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Tower of two-dimensional scar states in a localized system
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The eigenstate thermalization hypothesis describes how most isolated many-body quantum systems reach
thermal equilibrium. However, the hypothesis is violated by phenomena such as many-body localization and
quantum many-body scars. In this work, we study a finite, two-dimensional, disordered model hosting a tower of
scar states. This construction is a particular instance of a general framework and we demonstrate its generality by
constructing two disordered models hosting a different tower of scar states. At weak disorder, we find numerically
that the spectra are nonthermal, and the scar states appear as exact eigenstates with high entropy for certain
bipartitions. At strong disorder, the spectra localize and the scar states are identified as inverted scars since
the scar states are embedded in a localized background as opposed to a thermal background. We argue that,
for the considered type of models, the localization is stronger than what would be naively expected, and we
show this explicitly for one of the models. The argument also provides guidelines for obtaining similarly strong
localization in other scarred models. We study the transition from the thermal phase to localization by observing
the adjacent gap ratio shifting from the Wigner surmise to the Poisson distribution with increasing disorder
strength. Moreover, the entanglement entropy transitions from volume-law scaling with system size at weak
disorder to area-law scaling at strong disorder. Finally, we demonstrate that localization protects scar revivals for
initial states with partial support in the scar subspace.
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I. INTRODUCTION

The eigenstate thermalization hypothesis (ETH) describes
how isolated many-body quantum systems reach thermal
equilibrium [1–3]. The hypothesis asserts that expectation
values of local observables coincide with those from the mi-
crocanonical ensemble. The ETH makes predictions about
generic quantum systems and has been verified for large
classes of models, see Ref. [4] and references therein. How-
ever, several phenomena are known to violate the ETH.

When certain interacting many-body quantum systems are
exposed to strong disorder, they transition from the thermal
phase to being many-body localized (MBL) [5–7]. Localized
systems conflict with ETH by, e.g., being insulating at finite
temperature [8], having slow entanglement growth [9,10],
subsystems retaining information about the initial state af-
ter a quench [11,12], etc. The nonthermal properties are
attributed to the appearance of a complete set of quasilocal
integrals of motion in the localized phase [13,14]. In MBL
systems without a mobility edge, all energy eigenstates are
nonthermal and MBL hence represents a strong violation
of ETH. Besides existing in disordered systems, MBL may
also emerge from gradient fields [15–17] or periodic driv-
ing [18–20]. Numerical studies have firmly established MBL
in finite systems [7,9,11,21–26] and signatures of MBL have
been observed in various experimental setups [27–31]. To
what extent MBL remains stable in the thermodynamic limit
is still being debated [32–37].

Quantum many-body scars (QMBSs) represent another
violation of the ETH [38–40]. In scarred systems, a small
number of ETH-violating eigenstates are embedded in an

otherwise thermal spectrum. Hence, a QMBSs represents a
weak violation of the ETH. Contrary to thermal eigenstates,
scar states display subvolume-law scaling of entanglement
entropy. Furthermore, when scar states are equally spaced in
energy, dynamical revivals are observed from initial states in
the scar subspace. QMBSs can be traced back to the discovery
of analytic excited eigenstates in the Affleck-Kennedy-Lieb-
Tasaki model [41] which were later recognized as scar
states [42]. Scar states have also been discovered in numer-
ous other models [43–52] and several unifying formalisms
have been developed [53–61]. QMBSs have been realized
in experiments with interacting Rydberg atoms [62,63], on
superconducting processors [64–66], in ultracold bosons [67]
and in nitrogen-vacancy centers [68]. These experiments
demonstrate that, even though QMBSs represent a vanishingly
small fraction of the Hilbert space, they have a strong influ-
ence on system dynamics.

While MBL and QMBSs are independent nonthermal phe-
nomena, several works have attempted to realize MBL and
QMBSs simultaneously in one-dimensional systems [69–74].
One approach is to exploit the analytic structure of QMBSs
to determine a set of local operators that annihilate the scar
states. Adding these operators with random coefficients to
the Hamiltonian introduces disorder into the model without
disturbing the scar states. Disordered models with scars gen-
erally display features similar to MBL at strong disorder, e.g.,
energy levels following the Poisson distribution and area-law
scaling of entanglement entropy with system size. It is unclear
whether these models are truly MBL in the thermodynamic
limit. But because of the similarity with MBL for finite sys-
tem sizes, we refer to disordered models with scars as being
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localized at strong disorder. Instead of being embedded in
a thermal spectrum, the scar states reside among localized
energy eigenstates. The scar states serve as “inverted scars”
since they are not localized and hence represent a weak vio-
lation of localization. The interplay between localization and
QMBSs generates interesting effects, such as the appearance
of a mobility edge [71] or disorder stabilization of scar re-
vivals [72]. However, demanding that a model hosts QMBSs
puts constraints on the type of disorder that can be introduced.
Consequently, these models may display a weaker type of
localization and hence not localize in accordance with con-
ventional MBL [72].

In this work, we construct a two-dimensional, disordered
model hosting a tower of scar states based on the rainbow scar.
At weak disorder, the majority of eigenstates near the center
of each symmetry sector are thermal while the scar states are
nonthermal. When increasing the disorder strength, the model
transitions from the thermal phase to being localized. We
demonstrate that the model localizes stronger than a naive pre-
diction would suggest and that the model displays properties
similar to MBL for the system sizes considered. Furthermore,
we present guidelines for obtaining equally strong localization
in other scarred models. The scar states display volume-law
scaling of entanglement entropy for a particular bipartition
while the remaining spectrum displays area-law scaling at
strong disorder. Hence, the scar states represent a tower of
inverted scars which remain nonlocalized even at strong dis-
order. We study the dynamics of initial states with partial
support in the scar subspace and show that disorder enhances
scar revivals. Finally, we consider a different tower of scar
states and construct two disordered parent Hamiltonians. In
one model, each scar state resides in a degenerate subspace
for certain system sizes while, in the other model, the scar
states are not degenerate with other states in the spectrum.
These scar states display volume-law scaling of entanglement
entropy with respect to multiple bipartitions. We demonstrate
that the models localize at strong disorder and that the scar
states represent a tower of inverted scars in both models.

In Sec. II A, we introduce the rainbow scar on a two-
dimensional grid of spin-1/2 particles and discuss its basic
properties. We also describe the projections of the rainbow
scar into subspaces with definite magnetization in the z di-
rection which will serve as a tower of inverted scars. In
Sec. II B, we discuss the scaling of entanglement entropy
with system size for the rainbow scar and the projections
of the rainbow scar. In Sec. II C, we introduce a disordered
parent Hamiltonian for the projections of the rainbow scar.
We demonstrate that the model is thermal at weak disorder and
that the scar states represent nonthermal outliers. In Sec. III A,
we characterize the localization by first introducing the rel-
evant concepts through a simple example. In Sec. III B, we
provide a general description of the localization and discuss
guidelines for ensuring similarly strong localization in other
scarred models. In Sec. III C, we verify that the model local-
izes by observing the level spacing statistics transition from
the Wigner surmise to the Poisson distribution with increasing
disorder strength. In Sec. III D, we demonstrate that the entan-
glement entropy shifts from volume-law to area-law scaling
with system size for increasing disorder strength, as expected
for localization. In Sec. IV, we show that disorder stabilizes

|ψRB〉 =

A B

= |↑↑〉+|↓↓〉√
2

FIG. 1. The system consists of spin-1/2 particles arranged in a
two-dimensional grid. The figure illustrates a system of size Lx ×
Ly = 4 × 3. The system is separated along the vertical direction into
two parts A and B of equal size. The rainbow scar is the tensor
product of Bell states between parts A and B as described in Eq. (4).

scar revivals from initial states with partial support in the
scar subspace. In Sec. V A, we introduce a different tower
of scar states. In Sec. V B, we demonstrate that the entangle-
ment entropy of these scar states displays volume-law scaling
with system size for multiple bipartitions. In Sec. V C, we
introduce two disordered parent Hamiltonians for the tower
of scar states. In Sec. V D, we demonstrate that the models
localize at strong disorder and that the scar states represent
a tower of inverted scars in both models. In Sec. VI, we
summarize our results.

