreover these conserved charges also commute among
themselves. Convenient choices for f (k) are cos(nk) or
sin(nk) for n ∈ N, which leads to a Hermitian basis set of
charges, where each charge has a charge density that is com-
pactly supported.

However, for the purposes of this paper, rather than work-
ing with a specific choice of basis for the space of conserved
charges Qa (or Q[ f ]), it is more convenient to work directly
with the occupation number or “rapidity distribution”

ρ(k) =
L→∞

〈c†(k)c(k)〉, ρ(k) ∈ [0, 1]. (14)

It is clear that if we know the rapidity distribution ρ(k) then
we also know the expectation values of any charge Q[ f ]
because 〈Q[ f ]〉 = ∑

k f (k)ρ(k).
Following the authors of Ref. [40], we can turn the evo-

lution equation for the slow motion of the charges (4) into
an equation for the slow evolution of the rapidity distribution
itself

ρ̇(k) = −�F [ρ](k), (15)

where the loss functional

F [ρ](k) =
L∑

j=1

Re 〈L†
j [Lj, c†(k)c(k)]〉GGE,ρ, (16)

and the GGE density matrix itself is parameterized by the
rapidity distribution ρ(k). More precisely, the GGE density
matrix is Gaussian for the fermions c†

j , c j , and it is character-
ized by its two-point function 〈c†(k)c(k′)〉GGE,ρ = ρ(k)δk,k′ .
All higher-order correlations can be computed using Wick’s
theorem for fermionic operators.

The functional (16) is the central object of this paper. In
the next section we compute it explicitly for K-body loss
processes. For one- and two-boson loss processes we get
simple, closed expressions. For loss events involving larger
numbers K of bosons, we will see that we can express the
loss functional as a small determinant, which follows from
applying Wick’s theorem to Eq. (16).
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III. DERIVING THE LOSS FUNCTIONAL

In this section we compute the functional F [ρ](k) explic-
itly. Importantly, in our calculation we uncover a different
structure depending on the parity of the number K of bosons
lost in each loss event, which can be traced back to the Jordan-
Wigner string appearing in the mapping (8) to noninteracting
fermions.

A. One-body losses

For K = 1 the Lindblad dissipators are Lj = σ−
j . Using

translational invariance, the loss functional (16) that we need
to compute is

F [ρ](k) = L〈σ+
1 [σ−

1 , c†(k)c(k)]〉GGE,ρ

= L〈σ+
1 σ−

1 c†(k)c(k)〉GGE,ρ

− L〈σ+
1 c†(k)c(k)σ−

1 〉GGE,ρ, (17)

where L is the length of the system and the loss operator acts
on the site j = 1. Both terms in the second line of Eq. (17) can
be computed using the fact that the GGE is a Gaussian state
for the fermions, which allows us to use Wick’s theorem. For
the first term we have [using c1 = 1√

L

∑
q eiq c(q)]:

L〈σ+
1 σ−

1 c†(k)c(k)〉GGE,ρ

= L〈c†
1c1c†(k)c(k)〉GGE,ρ

=
∑
qq′

ei(q−q′ )〈c†(q′)c(q)c†(k)c(k)〉GGE,ρ

=
∑
qq′

ei(q−q′ )[〈c†(q′)c(q)〉〈c†(k)c(k)〉

+ 〈c†(q′)c(k)〉〈c(q)c†(k)〉]
= 〈N〉ρ(k) + ρ(k)[1 − ρ(k)]. (18)

The second term requires more care because the operator
c†(k)c(k) is inserted between σ+

1 and σ−
1 , and these operators

change the parity of the number of particles in the system. The
boundary conditions for the fermions are modified according
to Eq. (10). Thus we need to relate the Fourier modes of
the fermions with periodic boundary conditions to the ones
with antiperiodic boundary conditions. For conciseness, let us
introduce the two corresponding sets of momenta

Qp = 2π

L
× {1, 2, . . . , L}, (19)

Qap = 2π

L
×

{
1

2
,

3

2
, . . . , L − 1

2

}
. (20)

Then we have the following identities:

(k ∈ Qp) c(k) = i

L

∑
q∈Qap

ei(q−k)/2

sin((q − k)/2)
c(q), (21)

(k ∈ Qap) c(k) = i

L

∑
q∈Qp

ei(q−k)/2

sin((q − k)/2)
c(q). (22)

We can insert them into the second term of Eq. (17), which
leads to

〈σ+
1 c†(k)c(k)σ−

1 〉 = 1

L2

∑
q,q′

ei(q−q′ )/2 〈c†
1c†(q′) c(q)c1〉

sin[(q − k)/2] sin[(q′ − k)/2]
.

(23)

This correctly implements the change of boundaries of the
fermions. Next we can apply Wick’s theorem to evaluate the
four-fermion correlator 〈c†

1c†(q′) c(q)c1〉. This leads to

L〈σ+
1 c†(k)c(k)σ−

1 〉 = 〈N〉
L2

∑
q

ρ(q)

sin2
( q−k

2

)

−
⎛
⎝ 1

L

∑
q

cot

(
q − k

2

)
ρ(q)

⎞
⎠

2

− 〈N〉2

L2
.

(24)

The first term in the above equation has a pole of order 2
at q = k + 2πZ, and it is convenient to reduce its degree
using the identity

∑
q 1/ sin2( q−k

2 ) = L2. This leads to the
equivalent expression

L〈σ+
1 c†(k)c(k)σ−

1 〉 = 〈N〉
L2

∑
q

ρ(q) − ρ(k)

sin2
( q−k

2

) + 〈N〉ρ(k)

−
⎛
⎝ 1

L

∑
p

cot

(
p − k

2

)
ρ(p)

⎞
⎠

2

− 〈N〉2

L2
.

(25)

Putting the two terms (18) and (25) together and taking the
thermodynamic limit L → ∞, we arrive at the following form
of the one-body loss functional:

F [ρ](k) = ρ(k) − ρ2(k) +
( π

−π

d p

2π
cot

(
k − p

2

)
ρ(p)

)2

+ n

(
n +

 π

−π

dq

2π

ρ(k) − ρ(q)

sin2
( k−q

2

)
)

, (26)

where n = 〈N〉/L is the density of the particle and
ffl

means
the Cauchy principal value of the integral. This is our main
result for one-body losses. It is similar to (but different from)
the formula given in Ref. [40] for the Tonks-Girardeau gas in
the continuum. Notice that the functional is nonlinear in ρ(k)
and also nonlocal in rapidity space.

B. Two-body losses

For K = 2, the dissipators are Lj = σ−
j σ−

j+1. Under the
Jordan-Wigner mapping they become

Lj = σ−
j σ−

j+1 = c j (−1)c†
j c j c j+1 = −c jc j+1. (27)
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Then, to compute the functional F , we simply need to
insert the dissipator (27) in the definition (16)

F [ρ](k) =
∑

j

〈σ+
j+1σ

+
j [σ−

j σ−
j+1, c†(k)c(k)]〉

=
∑

q,q′,p,p′

ei(2p′+p−2q−q′ )

M
〈c†(q)c†(q′)

× [c(p)c(p′), c†(k)c(k)]〉. (28)

Expanding the commutator in the bracket leads to two
terms

〈c†(q)c†(q′)[c(p)c(p′), c†(k)c(k)]〉
= 〈c†(q)c†(q′)c(p)c(p′)c†(k)c(k)〉

− 〈c†(q)c†(q′)c†(k)c(k)c(p)c(p′)〉. (29)

The first term can be expressed as

〈c†(q)c†(q′)c(p)c(p′)c†(k)c(k)〉
= 〈c†(q)c†(q′)c†(k)c(k)c(p)c(p′)〉

+ δp′k〈c†(q)c†(q′)c(p)c(k)〉
− δpk〈c†(q)c†(q′)c(p′)c(k)〉. (30)

The second term is the expectation value of c†(k)c(k) in a state
where two atoms are removed; the parity of the initial number
of particle is then unchanged. Hence, in contrast to the K = 1
case treated in the previous subsection, here the parity of the
number of atoms does not change.