II. MODEL

A. Projections of the rainbow scar

We consider a two-dimensional grid r = (x, y) of size
Lx × Ly occupied by spin-1/2 particles. We take Lx to be even
throughout this work. The system is separated into two halves
A and B according to

A =
{

(x, y)| x = 0, . . . ,
Lx

2
− 1, y = 0, . . . , Ly − 1

}
,

B =
{

(x, y)| x = Lx

2
, . . . , Lx − 1, y = 0, . . . , Ly − 1

}
. (1)

We denote the Hilbert space of part A by HA and the Hilbert
space of part B by HB. However, since the two parts con-
tain the same number of sites, we have HA = HB. Figure 1
illustrates the system and the corresponding partitioning for
system size Lx × Ly = 4 × 3.

We construct a tower of scar states based on the rainbow
scar [49,75,76]. Let basis(HA) be a basis for HA. The rain-
bow scar with respect to basis(HA) is given by

∣∣ψgeneral
RB

〉 = 1√
dim (HA)

∑
|ϕ〉∈basis(HA )

|ϕ〉 ⊗ M̂|ϕ〉, (2)

where dim(HA) is the dimension of HA and M̂ is the mirror
operator. The mirror operator reflects each lattice site in the
line x = (Lx − 1)/2 without flipping the spin. The rainbow
scar has the special property that acting with any operator
Ô on part HA is equivalent to acting with M̂ÔTM̂ on part
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HB

(Ô ⊗ 1̂)
∣∣ψgeneral

RB

〉 = (1̂ ⊗ M̂ÔTM̂)
∣∣ψgeneral

RB

〉
, (3)

where 1̂ is the identity operator and ÔT is the transpose of
Ô with respect to basis(HA). We discuss this property in
Appendix A. For systems with two degrees of freedom on
each site, Eq. (2) can be rewritten as a tensor product of Bell
states,

|ψRB〉 =
⊗
r∈A

( |↓〉r ⊗ |↓〉r̃ + |↑〉r ⊗ |↑〉r̃√
2

)
, (4)

where r̃ = (Lx − 1 − x, y) is the mirror image of r = (x, y).
The rainbow scar is illustrated in Fig. 1.

Following Ref. [49], we construct a tower of scar states
from the rainbow scar by projecting |ψRB〉 into subspaces with
definite magnetization in the z direction. Let P̂M be the projec-
tion onto the subspace of the Hilbert space with magnetization
M. The normalized projection of the rainbow scar is given by

∣∣ψM
RB

〉 = P̂M |ψRB〉√
〈ψRB|P̂M |ψRB〉

. (5)

Notice that the rainbow scar only has support in every other
subspace, i.e., |ψM

RB〉 = 0 for M = −LxLy/2 + 1,−LxLy/2 +
3, . . . , LxLy/2 − 1. Hence, we focus on the set of scar states{∣∣ψM

RB

〉∣∣M = −LxLy

2
,−LxLy

2
+ 2, . . . ,

LxLy

2

}
. (6)

Alternatively, these states may be constructed from the anchor
state |�〉 = ⊗r∈A∪B|↓〉r by acting repeatedly with the op-
erator Q̂† = ∑

r∈A Ŝ+
r Ŝ+

r̃ where Ŝ+
r = Ŝx

r + iŜy
r , i.e., |ψM

RB〉 ∝
(Q̂†)M/2+LxLy/4|�〉.

B. Entanglement entropy of the scar states

Consider separating the system into two parts A and B (not
necessarily equal to A and B). For a state |ψ〉, the reduced
density matrix is given by ρA = TrB(|ψ〉〈ψ |), where TrB is
the partial trace over part B. The von Neumann entanglement
entropy is given by S = −Tr[ρA ln(ρA)]. The scaling of en-
tanglement entropy with system size of the states |ψRB〉 and
|ψM

RB〉 depends on the choice of partitioning. First, consider
the vertical bipartition that separates the system into the left
part A = A and the right part B = B. In this case, parts A and
B contain one spin-1/2 particle from each Bell pair. Therefore,
the entanglement entropy of |ψRB〉 is S = LxLy ln(2)/2 and
hence displays volume-law scaling with system size. For the
projections of the rainbow scar |ψM

RB〉, the entanglement en-
tropy also displays volume-law scaling with system size [49].
Next, let Ly be even and consider the horizontal bipartition
where A consists of the spin-1/2 particles in the top half
and B consists of the bottom half. In this case, each Bell
pair is fully contained in either A or B and the entropy of
the rainbow scar vanishes S = 0. The entropy of the states
|ψM

RB〉 is identical to the entropy of the “fine-tuned” cut in
the corresponding one-dimensional model [49]. Therefore, the
entropy of |ψM

RB〉 displays logarithmic scaling with system size
for the horizontal bipartition.

C. Parent Hamiltonian

Consider a general Hamiltonian of the form

Ĥ = ĤA ⊗ 1̂ + 1̂ ⊗ ĤB + ĤAB + ĤSG, (7)

where ĤA acts within HA and ĤB acts within HB. The oper-
ators ĤAB and ĤSG act on degrees of freedom in both HA and
HB. We choose the first term according to

ĤA = J
∑

r,r′∈A
〈r,r′〉

Sr · Sr′ +
∑
r∈A

hrŜ
z
r , (8)

where the first sum is over all nearest neighbors 〈r, r′〉 in A
and Sr = (Ŝx

r , Ŝy
r , Ŝz

r ) are the spin-1/2 operators. The numbers
hr are drawn randomly from the uniform probability distri-
bution across [−W,W ], where W is the disorder strength. We
ensure the rainbow scar is an eigenstate of Eq. (7) by choosing
the second term according to

ĤB = −M̂ĤAM̂. (9)

Even though both ĤA and ĤB are disordered, Eq. (3)
ensures that their sum annihilates the rainbow scar. Note,
however, that Eq. (9) implies the random numbers hr in parts
A and B are not independent. The operator ĤAB connects
parts A and B. We choose this operator such that the rainbow
scar remains an exact eigenstate:

ĤAB = c
∑

r∈A,r′∈B
〈r,r′〉

Sr · Sr′ . (10)

The three operators ĤA, ĤB, and ĤAB conserve the total
magnetization in the z direction. Hence, the projection of the
rainbow scar into a magnetization sector is itself an exact
eigenstate. These projections are degenerate with respect to
ĤA ⊗ 1̂ + 1̂ ⊗ ĤB + ĤAB. We lift the degeneracy by choos-
ing the spectrum-generating term according to

ĤSG = μ
∑

r∈A∪B
Ŝz

r . (11)

The energy of |ψM
RB〉 is given by

Ĥ
∣∣ψM

RB

〉 = (
1
4 cLy + μM

)∣∣ψM
RB

〉
. (12)

The states {|ψM
RB〉} hence represent a tower of scar states

with equal energy spacing. Notice, that while the rainbow scar
|ψRB〉 is an eigenstate of the first three terms in Eq. (7), it is
not an eigenstate of ĤSG.

Figure 2 shows the entanglement entropy of eigenstates of
Ĥ as a function of energy for several magnetization sectors.
We consider parameter values J = μ = c = 1 and respec-
tively weak and strong disorder. At weak disorder, the entropy
forms a narrow arc within each symmetry sector. The scar
states, on the other hand, generally appear as outliers ex-
ternal to each arc. This behavior signals that the scar states
are nonthermal. When increasing the disorder strength, we
observe that the entropy of generic eigenstates decreases. Note
that the entropy of the scar states is constant as a function
of disorder strength. Consequently, the entropy of the scar
states is larger than that of generic eigenstates within the
same symmetry sector at strong disorder. We also observe
other eigenstates with similar energy to the scar states and
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(a) W = 0.5
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(b) W = 14

FIG. 2. The entanglement entropy of eigenstates of the Hamiltonian from Eq. (7) as a function of energy for several magnetization sectors.
The entanglement entropy is computed with respect to the bipartition A = A and B = B and each panel displays the results for a single disorder
realization. We consider system size Lx × Ly = 4 × 4, parameter values J = c = μ = 1 and (a) weak disorder W = 0.5 and (b) strong disorder
W = 14. The color intensity illustrates the density of points and lighter (darker) colors display higher (lower) density of points. The scar states
are shown as crosses enclosed by a circle.

entropy at intermediate values. We describe the origin of these
high-entropy eigenstates and investigate the behavior of the
remaining spectrum at strong disorder in Sec. III.

Throughout this work, we generally consider parameter
values J = μ = c = 1 and the largest symmetry sector M = 0
unless otherwise stated. We generally reach similar results for
other values J, μ, c �= 0 and symmetry sectors.

III. LOCALIZATION

It is not immediately obvious how the model behaves with
increasing disorder strength for a fixed system size. On one
hand, there exist numerous examples of spin models becom-
ing MBL in a strongly disordered magnetic field [21,22]. In
particular, a one-dimensional model similar to Eq. (7) was
shown to display MBL characteristics at strong disorder [71].
On the other hand, the random magnetic fields are correlated
which may represent an obstacle for localization. Further-
more, MBL is believed to be unstable for two-dimensional
systems in the thermodynamic limit [77,78]. In this section,
we demonstrate that the model localizes at strong disorder and
that the model has characteristics similar to localized models
with scar states in one dimension. Before tackling the general
problem of characterizing the localization, we introduce the
relevant concepts through a simple example.

A. Simple example

It is convenient to rewrite the Hamiltonian to highlight the
correlations in the magnetic fields hr:

Ĥ = Ĥ0 +
∑
r∈A

hrD̂r, (13)

where we denote D̂r = Ŝz
r − Ŝz

r̃ as “disorder operators” and Ĥ0

is given by

Ĥ0 = J

⎛
⎜⎜⎝∑

r,r′∈A
〈r,r′〉

Sr · Sr′ −
∑

r,r′∈B
〈r,r′〉

Sr · Sr′

⎞
⎟⎟⎠+ ĤAB + ĤSG. (14)

In MBL systems, the set of disorder operators is commonly
chosen to act uniquely on each state in a basis, i.e., for a set
of disorder operators {D̂i} and a basis {|ϕ〉}, if 〈ϕ|D̂i|ϕ〉 =
〈ϕ′|D̂i|ϕ′〉 for all i, then |ϕ〉 = |ϕ′〉. This is not true for our
model in Eq. (13). Here, the disorder operators have the same
action on some basis states. For instance, consider a lattice of
size 4 × 2. For any disorder realization {hr|r ∈ A}, we have

〈↓ ↓ ↓ ↑
↑ ↑ ↓ ↑

∣∣∣∣∑
r∈A

hrD̂r

∣∣∣∣↓ ↓ ↓ ↑
↑ ↑ ↓ ↑

〉

=
〈↓ ↑ ↑ ↑
↓ ↑ ↓ ↓

∣∣∣∣∑
r∈A

hrD̂r

∣∣∣∣↓ ↑ ↑ ↑
↓ ↑ ↓ ↓

〉
. (15)

Hence, the disorder operators {D̂r} do not distinguish between
the two basis states. Intuitively, this behavior is caused by
pairs of spins being mirror symmetric. In the above example,
sites r1 = (0, 0), r̃1 = (3, 0) and r2 = (1, 1), r̃2 = (2, 1) are
mirror symmetric. The disorder operators act trivially on these
pairs of spins

(
hr1 D̂r1 + hr2 D̂r2

)∣∣∣∣↓ ↓ ↓ ↑
↑ ↑ ↓ ↑

〉
= 0. (16)

The same is true for the corresponding basis state with both
pairs flipped. The fact that the disorder operators do not distin-
guish between two basis states manifests itself in the structure
of the energy eigenstates at strong disorder. We explore this
structure in Sec. III B.

In the above example, the disorder operators had the same
action on two different basis states within the zero magne-
tization sector. The discussion naturally extends to the case
where more than two basis states are treated identically by
the disorder operators. In this case, more than two pairs of
spins are mirror symmetric and flipping any two pairs yields a
new basis state which cannot be distinguished by the disorder
operators.
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B. General characterization of localization

Let |D, n〉 be a simultaneous eigenket of the disorder
operators D̂r where D = {Dr|r ∈ A} are the corresponding
eigenvalues, i.e., D̂r|D, n〉 = Dr|D, n〉 for all r ∈ A. We refer
to D as the “disorder indices.” The disorder indices do not
fully describe a state and the extra index n distinguishes be-
tween states with identical D.

At strong disorder, the last term in Eq. (13) dominates and
we expect each energy eigenstate to have significant support
only on basis states with identical disorder indices. We refer to
this behavior as eigenstates localizing within a subspace VD =
span({|D, n〉|n = 1, 2, . . .}). Note, however, that this behavior
may not persist at any finite disorder strength in the thermo-
dynamic limit. The energy eigenstates are labeled by D at
strong disorder. We further introduce an index m to distinguish
energy eigenstates localizing within the same subspace VD:

|ED,m〉 ≈
∑

n

cD;mn|D, n〉. (17)

This expression is an approximation rather than an equality
due to the small support on other subspaces VD′ with D′ �= D
which decreases with increasing disorder strength.

The special case where the disorder operators act uniquely
on a basis state corresponds to dim(VD) = 1. At large disor-
der, the corresponding eigenstate has significant support on a
single basis state, which we refer to as strong localization.

In the case dim(VD) > 1, the structure of the energy eigen-
states is not immediately obvious. One might fear that all
coefficients in Eq. (17) are nonzero cD;mn �= 0 and the system
“partially localizes” [72]. It turns out, however, that the major-
ity of energy eigenstates localize more strongly than predicted
by Eq. (17). Figure 3 illustrates the localization for system
size 4 × 2. The figure demonstrates that eigenstates generally
localize on a smaller subspace within each VD. For instance,
eigenstates in subspaces with dim(VD) = 2 tend to localize on
a single basis state. We find similar results for larger system
sizes.

We understand the strong localization of eigenstates from
degenerate perturbation theory. The central observation is that
the off-diagonal matrix elements 〈D, n|Ĥ p

0 |D, n′〉 generally
vanish for small powers p. In other words, the basis states with
identical disorder indices are not connected directly by Ĥ p

0 .
Consequently, these states do not tend to mix and the energy
eigenstates have significant support on only a few basis states.
We present a detailed analysis in Appendix B.