One can then apply Wick’s theorem and take the thermo-
dynamic limit to obtain the loss functional

F [ρ](k) = 2

π

ˆ π

−π

dq sin2

(
k − q

2

)
ρ(q) ρ(k). (31)

This is our main result for two-body losses. That functional
presents some similarities with the loss functional found in
the relation (5) of Ref. [25].

We now generalize this calculation to the case of K-body
losses for K an arbitrary even integer.

C. K-body losses with K even

In this subsection we show that it is possible to find a closed
formula for the loss functional defined in Eq. (16) where the
Lindblad operator is given by Lj = σ jσ j+1 . . . σ j+K−1. Taking
the Fourier transform of Lj and L†

j in Eq. (16), the loss func-
tional reads

F even[ρ](k)= 1

LK−1

∑
q1,...,qK
q′

1,...,q
′
K

exp i
K∑

l=1

(ql −q′
l )l〈c†(q′

K ) . . . c†(q′
1)

× [c(q1) . . . c(qK ), c†(k)c(k)]〉. (32)

As mentionned in Sec. III B, in the case of even K-body losses
the commutator in Eq. (32) reduces to K terms

〈c†(q′
K ) . . . c†(q′

1)[c(q1) . . . c(qK ), c†(k)c(k)]〉
= δkqK 〈c†(q′

K ) . . . c†(q′
1)c(q1) . . . c(qK−1)c(k)〉

− δkq(K−1)〈c†(q′
K ) . . . c†(q′

1)c(q1) . . . c(qK−2)c(qK )c(k)〉
+ · · · , (33)

and applying Wick’s theorem on each terms leads to a prod-
uct of K terms of the form 〈c†(q′)c(q)〉. Using the property
〈c†(q′)c(q)〉 = δqq′ ρ(q) and taking the thermodynamic limit,
the loss functional in Eq. (32) can be expressed as a sum of K
terms each consisting of a K by K matrix determinant. Let us
introduce the K × K matrix A( j)

[ρ] with matrix elements

[
A( j)

[ρ]

]
ab =

{
1

2π

´ π

−π
dq ei(b−a)q ρ(q) if b �= j,

ei(b−a)k ρ(k) if b = j,
(34)

for indices a, b = 1, . . . , K . The superscript j indicates which
column depends on the rapidity k. Apart from the jth column,
the matrix essentially contains Fourier transforms of the ra-
pidity distribution ρ(k). The loss functional then reduces to

F even[ρ](k) =
K∑

j=1

det(A( j)
[ρ] ). (35)

The relation (35) is another fundamental result of this paper.

D. K-body losses with K odd

In this last subsection we investigate the case of losses
process with an odd number K of lost atoms. The reasoning
is similar to the one we developed in the previous subsection,
however, like in the K = 1 case, we need to be careful about
the change of boundary conditions for the fermions. We start
by taking the Fourier transform of the Lindblad operators
in the definition (16), which leads to the relation (32). The
commutator in the loss functional gives two terms

〈c†(q′
K ) . . . c†(q′

1)[c(q1) . . . c(qK ), c†(k)c(k)]〉
= 〈c†(q′

K ) . . . c†(q′
1)c(q1) . . . c(qK )c†(k)c(k)〉

− 〈c†(q′
K ) . . . c†(q′

1)c†(k)c(k)c(q1) . . . c(qK )〉. (36)

As we already discussed in Sec. III A, the first term is the
expectation value of c†(k)c(k) in a state where the initial
number of particles is preserved. However, the second term
corresponds to the expectation value of c†(k)c(k) in a state
where K atoms are removed. Since K is an odd number, the
parity of the number of particles is changed and one needs to
use the relations (21) to express c†(k)c(k) in the appropriate
parity sector. Inserting the relations (21) in the second term,
one has

〈c†(q′
K ) . . . c†(q′

1)c†(k)c(k)c(q1) . . . c(qK )〉

=
∑
q,q′

ei(q−q′ )/2 〈c†(q′
K ) . . . c†(q′

1)c†(q′)c(q)c(q1) . . . c(qK )〉
L2 sin((q − k)/2) sin((q′ − k)/2)

.

(37)

Before using Wick’s theorem on the above formula, one can
notice that the first term in the right-hand side of Eq. (36) can
be written as

〈c†(q′
K ) . . . c†(q′

1)c(q1) . . . c(qK )c†(k)c(k)〉
= 〈c†(q′

K ) . . . c†(q′
1)c†(k)c(k)c(q1) . . . c(qK )〉

+ δkqK 〈c†(q′
K ) . . . c†(q′

1)c(q1) . . . c(qK−1)c(k)〉
− δkq(K−1)〈c†(q′

K ) . . . c†(q′
1)c(q1) . . . c(qK−2)c(qK )c(k)〉

+ . . . , (38)

023311-5



RIGGIO, ROSSO, KAREVSKI, AND DUBAIL PHYSICAL REVIEW A 109, 023311 (2024)

where we use the anticommutation relation for the fermionic
operators. As we proceeded in the previous subsection, the
Wick’s contractions of Eq. (37) and of the first term in the
right-hand side of Eq. (38) can be written as two determinants
of two matrices B and C. The matrices B and C are (K + 1) ×
(K + 1) Hermitian matrices and their matrix elements depend
on the Fourier and Hilbert transforms [79] of ρ(k)

[B[ρ]]ab =

⎧⎪⎨
⎪⎩

1
2π

´ π

−π
dq ei(b−a)q ρ(q) if a, b < K + 1,

e−iak ρ(k) if b = K + 1,

0 if a = b = K + 1,

(39)

[C[ρ]]ab =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
2π

´ π

−π
dq ei(b−a)q ρ(q) if a, b < K + 1,

1
2π

ffl π

−π
dq e−i(a−1)qρ(q)

[
cot

( k−q
2

) + i
]
,

if b = K + 1,

1
2π

ffl π

−π
dq ρ(q)−ρ(k)

sin2
(

k−q
2

) if a = b = K + 1.

(40)

The loss functional for odd K takes the final form

F odd
K [ρ](k) =

⎛
⎝ K∑

j=1

det
(
A( j)

[ρ]

)⎞⎠ + [det(B[ρ] ) − det(C[ρ] )].