While the eigenstates localize more strongly than predicted
by Eq. (17), they might not localize on a single basis state.
However, the energy difference between eigenstates with sig-
nificant support within the same subspace VD vanishes with
increasing disorder strength. Consequently, the dynamics aris-
ing from such eigenstates can be made arbitrarily slow for
sufficiently strong disorder.

Let D0 be the disorder indices given by [D0]r = 0 for all
r ∈ A. The perturbative arguments are valid for all subspaces
except VD0 . This subspace contains the projections of the
rainbow scar as well as other eigenstates. By construction, this
subspace evades disorder and the entropy of eigenstates in VD0

is typically larger than that of localized states but smaller or
equal to the entropy of the scar states. The subspace VD0 hence

|ED′,m〉

|D
,n

〉

0.0

0.2

0.4

0.6

0.8

|〈D
,n

| E
D

′ ,
m
〉|2

FIG. 3. The energy eigenstates of a single disorder realiza-
tion for system size 4 × 2, disorder strength W = 14, parameters
J = c = μ = 1, and in the magnetization sector M = 0. Each row
corresponds to a basis state |D, n〉 and each column to an eigen-
state |ED′,m〉. The color intensity of each pixel displays the norm
squared overlap between the corresponding basis state and eigen-
state |〈D, n|ED′,m〉|2. The eigenstates are rearranged to allow the
diagonal shape and hence are not sorted into ascending order with
respect to energy. The square boxes show the subspaces VD where
the eigenstates are expected to localize according to Eq. (17). The
figure illustrates that most eigenstates localize on smaller subspaces
within each VD. Similar results are found for larger system sizes.

represents a nonlocalized subspace embedded in an otherwise
localized spectrum. The subspace is visible in Fig. 2(b) as the
eigenstates with energy close to a scar state and intermediate
values of entropy. The part of VD0 with magnetization M = 0
is also visible in the bottom right corner of Fig. 3. In the
following, we include the symmetry sector in the notation,
i.e., the subspace with disorder indices D and magnetization
M is denoted as VM

D . We determine the dimension of the
nonlocalized subspace across all symmetry sectors ∪MVM

D0
by

noting that it consists of all mirror-symmetric basis states.
These basis states are fully determined by the spins in part A
and the dimension is given by dim(∪MVM

D0
) = 2LxLy/2. Consis-

tent with Ref. [71], we find that the nonlocalized eigenstates
represent a vanishing small part of the full Hilbert space
limLx,Ly→∞[dim(∪MVM

D0
)/dim(H)] = 0.

The considerations presented in this section are not specific
to our model. They can be taken as general guidelines for con-
structing strongly localized models hosting QMBSs. Strong
localization is obtained by ensuring the nondisordered part
of the Hamiltonian restricted to the subspace VD is diagonal.
This rule may help future work on disordered models hosting
QMBSs achieve stronger localization.

C. Adjacent gap ratio

The distribution of energy levels indicates whether the
system is thermal or localized. The distribution follows the
Wigner surmise in the thermal phase. In particular, the distri-
bution is given by the Gaussian orthogonal ensemble (GOE)
since the Hamiltonian in Eq. (7) is invariant under time re-
versal. We expect the energy levels to follow the Poisson
distribution at strong disorder similar to an MBL system [79].
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FIG. 4. (a) The adjacent gap ratio r averaged over the 102 energies closest to (Emin + Emax)/2 in 103 disorder realizations (solid lines) as a
function of disorder strength W for different system sizes Lx × Ly. The GOE and Poisson values are illustrated as dashed and dotted horizontal
lines. The shaded areas display two standard deviations on the estimate of the mean when assuming a Gaussian distribution. At weak disorder,
r coincides with GOE indicating that the system is thermal. At strong disorder, r agrees with the Poisson distribution showing that the system
is localized. The adjacent gap ratio decreases below the Poisson value for system size 4 × 3 at strong disorder 12 � W as illustrated in the
inset. When restricting the computation of r to eigenstates with different disorder indices (dots), the adjacent gap ratio converges to the Poisson
value for all system sizes. The error bars display two standard deviations on the estimate of the mean. (b), (c) The distribution of adjacent gap
ratio for system size 4 × 4 at (b) weak disorder W = 0.5 and (c) strong disorder W = 14. The distributions fGOE and fPoisson from Eq. (19) are
illustrated as dashed and dotted curves. The data agree with (b) fGOE at weak disorder, showing that the system is thermal, and agrees with
(c) fPoisson at strong disorder, indicating that the system is localized. In all panels, we consider parameters J = c = μ = 1 and the symmetry
sector M = 0.

Let {Ei} be the energies in ascending order and let δi = Ei+1 −
Ei > 0 be the ith energy gap. We consider the adjacent gap
ratio [7]

ri = min (δi, δi+1)

max (δi, δi+1)
. (18)

The transition from thermal to localized behavior is identi-
fied by studying the distribution of the adjacent gap ratio. The
probability density functions of r for a thermal and localized
system are given by [80]

fGOE(r) = 27

4

r(1 + r)

(1 + r + r2)5/2 , (19a)

fPoisson(r) = 2

(1 + r)2 . (19b)

The corresponding expectation values of the two dis-
tributions are given by 〈r〉GOE = 2(2 − √

3) ≈ 0.536 and
〈r〉Poisson = 2 ln 2 − 1 ≈ 0.386.

We consider 103 disorder realizations and compute the
adjacent gap ratio from the 102 energies closest to the center
of the spectrum, i.e., (Emin + Emax)/2 where Emin and Emax

are respectively the smallest and largest energy in the spec-
trum. The adjacent gap ratio is averaged over both disorder
realizations and this central part of the spectrum. Figure 4(a)
illustrates the mean adjacent gap ratio r as a function of disor-
der strength W for different system sizes Lx × Ly. At weak
disorder 0.1 � W � 2, the mean adjacent gap ratio agrees
with GOE for all system sizes. Hence, the system is thermal
at weak disorder. When increasing the disorder strength 2 �
W � 12, r departs from the GOE value and approaches the

Poisson value. At strong disorder 12 � W , the mean adjacent
gap ratio agrees well with the Poisson value indicating that the
model localizes.

For system size 4 × 3 at strong disorder 12 � W , the ad-
jacent gap ratio is seen to decrease below the Poisson value.
This behavior is explained by the model not localizing anal-
ogously to conventional MBL. As discussed in Sec. III B, the
energy gap between eigenstates with identical disorder indices
decreases with increasing disorder strength. Therefore, the
distribution of energy levels only approaches the Poisson dis-
tribution when considering eigenstates with different disorder
indices. With this in mind, we analyze the adjacent gap ratio
more carefully by only including energy gaps δi of eigen-
states with different disorder indices, i.e., pairs of adjacent
eigenstates |ED,m〉 and |ED′,m′ 〉 with D �= D′. This filtering is
only possible at strong disorder where all eigenstates are suf-
ficiently localized and the disorder indices of each eigenstate
can be reliably determined numerically. For each eigenstate
|Ei〉, we determine the basis states |D, n〉 with the largest
norm squared overlap and thereby deduce the disorder indices,
i.e., argmaxD(

∑
n |〈D, n|Ei〉|2). As illustrated in Fig. 4(a), the

adjacent gap ratio of all system sizes converges to the Poisson
value when only considering eigenstates of different disorder
indices. The two methods of calculating the adjacent gap ratio
nearly coincide for system sizes 4 × 4 and 8 × 2.

Finally, we illustrate the adjacent gap ratio distribution in
Figs. 4(b) and 4(c) and compare it with Eq. (19). The distri-
bution agrees with fGOE at weak disorder and with fPoisson at
strong disorder. Thus, the system transitions from the thermal
phase to being localized as disorder is introduced.
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D. Entanglement entropy

We further establish the transition from the thermal phase
to localization by studying the von Neumann entropy. The
system is separated into two parts A and B. Let ρ be the density
matrix describing the full system and let ρA = TrB(ρ) be the
reduced density matrix of part A. The von Neumann entropy
is given by

S = −Tr[ρA ln (ρA)]. (20)

In the thermal phase, the entropy scales with the volume
of the system. In particular, for a thermal system with tensor
product structure H = HA ⊗ HB, the entropy of an infinite-
temperature eigenstate is given by the Page value 〈S〉Page [81].
The model described by Eqs. (7)–(11) conserves the total
magnetization, and the Hilbert space of a generic magne-
tization sector HM does not have tensor product structure,
HM �= HA ⊗ HB. Therefore, the Page value is not represen-
tative of the average entropy of a thermal state in this model.
Instead, the expected entropy in the thermal phase is given
by [82,83]

〈S〉therm =
min ( NA

2 ,M+ NB
2 )∑

MA=max (− NA
2 ,M− NB

2 )

dim (HMA ) dim (HMB )

dim (HM )

× {〈S〉Page + �[dim (HM ) + 1]

− �[dim (HMA ) dim (HMB ) + 1]}. (21)

In this expression, MA is the magnetization of part A and
MB = M − MA is the magnetization of part B. The Hilbert
space of part A (B) with magnetization MA (MB) is denoted
by HMA (HMB ). The number of lattice sites in part A (B) is
denoted by NA (NB). Finally, � is the digamma function. In the
MBL phase, on the other hand, the entanglement entropy is
proportional to the boundary of the partition [13,84]. Further-
more, the variance of entropy displays a peak at the transition
between the thermal and MBL phase [23,85]. We expect our
model to display similar characteristics of entanglement en-
tropy at strong disorder.

We consider 2 × 103 disorder realizations and for each
realization compute the entropy of the eigenstate closest in
energy to (Emin + Emax)/2. The sample average S and sample
variance σ 2

S are then determined. Figure 5(a) illustrates the
average entropy as a function of disorder strength for different
system sizes and partitions A, B. We consider three partitions
described by the lines x = (Lx − 1)/2, x = (Lx − 3)/2 and
y = �Ly/2� − 1/2, where �·� is the function that rounds down
to the nearest integer. All sites on one side of the line represent
part A and the remaining sites represent part B. The partitions
are illustrated in Fig. 6 for system size 4 × 3.

Figure 5(a) illustrates the average entropy as a function of
disorder strength and Fig. 5(b) shows the variance. In both
figures, we display multiple system sizes and partitions. For
weak disorder, the average entropy agrees with 〈S〉therm for
all system sizes and partitions. As the disorder strength is
increased, the average entropy decreases and the variance
displays a sharp peak. The large variance signals that the
system transitions from the thermal phase to being localized.
In the inset of Fig. 5(a), we display the entropy as a function
of boundary size for each system size and partition at W = 14.
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FIG. 5. (a) The average entanglement entropy S̄ over 2 × 103

disorder realizations of the eigenstate closest in energy to (Emin +
Emax)/2. The entropy is plotted as a function of disorder strength W
for different system sizes and partitions. The system size is indicated
by color and the partition by line style. At weak disorder, the entropy
for all considered system sizes and partitions agree with 〈S〉therm.
At strong disorder, the entropy departs from the thermal value and
instead displays area-law scaling as illustrated in the inset. (b) The
sample variance as a function of disorder strength. The variance
displays a peak at intermediate disorder strength indicating that the
system transitions from being thermal to localized. The shaded areas
and error bars in both figures display two standard deviations on the
estimate of the mean and variance. We consider parameters J = c =
μ = 1 and the symmetry sector M = 0.

We observe that the entropy is proportional to the size of the
boundary as expected for localization.

IV. SCAR DYNAMICS

The presence of rainbow scars in the model causes non-
thermal dynamics. We observe such dynamics by choosing
the initial state with large support in the scar subspace. We
consider the thermofield double state |ψTFD(β )〉 at inverse
temperature β [86]. Let ĤTFD be an operator acting on HA,
then the thermofield double state is given by

|ψTFD(β )〉 = 1√
Z

∑
i

e−βEi/2|Ei〉 ⊗ M̂|Ei〉, (22)

where Ei and |Ei〉 are the energies and eigenstates of ĤTFD and
Z is a normalization constant. Several protocols have been
proposed for realizing |ψTFD(β )〉 [86–88]. The thermofield
double state reduces to the rainbow scar from Eq. (2) in
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x

y x = Lx−1
2

x = Lx−3
2

y = �Ly

2 �− 1
2

FIG. 6. The system is separated into two parts A and B. We
illustrate the separation for system size 4 × 3. The boundary of the
two parts is described by the lines x = (Lx − 1)/2 (dashed line),
x = (Lx − 3)/2 (dotted line) and y = Ly/2 − 1/2 (dash-dotted line).

the limit of infinite temperature |ψTFD(0)〉 = |ψRB〉 for any
operator ĤTFD.

First, we consider the initial state |ψ (t = 0)〉 = |ψRB〉
and study the system dynamics. The state is time-evolved
according to |ψ (t )〉 = e−iĤt |ψ (0)〉 and the fidelity F (t ) =
|〈ψ (0)|ψ (t )〉|2 is determined. Figure 7(a) shows the fidelity
as a function of time. As expected, F (t ) displays revivals with
period Tscar = π/μ since the initial state resides fully in the
scar subspace.

Next, we initialize the system only partially within the scar
subspace |ψ (0)〉 = |ψTFD(β )〉 with β = 5. The thermofield
double state is prepared with respect to the operator

ĤTFD = J
∑

r,r′∈A
〈r,r′〉

Ŝz
r Ŝz

r′ + h
∑
r∈A

Ŝz
r , (23)

with J = h = 1. Since |ψTFD(β )〉 only partially resides in the
scar subspace, we do not expect perfect revivals. Figure 7(b)
illustrates the average fidelity over 500 disorder realizations
for different disorder strengths. At weak disorder, the fidelity
displays revivals with a small amplitude. The reduced ampli-
tude is caused by the initial state having significant support
outside the scar subspace. At strong disorder, the fidelity
displays revivals with a larger amplitude than the thermal
case. This behavior is explained by the initial state having
support on basis states |D0, n〉 with identical disorder indices
to the rainbow scar. Consequently, the initial state is a linear
combination of energy eigenstates which all have energy close
to a scar state. Thus, the disorder enhances the scar revivals
from initial states with partial support in the scar subspace.

V. ALTERNATIVE MODEL

Inverted quantum scars are characterized by having a larger
entanglement entropy than the background of localized eigen-
states. The entanglement entropy of the scar states from
Eq. (6) displays logarithmic scaling with system size for a
particular bipartition. The entropy of the scar states for this
bipartition may therefore be similar to that of localized states
for small system sizes. We address this issue by constructing a
different tower of scar states with larger entanglement entropy
for generic bipartitions. The model follows the same theo-
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FIG. 7. (a) The fidelity F as a function of time t when initial-
izing the system as the rainbow scar |ψ (0)〉 = |ψRB〉. The fidelity
displays revivals because the projections |ψM

RB〉 have equal energy
spacing. (b) The system is initialized as the thermofield double
state |ψ (0)〉 = |ψTFD(β )〉 with β = 5 and time evolved at different
disorder strengths. The figure displays the average fidelity over 500
disorder realizations and the shaded areas show two standard devi-
ations on the estimate of the mean. At weak disorder, the fidelity
displays revivals with a small amplitude. The revival amplitude in-
creases with increasing disorder strength. In both panels, we consider
system size Lx × Ly = 4 × 3 and parameters J = c = μ = 1.

retical framework presented in Appendix A and hence also
illustrates the flexibility in our construction.