(41)

It is possible to write a general expression valid both for
even and odd K by introducing the factor 1−(−1)K

2 which van-
ishes for K even, so that our final result, valid in all cases,
reads

FK [ρ](k) =
⎛
⎝ K∑

j=1

det
(
A( j)

[ρ]

)⎞⎠

+ 1 − (−1)K

2
[det(B[ρ] ) − det(C[ρ] )]. (42)

IV. EVOLUTION OF THE RAPIDITY DISTRIBUTION
IN A HOMOGENEOUS GAS

Having established the general form of the loss functional
F [ρ] for K-body losses, Eqs. (26), (31), (35), (41), and (42),
we now turn to the time evolution of the rapidity distribution.
We solve the evolution equation

ρ̇(k) = −�F [ρ](k) (43)

numerically (and analytically for the special case K = 1), and
we focus, in particular, on the time evolution of the atom
density n = ´ π

−π
ρ(k) dk

2π
.

A. Results for K = 1

For one-body losses the atom density always decays expo-
nentially

n(t ) = n(0)e−�t . (44)

This simply follows from Eq. (4) applied to the total parti-
cle number Qa = N and to Lj = σ−

j : it gives 〈Ṅ〉 = −�〈N〉,
which implies Eq. (44) for the atom density n = N/L.

It turns out the evolution equation (43) for the rapidity
distribution can be solved exactly for the loss functional for
K = 1 [see Eq. (26)]. The solution is derived in Appendix A;
it reads

ρ(t, k) = n0e−�t Re

(
tanh[n0(e−�t − 1)] + i

n0
I (t, k)

1 + i
n0

tanh[n0(e−�t − 1)] I (t, k)

)
,

(45)

where n0 = n(0) is the initial atom density, ρ0(k) = ρ(t =
0, k) is the initial rapidity distribution, and I (t, k) is the in-
tegral

I (t, k) =
ˆ π

−π

dq

2π

ρ0(q)

tan
[ k−q

2 + in0(1 − e−�t )
] . (46)

A related expression for the continuous Tonks-Girardeau gas
with one-body losses was obtained in Ref. [40].

In Fig. 2 we show the evolution of the rapidity distribu-
tion from thermal initial states at different temperatures. We
display the analytical result (45), as well as the numerical
solution of Eq. (43) obtained from the Runge-Kutta method;
they are in perfect agreement, as they should be.

We see that loss processes spread the distribution in rapid-
ity space. In the limit of large temperature for the initial state,
the rapidity distribution is flat and remains flat at all times.
For smaller initial temperatures, it evolves into a bell-shaped
distribution at late times, which is close to a Boltzmann dis-
tribution ρ(k) ∝ exp[cos(k)/T ] with a density going to zero
according to Eq. (44). This is further illustrated in Fig. 3(a),
where we plot the ratio ρ(k, t )/n(t ) in the limit t → ∞ and
fit the result with a Boltzmann distribution. The agreement is
very good, even though it is clear from the exact formulas (45)
and (46) that the distribution ρ(k, t ) never becomes exactly
thermal, even at infinite time.

To find a more striking signature of the fact that the system
never goes to a low-density thermal distribution, we con-
sider the case of an oscillating initial rapidity distribution
ρ0(k) = [1 − cos(sk)]/2, where s is an integer. In that case
the long-time limit of the integral (46) can be evaluated ana-
lytically, lim

t→∞ I (t, k) = (1 − e−2sn0 eiks)/2, and when injected

in Eq. (45) it leads to a late-time rapidity distribution of the
form

ρ(k, t )

n(t )
=

t→∞
α + β cos(sk)

γ + δ cos(sk)
, (47)

where the coefficients α, β, γ , δ depend on the initial density
n0 and on the integer s. Thus, even at long times, the rescaled
rapidity distribution is sensitive to the structure of the initial
distribution [see also Fig. 3(b)]. We conclude that, in general,
the rapidity distribution does not go to a low-density thermal
distribution at long times.

B. Results for K = 2

We now consider the time-evolution equation for the rapid-
ity distribution for the K = 2 case, which is characterized by
the functional given by Eq. (31). For simplicity, here we focus
on the initial rapidity distributions ρ0(k) that are symmetric
under reflection k → −k. Since the master equation is also in-
variant under k → −k, this property is conserved throughout
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33.0 % lost, Γt = 0.4

45.1 % lost, Γt = 0.6

55.1 % lost, Γt = 0.8

63.2 % lost, Γt = 1.0

69.9 % lost, Γt = 1.2
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86.5 % lost, Γt = 2.0

91.8 % lost, Γt = 2.5

98.1 % lost, Γt = 4.0

Eq.45

FIG. 2. Effect of one-body losses on different rapidity distributions. The initial distribution is a thermal (Fermi-Dirac) distribution
ρ(k) = {1 + exp[− cos(k)/T ]}−1, and we show the results for different initial temperatures T = 0.1, 1.0, 10.0, 100.0. The time evolution
is obtained by solving Eq. (15) with the loss functional (26) with the Runge-Kutta method. Notice that the solution of Eq. (15) depends on the
loss rate � only through the dimensionless time �t . The black dashed lines correspond to formula (45) and shows a perfect agreement with the
numerical solution of the evolution equation.

the entire evolution. Then Eq. (31) simplifies to the following
expression:

F [ρ] = 2 ρ(k) n(t ) − 1

π
cos (k)ρ(k)

ˆ π

−π

dq cos (q) ρ(q).

(48)
Equation (48) highlights the two distinct contributions to the
time evolution of ρ(k, t ): the first term in the right-hand side
represents a mean-field contribution, as it does not introduce
any structure in rapidity space, while the second term is

−π −π
2 0 π

2 π
0.0

0.5

1.0

1.5

2.0

2.5

3.0

ρ
(k

,t
)/

n
(t

)

(a)

t = 0

t → ∞
Fit with a1 e

−π −π
2 0 π

2 π

Rapidity k

0.0

0.5

1.0

1.5

2.0

2.5

ρ
(k

,t
)/

n
(t

)

(b)

t = 0

t → ∞

FIG. 3. Long time behavior of different rapidity distribu-
tions rescaled by the corresponding density. (a) The initial
distribution (blue curve) is a Fermi-Dirac distributions ρ0(k) =
{1 + exp[− cos(k)/T ]}−1 with T = 0.1. The red curve is the dis-
tribution at long time according to Eq. (45). The black dashed line
is a numerical fit with a Boltzmann distribution a1 exp[cos(k)/a2].
(b) The initial distribution (blue curve) is a cosine function ρ0(k) =
[1 − cos(sk)]/2. The red curve is the distribution for t → ∞. Here it
is clear that the distribution does not become thermal.

responsible for generating quantum correlations and, conse-
quently, introducing structure in k space.

After some algebra presented in Appendix B, one can de-
rive an exact (implicit) expression for the rapidity distribution
at all times

ρ(k, t ) = ρ0(k) exp −2�

ˆ t

0

×
⎛
⎝1 − σ0 cos (k)

√
1 + ∂τ n(τ )

2� n(τ )2

⎞
⎠n(τ )dτ, (49)

where σ0 = sgn(
´ π

−π
cos (k)ρ0(k)dk), with sgn(x) = ±1 the

sign function. Equation (49) shows that ρ(k, t ) is entirely de-
termined by ρ0(k) and n(t ). Notably, it reveals that rapidities
are distributed according to a cosine law, with the k = 0 mode
that has the longest lifetime.

In Fig. 4 we show the evolution of the rapidity distribu-
tion for initial thermal states at different temperatures, and
in Fig. 5 we show the corresponding evolution of the mean
atom density n(t ). It appears that, except for an initial in-
finite temperature state, the mean density always decays as
n(t ) ∝ 1/

√
t at very long times, while the density decreases

as 1/t for an infinite temperature. These two behaviors follow
from Eqs. (48) and (49), as we now explain.