A. Projections of the scar state

We construct a scar state which, similar to the rainbow
scar, is the tensor product of Bell pairs when the system
consists of spin-1/2 particles. We ensure this scar state has
larger entanglement entropy for generic bipartitions than the
rainbow scar by increasing the distance between the two sites
constituting each Bell pair. Consider the operator R̂π which
rotates all lattice sites around the center of the lattice rcenter =
[(Lx − 1)/2, (Ly − 1)/2] by an angle π without flipping any
spins. We consider the state

∣∣ψgeneral
rot

〉 = 1√
dim (HA)

∑
|ϕ〉∈basis(HA )

|ϕ〉 ⊗ R̂π |ϕ〉. (24)

Similar to the rainbow scar, this state has a special property.
For any operator Ô acting on HA we have

(Ô ⊗ 1̂)
∣∣ψgeneral

rot

〉 = (1̂ ⊗ R̂πÔT R̂π )
∣∣ψgeneral

rot

〉
. (25)

When the system consists of spin-1/2 particles, the state may
be written as a tensor product of Bell states:

|ψrot〉 =
⊗
r∈A

( |↓〉r ⊗ |↓〉r̄ + |↑〉r ⊗ |↑〉r̄√
2

)
, (26)
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|ψrot〉 =

A B

FIG. 8. Illustration of the state from Eq. (26) for a lattice of
size 4 × 3. The state is the tensor product of Bell states (|↓〉r|↓〉r̄ +
|↑〉r|↑〉r̄)/

√
2 where r̄ corresponds to rotating r around the center

of the lattice rcenter by an angle π . Two balls connected by a line
represent a Bell state.

with r = (x, y) and r̄ = (Lx − 1 − x, Ly − 1 − y) is obtained
by rotating r around the center of the lattice rcenter by an angle
π . Figure 8 illustrates the state from Eq. (26).

Consider the normalized projection of Eq. (26) into the
subspace with magnetization M in the z direction

∣∣ψM
rot

〉 = P̂M |ψrot〉√
〈ψrot|P̂M |ψrot〉

. (27)

We focus on the scar states{∣∣ψM
rot

〉∣∣M = −LxLy

2
,−LxLy

2
+ 2, . . . ,

LxLy

2

}
, (28)

since |ψM
rot〉 = 0 for M = −LxLy/2 + 1,−LxLy/2 + 3, . . . ,

LxLy/2 − 1.

B. Entanglement entropy of the scar states

The entanglement entropy of the scar states from Eq. (28)
display volume-law scaling with system size for a variety of
bipartitions. In the following, we partition the system into two
parts A� and B� using a line �. For a given line �, all lattice
sites on one side of the line belong to A� and the remaining
sites belong to B�. We focus on lines not passing through any
lattice points. Consider the line �rdir : {rcenter + srdir|s ∈ R}
which passes through the center of the lattice rcenter in the
direction rdir. Notice that for any rdir, the line �rdir separates all
Bell pairs. Consequently, the entanglement entropy of |ψrot〉
is given by S = LxLy ln(2)/2 and hence displays volume-law
scaling for any rdir. Furthermore, the entanglement entropy of
the projections |ψM

rot〉 also displays volume-law scaling for any
such bipartition.

We compare the entanglement entropy of the scar states
in Eq. (28) with the scar states based on the rainbow scar in
Eq. (6). The distance between two lattice sites forming a Bell
pair in |ψrot〉 is equal to or larger than the corresponding Bell
pair in |ψRB〉. Consequently, the probability that a randomly
chosen bipartition separates a Bell pair is greater for |ψrot〉
than for |ψRB〉. The entanglement entropy of Eq. (28) is hence
larger than the entropy of Eq. (6) for a generic bipartition. This
means that the scar states |ψM

rot〉 are more easily distinguished
from localized states by the entanglement entropy than |ψM

RB〉.

C. Parent Hamiltonian

We construct a parent Hamiltonian for the scar states |ψM
rot〉

by following the ideas presented in Sec. II C and Appendix A.
Consider the Hamiltonian

Ĥrot = ĤA ⊗ 1̂ + 1̂ ⊗ H̃B + H̃AB + ĤSG, (29)

where ĤA and ĤSG are identical to Eqs. (8) and (11). The
remaining terms are given by

H̃B = −R̂π ĤAR̂π , (30)

H̃AB = c

⎡
⎢⎢⎢⎢⎢⎢⎣

∑
r∈A,r′∈B

〈r,r′〉
y,y′� Ly−1

2

(Sr · Sr′ ) −
∑

r∈A,r′∈B
〈r,r′〉

Ly−1
2 <y,y′

(Sr · Sr′ )

⎤
⎥⎥⎥⎥⎥⎥⎦

, (31)

where y and y′ are the y coordinates of r and r′, respectively.
The first sum in Eq. (31) includes all nearest neighbors across
the boundary between A and B, which lies in the lower part
of the lattice. Similarly, the second sum includes all nearest
neighbors across the boundary in the upper part of the lattice.
The states |ψM

rot〉 are eigenstates of Ĥrot with energy depending
on whether Ly is even or odd

Ĥrot

∣∣ψM
rot

〉 = μM
∣∣ψM

rot

〉
(Ly even), (32a)

Ĥrot

∣∣ψM
rot

〉 = ( c

4
+ μM

)∣∣ψM
rot

〉
(Ly odd). (32b)

The scar states hence form a tower with equal energy
spacing. For even Ly, a degenerate subspace of energy
eigenstates resides at each scar energy E = μM for M =
−LxLy/2,−LxLy/2 + 2, . . . , LxLy/2. For the system sizes
considered, we numerically find that the subspace at energy
E = μM consists of energy eigenstates with magnetization
M. We further find that the dimension of the subspace at
energy E = μM is given by

( LxLy/2
M/2+LxLy/4

)
for the system sizes

considered.
We also study a related model hosting the same scar states

without the degenerate subspaces. Consider the operator

Ĥnnn = c′(Sr1 · Sr̄1 − Sr2 · Sr̄2

)
, (33)

where r1 = (Lx/2 − 1, Ly/2 − 1), r2 = (Lx/2 − 1, Ly/2) are
in part A and r̄1 = (Lx/2, Ly/2), r̄2 = (Lx/2, Ly/2 − 1) are
obtained by rotating r1 and r2 around rcenter by an angle π .
The operator Ĥnnn connects two next-nearest-neighbor pairs
across the boundary of parts A and B. We study the model

Ĥ ′
rot = Ĥrot + Ĥnnn (34)

for even Ly. The scar states are eigenstates of Ĥ ′
rot with energy

Ĥ ′
rot|ψM

rot〉 = μM|ψM
rot〉. For generic parameter values, the scar

states are the only eigenstates at the energies E = μM.