Equation (48) reveals that initial rapidity distributions that
have a vanishing first Fourier mode

´ π

−π
dq cos(q)ρ(q) always

follow the exact same dynamics as the mean density, namely,

n(t ) = 1

1 + 2n(0)�t
, (50)

characterized by a long-term decay as ∼1/t . This power law
is then always found for initial rapidity distributions with
vanishing first Fourier mode, including infinite temperature
states.

In contrast, initial rapidity distributions that have a non-
vanishing first Fourier mode decay as ∼1/

√
t at long times.

This can be understood by looking at the long time limit
of Eq. (49). Let us introduce the two time-dependent func-

tions g(t ) = ´ t
0 n(τ ) dτ and f (t ) = ´ t

0

√
1 + ∂τ n(τ )

2� n(τ )2 n(τ )dτ .
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Eq.49

FIG. 4. Effect of two-body losses on the rapidity distribution. The initial rapidity distribution ρ(k, 0) = 1/{1 + exp[− cos(k)/T ]} is chosen
with T = 0.1, 1, 10, 100 from left to right. The black dashed curve is the analytic solution [see Eq. (49)]. After several loss events the rapidity
distribution takes the form of a Gaussian centered at k = 0. As in the one-body case, if initially the rapidity distribution is flat then it remains
flat under lossy evolution.

Numerically we observe that |∂τ n(τ )| � 2�n(τ )2 at long
times, as soon as the initial rapidity distributions has a non-
vanishing first Fourier mode. Then, expanding at first order in
|∂τ n(τ )|/[2�n(τ )2], f (t ) becomes

f (t ) � g(t ) + 1

4�
ln

(
n(t )

n(0)

)
, (51)

implying that, at large t , the difference between f (t ) and g(t )
grows as ln(t ). Integrating Eq. (49) over k leads to the mean
density

n(t ) = e−2�g(t )

2π

ˆ π

−π

dk ρ0(k) e2�σ0 cos (k) f (t ). (52)

Since the function f (t ) diverges at large t , the second integral
can be evaluated by the saddle-point approximation; we de-
note k∗

σ0
the saddle point k∗

σ0
= 0 if σ0 = +1 and k∗

σ0
= π if

FIG. 5. The mean density under two-body losses for
different thermal initial rapidity distributions ρ(k, 0) = 1/

{1 + exp[− cos(k)/T ]}. Colored curves are obtained by solving
numerically the time evolution equation (15) for the loss functional
(31) with the Runge-Kutta method. The red dashed line is the mean
density associated to an initial rapidity distribution which is flat (i.e.,
infinite temperature), see Eq. (57). The dashed line is the expected
long-time behavior ∼t−1/2, see Eq. (55).

σ0 = −1. We are thus left withˆ π

−π

dk ρ0(k) e2�σ0 cos (k) f (t )

�
t→∞ e2� f (t )

ˆ ∞

−∞
dk ρ0(k) e−� k2 f (t )

=
√

π

� f (t )
ρ0(k∗

σ0
) e2� f (t ). (53)

Using Eq. (51), we find

n(t ) �
t→∞

1

� f (t )

ρ0(k∗
σ0

)2

4πn(0)
� 1

�g(t )

ρ0(k∗
σ0

)2

4πn(0)
, (54)

where, in the second identity, we use the fact that the loga-
rithmic term in Eq. (51) is subleading. Since n(t ) = ∂t g(t ),
we arrive at an ordinary differential equation of the form
∂t g(t ) ∝ 1/g(t ). Consequently, g(t ) ∝ √

t , and then

n(t ) ∝ t−1/2, (55)

as expected from our numerical results, see Fig. 5. We note
that a similar result was found recently in a lattice gas with
similar but different two-body loss term [25] as well as in
its continuous analog [43], although we stress that the loss
functionals and rate equations for these models are different
from the ones of this paper.

We conclude this subsection with an investigation of the
long time behavior of the rapidity distribution ρ(k, t ), which
is determined by the mean density n(t ) according to Eq. (49).
We just established that the first Fourier mode of the initial
rapidity distribution strongly influences the long time behav-
ior. In the case of a vanishing first Fourier mode, the rapidity
density at time t is simply given [see Eqs. (50) and (49)]
by ρ(k, t ) = ρ0(k) n(t )/n(0). The ratio ρ(k, t )/n(t ) is then
time-independent, as illustrated in Fig. 6(c). In contrast,
when the first Fourier mode of the initial distribution
ρ0(k) is nonzero, the ratio ρ(k, t )/n(t ) loses its depen-
dence on the initial rapidity distribution at very long times.
Indeed, in that case the rapidity distribution goes to a low-
density, low-temperature, Boltzmann distribution of the form
ρ(k, t )/n(t ) � eβ(t ) cos k with the effective inverse temperature
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FIG. 6. Long time behavior of different rapidity distributions
rescaled by the corresponding density n(t ) under two-body losses.
In (a), (b), and (c), the blue curve represents the initial rapidity dis-
tribution while the red curve is the rapidity distribution at long time.
The violet curve is the rescaled rapidity distribution at an interme-
diate time. (a) The initial distribution is a Fermi-Dirac distributions
ρ0(k) = {1 + exp[− cos(k)/T ]}−1 with T = 0.1. The green dashed
curve is a fit with a Boltzmann distribution a1 exp[a2 cos(k)] where
a2 is positive. (b) The initial rapidity distribution is [1 − cos(k)]/2
which has a nonvanishing first Fourier mode. The green dashed
curve is a fit with a Boltzmann distribution a1 exp a2 cos(k) where
a2 is negative. (c) The initial rapidity distribution is [1 − cos(2k)]/2
which has no first Fourier mode.

β(t ) = 2σ0� f (t ). This is illustrated for the case of an initial
thermal rapidity distribution in Fig. 6(a), where we see that
the ratio ρ(k, t )/n(t ) becomes concentrated around k = 0 and
is very close to a Boltzmann distribution. Notice also that
the effective temperature β(t ) is negative when the sign of
the first Fourier mode of the initial rapidity distribution is
negative. This is illustrated in Fig. 6(b), where we display the
ratio ρ(k, t )/n(t ) at late times for the far-from-thermal ini-
tial rapidity distribution ρ0(k) = [1 − cos(k)]/2. We observe
that, at late times, the distribution gets concentrated around
k = π and corresponds to a Boltzmann distribution at negative
temperature.

Remarkably, these observations are in stark contrast with
our findings for the K = 1 case. While we found that, for
K = 1, the rapidity distribution never goes to a thermal dis-
tribution at late time, here for K = 2 the distribution goes to a
low-density, low-temperature (possibly negative), thermal dis-
tribution. This is always true, except in the special case where
the first Fourier mode of the rapidity distribution vanishes; in
that case the rapidity distribution is simply rescaled by a factor
n(t )/n(0) under lossy evolution.

C. Generic observations for arbitrary K

We now turn to the case of higher K , and draw some
general conclusions.

Numerically, we solve the time evolution equation of the
rapidity distribution for three-body losses (K = 3), see Fig. 7
for the evolution of the rapidity distribution from an initial
thermal state, and Fig. 8 for the atom density n(t ). In Fig. 7
we see that the effect of three-body losses is to spread the
rapidity distribution in rapidity space, as is already observed
for one-body and two-body losses. We expect that this is a
generic effect caused by K-body losses for any K . In Fig. 8,
we observe that the mean density decays as t−1/2 for an initial
infinite temperature state, while for any nonzero initial tem-
perature it crosses over to a t−α decay at long times with an
exponent α � 0.21. This exponent seems to be independent
of the initial temperature as long as it is nonzero, see Fig. 8.
However, for an initial rapidity distribution that is far from
thermal, such as, for instance, ρ(k, t = 0) = (1 − cos k)/2 or
[1 − cos(2k)]/2, we find that the density also decays as a
power law at late time, although with a different exponent α:
the exponent is close to 0.21 for ρ(k, t = 0) = (1 − cos k)/2,
and close to 0.38 for ρ(k, t = 0) = [1 − cos(2k)]/2.

We are not able to analytically derive the observed generic
power-law decay for K = 3 or for higher K , beyond the spe-
cial case of the initial infinite temperature state. The later case
is easily understood because, for an infinite temperature state,
the rapidity distribution is constant, ρ(k) = n, and Eq. (15)
can be solved analytically. Then the determinant of the matrix
B is equal to the determinant of C and the matrices A reduce to
identical and diagonal matrices. Therefore, the loss functional
is simply given by

FK [ρ](k) = KnK , (56)

which is the result expected from the mean-field approach.
Then the solution of the evolution equation (15) gives the
mean density

n(t ) = n(0)

[1 + n(0)K−1 K (K − 1) �t]1/(K−1)
. (57)

Beyond that simple case, we are not able to express the loss
functional in a simple form so as to derive the long time decay
of the mean density.

Similarly to the K = 1 and K = 2 cases, we investigate the
behavior of the rescaled rapidity distribution ρ(k, t )/n(t ) at
late times. Recall that this ratio reveals that the gas generi-
cally [i.e., unless the first Fourier mode of ρ(k) is tuned to
zero] goes to a low-density, low-temperature thermal state for
K = 2, while for K = 1 it never does. In Fig. 9 we display
this ratio at late time for K = 3. Figure 9(a) corresponds
to a thermal initial rapidity distribution, and Figs. 9(b) and
9(c) to nonthermal initial rapidity distributions ρ(k, t = 0) =
(1 − cos k)/2 and [1 − cos(2k)]/2, respectively. We observe
that the rescaled rapidity distribution concentrates around the
maxima of the initial rapidity distribution at long times. Even
for an initial thermal distribution [Fig. 9(a)], the long time
behavior of the density profile can not be described by a Boltz-
mann distribution, as it looks like a bell-shaped distribution
that has a small dip at k = 0. A similar conclusion holds for
Fig. 9(b). Finally Fig. 9(c) shows the emergence of peaks
localized at k = ±π/2. We conclude that, in contrast with the
K = 2 case, the late-time rapidity distribution is generically
nonthermal.
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FIG. 7. Evolution of the rapidity distribution under three-body losses. We numerically solve (15) for the loss functional F [ρ](k)
corresponding to K = 3, using the Runge-Kutta method. The initial rapidity distribution is the Fermi-Dirac distribution ρ(k, 0) = 1/

{1 + exp[− cos(k)/T ]} at half filling and for different temperatures T = 0.10, 1.0, 100.0 (from left to right).

V. HARMONICALLY TRAPPED GAS

In many cold atom experiments, the gas lies in a longitudi-
nal trapping potential. This prompts us to study the influence
of the trapping potential on the dynamics of our lossy lattice
hard-core gas. For simplicity, we restrict to a harmonic poten-
tial V (x) = ω2x2/2.

We adopt a coarse-grained perspective of the gas: we as-
sume that the gas can be divided into fluid cells which contain
a large number of bosons and that the state of the gas within
each fluid cell [x, x + dx] is a certain macrostate represented
by the local density of rapidities ρ(x, k). Such coarse-grained
descriptions have been very successful lately in describing the
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FIG. 8. Time evolution of the boson density under three-body
losses for different initial rapidity distributions at half filling. Col-
ored curves are obtained by solving numerically the time evolution
equation of ρ(k) using the Runge-Kutta method with a nonregular
time step. From blue to red, the simulation is performed with an
initial distribution which is a Fermi-Dirac distribution ρ(k, 0) =
{1 + exp[− cos(k)/T ]}−1. The dark and light green curves are,
respectively, obtained from initial rapidity distributions ρ(k, 0) =
[1 − cos(k)]/2 and ρ(k, 0) = [1 − cos(2k)]/2. The three dashed
lines are a guide to the eye showing power-law decay for three
different exponents.

out-of-equilibrium quantum many-body dynamics of nearly
integrable gases [64,73–75,80–82]. Here we investigate the
effect of losses on our lattice hard-core gas within that coarse-
grained description.

The equation satisfied by the position-dependent rapidity
distribution is

∂tρ(x, k, t ) + sin(k) ∂xρ(x, k, t ) − ω2x ∂kρ(x, k, t )

= −�F [ρ(x, . . . , t )](k). (58)

In the first line, the term ∂x sin(k)ρ(x, k) corresponds to
the gradient of the current of quasiparticles with rapidity
k, j(x, k) = sin(k)ρ(x, k). Here sin(k) is the group velocity
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FIG. 9. Long time behavior of different rapidity distributions
rescaled by the corresponding density under three-body losses. For
the subplots a, b and c, the blue curve represents the initial rapid-
ity distribution while the red curve is the rapidity distribution at
long time. (a) The initial distribution is a Fermi-Dirac distributions
ρ0(k) = 1/{1 + exp[− cos(k)/T ]} with T = 0.1. (b) Nonthermal
initial rapidity distribution is [1 − cos(k)]/2. (c) Nonthermal initial
rapididty distribution is [1 − cos(2k)]/2.

023311-10



EFFECTS OF ATOM LOSSES ON A ONE-DIMENSIONAL … PHYSICAL REVIEW A 109, 023311 (2024)

of quasiparticles with lattice dispersion relation ε(k) =
− cos(k). The term −ω2x ∂kρ(x, k) in Eq. (58) corresponds to
Newton’s second law, and encodes the fact that the quasiparti-
cles feel the harmonic potential and are accelerated according
to k̇ = −∂xV (x) = −ω2x. Finally, the r.h.s. of Eq. (58) is the
loss term at position x, which follows from the assumption
that the gas is locally homogeneous so that we can apply the
formalism developed in previous sections, this time within
each fluid cell [x, x + dx].

A. Numerical method

Our main goal in this section is to solve numerically
the evolution equation (58). For this we use a split-step
method. Assuming that we know the rapidity distribution
ρt (x, k), from time t to t + �t we first compute the new
rapidity distribution ρ ′

t+�t (x, k) generated by the transport of
quasiparticles, and then compute ρt+�t (x, k) from ρ ′

t+�t (x, k)
by implementing localized lossy evolution during a time
step �t .

This gives the following scheme. For the transport part we
rely on the fact that the underlying dynamics is the one of
noninteracting quasiparticles. Each quasiparticle at position
(x, k) in phase space evolves as

dx

dt
= sin(k),

dk

dt
= −ω2x. (59)

Let us call X (x, k, t ) and K (x, k, t ) the analytical solution of
that equation. Then, the first step of our numerical scheme is

ρ ′
t+�t [X (x, k, t ), K (x, k, t )] = ρt (x, k), (60)

and the second step is

ρt+�t (x, k) = y(�t, k), (61)

where y(τ, k) is the solution of the differential equation

∂τ y(τ, k) = −�F [y(τ, . . .)](k), y(0, k) = ρ ′
t+�t,x. (62)

The rapidity distribution ρ(x, k) is discretized on a regular
grid in phase space and the two steps in Eqs. (60) and Eq. (61)
are implemented as follows.