D. Localization

We study the two models from Eqs. (29) and (34) at dif-
ferent disorder strengths and investigate to what extent the
models localize. We generally consider parameter values J =
c = c′ = μ = 1 and the largest magnetization sector M = 0
but we expect similar results for other parameter values and
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FIG. 9. Level spacing statistics for the Hamiltonians (a)–(c) Ĥrot

and (d)–(f) Ĥ ′
rot. We consider parameters J = c = c′ = μ = 1 and the

symmetry sector M = 0. Panels (a) and (d) display the mean adjacent
gap ratio r as a function of disorder strength W for different system
sizes. The adjacent gap ratio is averaged over the 102 energies clos-
est to (6Emin + 4Emax)/10 in 103 disorder realizations. The shaded
areas show two standard deviations on the estimate of the mean.
The expected value for GOE is shown by the dashed lines and for the
Poisson distribution by the dotted lines. For both models, the average
adjacent gap ratio agrees with GOE at weak disorder indicating that
the models are thermal. At strong disorder, the average adjacent
gap ratio agrees with the Poisson value, indicating that both models
are localized. Panels (b), (c) and (e), (f) show the distribution of
the adjacent gap ratio for system size 4 × 4. The disorder is weak
W = 0.5 in panels (b) and (e) while it is strong W = 14 in panels
(c) and (f). The distributions fGOE and fPoisson from Eq. (19) are
displayed as dashed and dotted curves, respectively. In both models,
the distribution of the adjacent gap ratio agrees with fGOE at weak
disorder and the distribution agrees with fPoisson at strong disorder.

symmetry sectors. For even Ly, the Hamiltonian Ĥrot restricted
to the M = 0 sector anticommutes with the rotation operator
R̂π . Consequently, for each eigenstate with energy Ei, there
exists a different eigenstate with energy −Ei and the spectrum
is hence symmetric around E = 0. The spectrum contains a
degenerate subspace at energy E = 0 which includes a scar
state. Therefore, we generally avoid the center of the spectrum
when investigating the localization of generic eigenstates. In-
stead, we study eigenstates with energies slightly below the
center of the spectrum, i.e., eigenstates with energies close to
E = (6Emin + 4Emax)/10. We investigate how the models be-
have with increasing disorder strength. Figures 9(a) and 9(d)
illustrate the mean adjacent gap ratio as a function of disorder
strength for respectively Ĥrot and Ĥ ′

rot. For each model, the
adjacent gap ratio is averaged over the 102 eigenstates closest

in energy to (6Emin + 4Emax)/10 in 103 disorder realizations.
At weak disorder, the mean adjacent gap ratio agrees with
GOE indicating that the models are thermal. The mean ad-
jacent gap ratio decreases with increasing disorder strength
and coincides with the Poisson value at strong disorder. This
behavior signals that the models localize at strong disorder.
Figures 9(b), 9(c) and 9(e), 9(f) display the distribution of
the adjacent gap ratio at weak and strong disorder for Ĥrot

and Ĥ ′
rot. For both models, the distribution agrees with GOE

at weak disorder and it agrees with the Poisson distribution
at strong disorder. We further investigate the transition by
studying the entanglement entropy as a function of disor-
der strength, as illustrated in Fig. 10. We consider 2 × 103

disorder realizations and compute the entropy of the eigen-
state closest in energy to (6Emin + 4Emax)/10. The average
and variance of the entanglement entropy are then computed.
Figures 10(a) and 10(c) display the results for Ĥrot while
Figs. 10(b) and 10(d) show the results for Ĥ ′

rot. At weak disor-
der, the average entanglement entropy agrees with the thermal
value 〈S〉therm from Eq. (21) for both models. As the disorder
strength is increased, the average entropy decreases and the
variance displays a peak. At strong disorder, the average en-
tropy is approximately proportional to the boundary size of the
partition. These results support the claim that the two models
are thermal at weak disorder and become localized at strong
disorder.

VI. CONCLUSION

We studied a two-dimensional, disordered model hosting
a tower of scar states based on the rainbow scar. At weak
disorder, the nonthermal scar states are embedded among
thermal eigenstates. The model transitions from being thermal
to localized with increasing disorder strength. Using a per-
turbative approach, we demonstrated that the model displays
strong localization at large disorder and we confirmed this
statement numerically. Strong localization refers to energy
eigenstates having significant support on a small number of
basis states. Furthermore, we provided general guidelines for
obtaining strong localization in other scarred models. We
verified that the model transitions from the thermal phase to
being localized with increasing disorder strength by study-
ing the level spacing statistics and entanglement entropy. We
showed that the adjacent gap ratio shifts from GOE to the
Poisson distribution with increasing disorder strength. The en-
tanglement entropy displayed volume-law scaling with system
size at weak disorder and area-law scaling at strong disorder.
Consequently, the scar states were identified as inverted scars
at strong disorder. We studied the system dynamics from
initial states with support in the scar subspace. The fidelity
displayed persistent revivals when the initial state was fully
embedded in the scar subspace. When the initial state had
partial support outside the scar subspace, the fidelity displayed
revivals with a smaller amplitude. We demonstrated that the
revival amplitude increases with increasing disorder strength
and we interpret this result as the localization protecting the
scar revivals. Finally, we constructed two disordered models
hosting a tower of scar states with larger entanglement entropy
for generic bipartitions. We demonstrated that these models
localize by studying the adjacent gap ratio and the scaling
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FIG. 10. (a), (b) The average entanglement entropy S and (c), (d) the variance of entropy σ 2
S of the eigenstate with energy closest to

(6Emin + 4Emax)/10 over 2 × 103 disorder realizations. Panels (a) and (c) correspond to the model Ĥrot while panels (b) and (d) correspond
to Ĥ ′

rot. The average and variance are shown as a function of disorder strength W for different system sizes and partitions. We consider the
partitions illustrated in Fig. 6. The system size is indicated by color and the partition by line style. The shaded areas display two standard
deviations on the estimate of the mean and variance. We consider the parameters J = c = c′ = μ = 1 and magnetization M = 0. In both
models, the average entropy agrees with the thermal value 〈S〉therm from Eq. (21) at weak disorder and decreases with increasing disorder
strength. The insets display the average entropy at strong disorder W = 14 as a function of boundary size. The variance of the entropy displays
a peak as the models transition from being thermal to localized.

of entanglement entropy as a function of disorder strength.
Hence, the scar states represent a tower of inverted scars in
both models.
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APPENDIX A: SCAR STATES BASED
ON THE EINSTEIN-PODOLSKY-ROSEN STATE

Scar states and corresponding parent Hamiltonians may be
constructed from the Einstein-Podolsky-Rosen (EPR) state.
Let H be a Hilbert space of the form H = HA ⊗ HB with
HA = HB and basis(HA) a basis for HA. The EPR state with
respect to basis(HA) is given by

|ψEPR〉 = 1√
dim(HA)

∑
|ϕ〉∈basis(HA )

|ϕ〉 ⊗ |ϕ〉, (A1)

where dim(HA) is the dimension of HA. For any operator Ô
acting within HA, the EPR state has the special property

(Ô ⊗ 1̂)|ψEPR〉 = (1̂ ⊗ ÔT )|ψEPR〉, (A2)

where ÔT is the transpose of Ô with respect to
basis(HA) [89].