For the transport step in Eq. (60), we numerically in-
tegrate Eq. (59) for each point of the grid. Then, starting
from the values ρt (x, k) on the regular grid in phase space,
we move each node of the grid according to (x, k) →
[X (x, k,�t ), K (x, k,�t )]. This gives us the rapidity distribu-
tion after transport over a time �t , which, however, is defined
on a new grid, different from the initial regular grid. To get the
new rapidity distribution ρ ′

t+�t (x, k) on the initial regular grid,
we use linear interpolation. Notice that the entire procedure,
including both the numerical integration of Eq. (59) and the
linear interpolation, needs to be performed only once. To
benchmark this transport part, we checked that this method
gives excellent numerical precision for the simulated transport
in the absence of losses.

The second step consists in solving numerically the dif-
ferential equation (62) for each column of the grid in phase
space. The solution of each differential equation is ob-
tained by the Runge-Kutta method with the initial condition

y(0, k) = ρ ′
t+�t,x. We do this for each column of the grid,

and we thus get the new space-dependent rapidity distribution
ρt+�t (x, k) according to Eq. (61).

The combination of the two steps allows us to go from a ra-
pidity distribution ρt (x, k) to the new distribution ρt+�t (x, k),
both defined on the same phase-space grid. We then repeat this
procedure many times with a small time step �t to simulate
the lossy evolution of the gas in the trap.

B. Results

We performed numerical simulations of the evolution of
the position-dependent rapidity distribution ρ(x, k) under
K-body losses using the algorithm presented in the previ-
ous section, see Fig. 10. For the initial state, we use a
thermal (Fermi-Dirac) rapidity distribution ρ(x, k) = 1/{1 +
exp [− cos(k) + ω2x2/2 − μ]/T }, where μ is the chemical
potential and T the temperature.

Our numerical study allows us to make the following
general observations, illustrated in Fig. 10. For all K (we
simulated K = 1, 2, 3) the distribution typically spreads in
phase space, similarly to the homogeneous case. However,
while the number of particles decays exponentially for K = 1,
the loss dynamics is much slower for higher K , and this has
visible effects on the distribution of rapidities after a given
percentage of lost atoms.

For K = 1 we observe that the edges of the phase-space
distribution get depopulated very fast and quickly results
in a halo around the origin. The spreading is also clearly
visible in real space in the particle density profile n(x) =´

ρ(x, k)dk/(2π ), see the second line of Fig. 10.
For K = 2, the situation is a little bit different, see Fig. 10.

Until ∼20% of the atoms have been lost, the dynamics is
similar to the one for K = 1, but after that we observe the
formation of spirals in the bulk of the phase-space distribution.
The spirals become more visible as the ratio �/ω is increased,
see Appendix D. Compared to K = 1, the bulk of the dis-
tribution also gets depopulated, leading to an approximately
uniform circular droplet in phase space, with a density that
decays with time. This is visible in Fig. 10 after ∼50% of the
atoms have been lost; we note that, compared to the case of
one-body losses, the distribution spreads less significantly in
phase space.

For K = 3, we also observe a small spiral appearing at
the center of the distribution after ∼30% of the atoms have
been lost. This spiral remains localized at the center during
the dynamics. Interestingly, as one can see from the fifth
line in Fig. 10, this time it is the center of the phase-space
distribution that decreases faster compared to the edges. After
∼60% of atoms are lost, a hole starts developing at the center
of the phase-space distribution, and the distribution looks
more and more like a ring. This is a clear signature of a
strongly out-of-equilibrium gas in the trap, with a population
inversion: the higher-energy single-particle orbitals become
more populated than the low-energy ones. This effect is re-
flected in the corresponding real-space particle density n(x)
then acquires a doubly peaked shape, with a local minimum at
x = 0, similarly to what we observe also in the homogeneous
case.

023311-11



RIGGIO, ROSSO, KAREVSKI, AND DUBAIL PHYSICAL REVIEW A 109, 023311 (2024)

−π

0

π

k

0 % lost

0.00 τ
K = 1

10 % lost

0.08 τ

20 % lost

0.18 τ

30 % lost

0.28 τ

40 % lost

0.42 τ

50 % lost

0.56 τ

60 % lost

0.74 τ

70 % lost

0.97 τ

80 % lost

1.27 τ

90 % lost

1.77 τ

0.0

0.5

1.0

n
(x

,t
)/

n
0

−π

0

π

k

0 % lost

0.00 τ
K = 2

10 % lost

0.24 τ

20 % lost

0.48 τ

30 % lost

0.84 τ

40 % lost

1.31 τ

50 % lost

2.03 τ

60 % lost

2.98 τ

70 % lost

4.54 τ

80 % lost

7.76 τ

90 % lost

16.11 τ

0.0

0.5

1.0

n
(x

,t
)/

n
0

−π

0

π

k

0 % lost

0.00 τ
K = 3

10 % lost

1.31 τ

20 % lost

3.06 τ

30 % lost

5.69 τ

40 % lost

9.63 τ

50 % lost

16.63 τ

60 % lost

31.51 τ

70 % lost

65.65 τ

80 % lost

119.37 τ

90 % lost

445.63 τ

−3 0 3

x

0.0

0.5

1.0

n
(x

,t
)/

n
0

−3 0 3

x
−3 0 3

x
−3 0 3

x
−3 0 3

x
−3 0 3

x
−3 0 3

x
−3 0 3

x
−3 0 3

x
−3 0 3

x

0.0

0.2

0.4

0.6

0.8

ρ(x, k)

FIG. 10. Evolution of the position-dependent distribution ρ(x, k) in a harmonic trap and under K-body losses. The initial distribution is
ρ(x, k) = 1/(1 + exp{[− cos(k) + ω2x2/2]/T }) with harmonic trap frequency ω = 1/2 and temperature T = 0.1. The loss rate is � = 0.1. The
different snapshots show increasing times in units of τ = 2π/ω. Below each phase portrait we add the corresponding density profiles n(x, t )
obtained by integrating ρ(x, k, t ) over k. The density profiles are rescaled by the initial density at the trap center n0 = n(x = 0, t = 0) = 0.5.
The two first rows show the effects of one-body losses (K = 1) on the distribution in phase space and the corresponding density profiles. The
two next rows show the effects of two-body losses (K = 2) and the last two rows show the effect of three-body losses (K = 3). Numerically,
the x and k axes are discretized with 300 points on each axis, and we use a time step of �t = 0.05; we provide a check of convergence of the
numerical method in Appendix E.

Finally, having simulated the dynamics of the position-
dependent rapidity distribution ρ(x, k), one can easily get
the evolution of the total particle number N (t ) by integrating
ρ(x, k, t ) over x and k at fixed time t . For one-body losses,
one always finds an exponential decay N (t ) = e−�t N (0). For
two-body and three-body losses the result is more interesting.
In Fig. 11(a), we show the evolution of the mean density un-
der two-body losses for different trap frequencies ω. Starting
with a thermal distribution at temperature T and chemical
potential μ, we observe that the mean density decreases at
long times as ∼1/t , a result that coincides with the mean-
field (or infinite temperature) decay for the homogeneous
gas. Moreover, we see that the higher the trap frequency
the faster the decay of the total particle number. Indeed,
as the trap frequency increases, the distribution concentrates
around the center of the confinement potential. Since the
density of particles is higher, the probability of finding two
neighboring bosons increases and the depopulation is then
accelerated.

For three-body losses, we see in Fig. 11(b) that, like in the
two-body case, a stronger confinement speeds up the decrease
of total particle number. However, this time we do not observe

a clear convergence towards the expectation from the mean-
field (or infinite temperature) result for the homogeneous case,
which would be N (t ) ∼ t−1/2. We observe a number of parti-
cles that decreases approximately as a power law ∼t−α with
an exponent α � 0.6. Our numerics does not allow us to draw
a clear conclusion as to whether or not this would go to the
mean-field exponent 1/2 at longer times. Nevertheless, let us
stress that, qualitatively, the effect of three-body losses is the
same as in the two-body case: compared to the homogeneous
case, the trap dramatically speeds up the losses. This can be
explained by the same mechanism as in the two-body case:
since the density of particles is higher in the center, the prob-
ability of finding three neighboring bosons increases and the
losses are enhanced.

VI. CONCLUSION

We studied the effects of K-body losses on a gas of
lattice hardcore bosons, in particular, their effect on the
thermalization of the gas at late time. For this, we relied
on the hypothesis of adiabatic losses used previously in
Refs. [25,40,76–78]. We derived analytical results for the loss
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FIG. 11. Time evolution of the total particle number under
two-body losses. The initial distribution is 1/(1 + exp{[− cos(k) +
ω2x2/2 − μ]/T }, where T = 0.1 and μ, the chemical potential, is
chosen to fix the initial mean particle density to 0.5 and N (0)
represents the initial number of particle. The loss rate is � = 0.1.
(a) Results for two-body losses. The red dashed line is the long
time behavior of the total particle number for the homogeneous case
with an initial rapidity distribution which has no first Fourier mode
(see Fig. 4). (b) Three-body losses. The black dashed line represents
the asymptotic behavior of the mean density and the red dashed line
is the mean-field prediction.

functional for any integer K in the form of a small finite
determinant and closed expressions in the cases K = 1, 2.

For K = 1 and K = 2, we solved analytically the time
evolution equation of the rapidity distribution of the spatially
homogeneous gas. In the case of one-body losses, our formula
(45) showed that the loss functional was, in general, nonlinear
and nonlocal in rapidity space, as was already observed for
the continuous Lieb-Liniger gas in Ref. [40]. After investi-
gating the long time behavior of the rapidity distribution, we
concluded that one-body losses do not drive the gas to a low-
density thermal equilibrium state at long times. In the case of
two-body losses, our formula (49) gave an implicit expression
for the rapidity distribution and using a similar method as in
Ref. [25], we were able to investigate the long time behavior
of the rapidity distribution and the mean particle density. In
particular, we found that it decays generically as ∼1/

√
t ,

except when the first Fourier mode of the initial distribution
vanished; in that case the particle density decayed as ∼1/t . A
similar conclusion was drawn for a different loss process in
Refs. [25,43].

Finally, we considered the inhomogeneous system consist-
ing in a lattice hardcore boson’s gas in a harmonic potential.
We provided a numerical method to solve the dynamics com-
bining the effects of the losses and of the trapping potential.
We observed that, for K � 2, the trap generically speeds up
the decay of the total particle number. We also found that
the gas typically evolves towards a highly nonthermal state;
in particular, for K = 3 we observe a striking ring-shaped
distribution in phase space, which signals an inversion of
population (i.e., higher-energy single-particle orbitals become
more populated than the lower-energy ones), see Fig. 10.
Further investigations are needed to draw more quantitative
conclusions about the dynamics in the trap.

Note added. Recently, a preprint by Perfetto, Carollo, Gar-
rahan, and Lesanovsky appeared [83], where a similar model
of spinless fermions with K = 2-, 3-, 4-body losses is studied
within the context of quantum reaction-diffusion dynamics of
annihilation processes. Our hard-core model coincides with
their model for K even, but not for K odd because of the
Jordan-Wigner mapping, as we explained in detail in Sec. III.
Perfetto et al. do not focus on the effect of losses on the rapid-
ity distributions of the gas, but rather on the evolution of the
number of particles in the homogeneous setting. For the case
of K even, where our models coincide, their findings about
the evolution of the number of particles in the homogeneous
setting are in agreement with ours.
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APPENDIX A: DERIVING SOLUTION (45)

For one-body losses, the time evolution of the rapidity
distribution ρ(t, k) is given by

∂tρ = −�{ ρ − [ρ2 − H(ρ)2 − n2(t )] + 2n(t )H′(ρ)}, (A1)

where � is the loss rate. We introduce the Hilbert transform
H[ f (x)] = 1

2π

´ π

−π
dy f (y)

tan( x−y
2 )

with f (x) a periodic function.

The mean density n(t ) is known: n(t ) = n0e−�t .
Here the rapidity distribution is a 2π -periodic real-valued

function. From the rapidity distribution, we can construct a
complex-valued function whose imaginary part is the Hilbert
transform of the real part: Q = ρ(k) + iH[ρ(k)]. Such a
function is called an analytic signal and can be analyti-
cally continued to the upper half-plane: the function Q(z) =

i
2π

´ π

−π

dq ρ(q)
tan( z−q

2 )
is well defined for Im(z) > 0 and Re(z) ∈

[−π, π ] and reduces to ρ(k) on the real axis.
Taking the Hilbert transform of Eq. (A1)

∂tH(ρ) = −�{ H(ρ) − H[ρ2 − H(ρ)2] + 2n(t )H[H′(ρ)]}
(A2)
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and adding Eqs. (A1) and (A2), one has

∂τ Q(τ, z) = −[Q(τ, z) − i2n∂zQ(τ, z) − Q2(τ, z) + n2(τ )].
(A3)

We use some properties of the Hilbert transform: (i)
H[H( f )] = − f , (ii) H′( f ) = H( f ′). Moreover, since Q2(z)
is analytic for Im(z) > 0, the function ρ2 − H(ρ)2 +
i2ρH(ρ) is an analytic signal if and only if H[ρ2 − H(ρ)2] =
2ρH(ρ).

Introducing the function Y (τ, z) = Q[τ, z + i2n(τ )], one
gets

∂τY (τ, z) = Y 2(τ, z) − Y (τ, z) − n2(τ ). (A4)

This equation can be solved if one assumes Y (τ, z) =
α(τ, z) e−τ . Indeed, thanks to this trick, the above equation re-
duces to

∂τα(τ, z) = [
α2(τ, z) − n2

0

]
e−τ . (A5)

Putting all terms depending on α in the left-hand side, one
has ˆ

dα

α2 − n2
0

= −e−τ + C1, (A6)

which leads to

α(τ, z) = n0 tanh(n0 e−τ + C2). (A7)

The initial condition Y (0, z) = Y0 sets the constant C2 =
tanh−1(Y0/n0) − n0. Thus, one can write

Y (τ, z) = n(τ ) tanh[n0(e−τ − 1) + tanh−1(Y0/n0)]

= n(τ )

(
tanh[n0(e−τ − 1)] + Y0/n0

1 + tanh[n0(e−τ − 1)]Y0/n0

)
. (A8)

Finally, the rapidity distribution reads

ρ(t, k) = n0e−�t Re

⎛
⎜⎜⎜⎝

tanh[n0(e−�t − 1)] + i
2πn0

´ π

−π
dq

ρ0(q)

tan
[ k−q

2 + in0(1 − e−�t )
]

1 + i
2πn0

tanh[n0(e−�t − 1)]
´ π

−π
dq

ρ0(q)

tan
[ k−q

2 + in0(1 − e−�t )
]

⎞
⎟⎟⎟⎠. (A9)

APPENDIX B: DERIVATION OF EQ. (49)
OF THE MAIN TEXT

In this Appendix we present the main steps to derive the
exact expression of the rapidity distribution in the homoge-
neous case for K = 2. We consider the time evolution of n(t )
written as

∂t n(t ) = 1

2π

ˆ π

−π

∂tρ(k, t )dk. (B1)

We now insert the evolution equation (48) obtaining

∂t n(t ) = −2�n(t )

2π

ˆ π

−π

ρ(k, t )dk

+ �

2π2

(ˆ π

−π

cos (k)ρ(k, t )dk

)2

= −2�n(t )2 + �

2π2

(ˆ π

−π

cos (k)ρ(k, t )dk

)2

. (B2)

By inverting the later relation, one obtains∣∣∣∣
ˆ π

−π

cos (k)ρ(k, t )dk

∣∣∣∣ = π

√
2

�
[∂t n(t ) + 2�n(t )2], (B3)

where | • | denotes the absolute value. At this point of the
derivation it is useful to introduce the following variable:
σ (t ) = sgn(

´ π

−π
cos (k)ρ(k, t )dk), with sgn(x) being the sign

function. We now claim that the function σ (t ) is solely de-
termined by its value at initial time, i.e., σ (t ) = σ (0)/σ0,
the argument goes as follows. (i) If the first Fourier mode
vanishes at some time t , then it must vanish also at any
later time. This follows from Eq. (48). (ii) This implies
that the sign of the first Fourier mode is continuous in

time. Since it can take only discrete values, it is, in fact, a
constant.

By inserting the later equation in Eq. (48) the time evolu-
tion of the rapidity distribution can be then recasted into the
following form:

ρ̇(k, t ) = − 2� ρ(k) n(t ) + �σ0 cos (k)ρ(k)

×
√

2

�
[∂t n(t ) + 2�n(t )2]. (B4)

We now divide both sides by ρ(k, t ) and then integrate

ln

(
ρ(k, t )

ρ0(k)

)
= − 2�

ˆ t

0
n(t ′)dt ′ + �σ0 cos (k)

ˆ t

0

×
√

2

�
[∂t ′n(t ′) + 2�n(t ′)2]dt ′. (B5)

By exponentiating the second equation we get

ρ(k, t ) = ρ0(k) exp −2�

ˆ t

0
n(t ′)dt ′ + σ0 cos (k)

ˆ t

0

×
√

2
[
∂t ′n(t ′) + 2�n(t ′)2

]
�

dt ′; (B6)

this concludes the derivation of Eq. (49).

APPENDIX C: ADDITIONAL DATA FOR
THE HOMOGENEOUS K = 2 CASE

In this Appendix we present additional data concern-
ing the homogeneous K = 2 case. In particular, we show
in Fig. 12 (left panel) the dynamics of the mean density
for two different initial rapidity distributions which are not
thermal. First, we consider an initial distribution given by
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Eq.(51)

∼ t−1/2
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FIG. 12. Left panel: The mean density under two-body losses for two different nonthermal rapidity distributions. Solid colored curves are
obtained by solving numerically the time evolution equation of ρ(k) for the loss functional (31) with a time step dt = 0.05 and a loss rate
� = 0.1. The red dashed line is the long time limit of the mean density given by Eq. (50). The long time behavior for nonvanishing first-Fourier
mode distributions is presented by the black dashed line [see Eq. (55)]. Right panel: Difference between the two function f (t ) and g(t ) defined
in the main text for thermal and nonthermal distributions.

ρ0(k) = 1
2 [1 − cos (k)], which has a first Fourier mode differ-

ent from zero. Second, we consider ρ0(k) = 1
2 [1 − cos (5k)]

whose first Fourier mode vanishes. We see that the dynamics
induced by the first distribution has a long time behavior
given by ∼1/

√
t , whereas the second, due to its vanishing

first Fourier mode, is described by Eq. (50). This corroborates
our findings for the initial thermal distributions presented in
the main text. Moreover, we show in Fig. 12 (right panel)
the quantity f (t ) − g(t ), where g(t ) = ´ t

0 n(τ ) dτ and f (t ) =´ t
0

√
1 + ∂τ n(τ )

2� n(τ )2 n(τ )dτ for two different rapidity distribu-

tions. In the main text we took the first-order expansion of f (t )
resulting in a logarithmic growth for the quantity f (t ) − g(t ),
which is thus corroborated by the numerical data here pre-
sented. As such, given an initial rapidity distribution whose
first Fourier mode is nonvanishing, one has a long time decay
of the mean density given by n(t ) ∼ 1/

√
t .

APPENDIX D: BRIEF DISCUSSION ON THE SPIRAL
IN FIGURE FIG. 10

During the evolution of the position-dependent rapidity
distribution in phase space (see Fig. 10), the distribution ex-
hibits a spiral, which is clearly visible after 40% of atoms
lost for two-body losses. In principle, in a regime where
the trap frequency ω highly dominates the loss rate �, one
expects that the distribution remains rotation invariant at all
times. This implies that the spiral vanishes for ω � �. To
check this statement we compare the quantity ρ(x, k) for two
distinct values of ω (see the figure below). In Fig. 13 we
can see that the spiral appearing for ω = 5� covers entirely
the distribution, while for ω = 20� the spiral is localized at
the distribution’s center. Moreover, in the case ω = 20� we
observe small oscillations between the edges and the center
of the distribution. The frequency of these oscillations is high
compared to the center of the distribution.
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FIG. 13. Phase portraits showing the spiral for two different values of ω. The initial distribution is identical to the one used in figure Fig. 10
and here we only consider the distribution after 40% of atoms lost.
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FIG. 14. Dynamics of the local rapidity distribution ρ(x, k) in phase space under one-body losses. The two first lines show the evolution
of the distribution in phase space for two different time steps �t = 0.25 and �t = 0.05. The trap frequency is fixed to ω = 1/2, � = 0.1 is
the loss rate and τ is defined as τ = 2π/ω. The last line corresponds to the density profiles obtained by integrating over k the local rapidity
distribution. The numerical results are converged.

APPENDIX E: CONVERGENCE OF NUMERICAL RESULTS

In this Appendix we provide evidence for numerical convergence of the results displayed in Fig. 10. We perform the same
simulation as the one in Fig. 10 with a bigger numerical time step � = 0.25 (instead of � = 0.05). The physical parameters we
use are (as in Fig. 10)

ρ(x, k, t = 0) = 1

1 + exp [− cos(k) + ω2x2/2]T
, (E1)

with T = 0.1 and ω = 1/2. We show results for one-body losses (K = 1), with a loss rate � = 0.1.
In Fig. 14, we compare the results obtained for two different time steps �t = 0.25 (first row) and �t = 0.05. We see that the

results are converged.
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