Based on the EPR state, one may construct other states
which inherit a property similar to Eq. (A2). Let ÛA and ÛB
be unitary operators acting within HA and HB, respectively.
Consider the state∣∣ψÛA,ÛB

〉 = (ÛA ⊗ ÛB )|ψEPR〉. (A3)

For any operator Ô acting within HA, the state fulfills the
following property:

(Ô ⊗ 1̂)
∣∣ψÛA,ÛB

〉 = (1̂ ⊗ Ô′)
∣∣ψÛA,ÛB

〉
, (A4a)

with

Ô′ = ÛBÛ T
AÔT Û ∗

AÛ †
B (A4b)

where (· · ·)∗ is the complex conjugate with respect to
basis(HA) and (· · ·)† is the Hermitian conjugate. This prop-
erty may be verified by direct calculation. Following Ref. [89],
Eq. (A4) can be utilized to determine parent Hamiltonians
for the state |ψÛA,ÛB〉. Consider a general Hamiltonian of the
form

Ĥ = ĤA ⊗ 1̂ + 1̂ ⊗ ĤB +
∑

i

λiÔ(i)
A ⊗ Ô(i)

B , (A5)

where ĤA, Ô(i)
A act within HA while ĤB, Ô(i)

B act within HB
and λi ∈ R. The state |ψÛA,ÛB〉 is an eigenstate of Ĥ with
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energy E if[
1̂ ⊗

(
Ĥ ′
A + ĤB +

∑
i

λiÔ(i)
B Ô(i)

A
′
)]∣∣ψÛA,ÛB

〉
= E

∣∣ψÛA,ÛB

〉
, (A6)

where Ĥ ′
A and Ô(i)

A
′ are determined from Eq. (A4b). The

rainbow scar is described by this framework and corresponds
to the choice ÛA = 1̂ and ÛB = M̂, where M̂ is the mirror
operator, i.e., |ψRB〉 = |ψ1̂,M̂〉. The state from Eq. (24) cor-
responds to ÛA = 1̂ and ÛB = R̂π , where R̂π is the rotation
operator around the center of the lattice by an angle π , i.e.,
|ψrot〉 = |ψ1̂,R̂π

〉.

APPENDIX B: A PERTURBATIVE APPROACH
TO CHARACTERIZING THE LOCALIZATION

At strong disorder, the eigenstates of the Hamiltonian in
Eq. (13) are expected to localize within a vector space VD =
span{|D, n〉|n = 1, 2 . . .},

|ED,m〉 ≈
∑

n

cD;mn|D, n〉. (B1)

At first glance, when the sum in Eq. (B1) contains more
than one term, the eigenstates seem to have significant support
on many basis states. It turns out, however, that the eigen-
states exhibit stronger localization than predicted by Eq. (B1).
The eigenstates generally localize on small subspaces of
VD. We describe the localization using degenerate Rayleigh-
Schrödinger perturbation theory [90]. For completeness, we
briefly review degenerate perturbation theory before applying
it to our model.

1. Degenerate perturbation theory

We investigate the model at strong disorder. The Hamilto-
nian is rewritten to extract the disorder strength,

Ĥ = Ĥ0 + W
∑
r∈A

h′
rD̂r, (B2)

where h′
r are drawn randomly with uniform probability from

the interval [−1, 1]. Next, we define λ = 1/W and study the
related Hamiltonian H̃ = Ĥ/W :

H̃ = λĤ0 +
∑
r∈A

h′
rD̂r. (B3)

The two Hamiltonians share all eigenstates |ẼD,m〉 =
|ED,m〉 and the energies are related according to ẼD,m =
ED,m/W . In the following, we focus on a set of eigenstates
with identical disorder indices {|ẼD,m〉|m = 1, 2, . . .} at strong
disorder. In the extreme limit λ = 0, these eigenstates are
exactly degenerate. At 0 < λ, we expand the energies and
eigenstates in powers of λ:

ẼD,m =
∞∑

�=0

λ�Ẽ (�)
D,m, (B4a)

|ẼD,m〉 =
∑

n

c(0)
D;mn|D, n〉 +

∞∑
�=1

∑
D′ �=D

∑
n

λ�c(�)
D′;mn|D′, n〉.

(B4b)

Note that Eq. (B4b) is not normalized to simplify notation.
We investigate how the eigenstates localize within the sub-

spaces VD by determining the zero-order coefficients c(0)
D;mn.

For convenience, we collect these coefficients into vectors c(0)
m

with [c(0)
m ]n = c(0)

D;mn.
We substitute Eq. (B4) into H̃ |ẼD,m〉 = ẼD,m|ẼD,m〉 and

compare similar powers of λ. This leads to the familiar result
that the first-order correction to the energies Ẽ (1)

D,m are the
eigenvalues of the matrix

[M̂ (1)]nn′ = 〈D, n|Ĥ0|D, n′〉. (B5)

The zero-order coefficients c(0)
m are the eigenvectors of the

same matrix. If all eigenvalues of M̂ (1) are different, then every
coefficient c(0)

D;mn is uniquely determined. In the case where
some eigenvalues of M̂ (1) are degenerate, the corresponding
zero-order coefficients c(0)

m remain undetermined. Let {v(1)
i |i =

1, 2, . . .} be eigenvectors of M̂ (1) corresponding to the
same eigenvalue. The yet undetermined coefficients are lin-
ear combinations of these eigenvectors c(0)

m ∈ span({v(1)
i |i =

1, 2, . . .}). The correct linear combinations are found as the
eigenvectors of M̂ (2) with the corresponding eigenvalues be-
ing the second-order energy corrections E (2)

D,m. This matrix is
obtained from the general expression

M̂ (�) = P̂Ĥ0T̂ (�−1), (B6)

where P̂ = ∑
n |D, n〉〈D, n| is the projection onto VD. The

matrices T̂ (�) are determined from the following recursion:

T̂ (1) = ÊĤ0P̂, (B7a)

T̂ (�) = Ê
(

Ĥ0T̂ (�−1) −
�−1∑
�′=1

E (�−�′ )
n T̂ (�′ )

)
, (B7b)

with

Ê =
∑
D′ �=D

∑
n′

1

E (0)
D,n − E (0)

D′,n′
|D′, n′〉〈D′, n′|. (B8)

If the degeneracy persists to second order, we proceed to
third order by diagonalizing M̂ (3) in the relevant subspaces
and so on. In this manner, all coefficients c(0)

m can be found by
going to high enough order in perturbation theory.

2. Characterizing the localization

Returning to the model from Eq. (13), we study the en-
ergy eigenstates at strong disorder. We note that Ĥ0 contains
two-body kinetic terms. Furthermore, for two basis states be-
longing to the same magnetization sector and with identical
disorder indices |D, n〉 and |D, n′〉, the spins are different
on more than two sites. This implies that the off-diagonal
elements of M (1) are zero for all D. Hence, for each unique
eigenvalue of M (1), the corresponding eigenstate localizes on a
single basis state, i.e., c(0)

D;mn = δmn, where δmn is the Kronecker
delta. These eigenstates display strong localization. Similar
arguments are valid for coefficients c(0)

D;mn determined in higher
order of perturbation theory. Let pD be the largest integer
such that 〈D, n|Ĥ pD

0 |D, n′〉 = 0 for all n �= n′. For instance,
we have pD = 4 in the example from Eq. (15). This inte-
ger is typically large since Ĥ0 only contains local two-body
terms. Inspecting Eqs. (B6)–(B8), the off-diagonal elements
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of M̂ (�) vanish for all � � pD. Hence, if c(0)
m is determined in

�th order of perturbation theory with � < pD, then the corre-
sponding energy eigenstate localizes on a single basis state.
From these considerations, we expect most energy eigenstates
to localize on smaller subspaces than predicted by Eq. (17).
We remark that the perturbative arguments are not valid for
VD0 with [D0]r = 0 for all r ∈ A. This subspace is insensitive
to disorder, i.e., D̂r|D0, n〉 = 0 for all r ∈ A. We expect the
eigenstates with significant support in VD0 to remain nonlo-
calized even at strong disorder.

While most energy eigenstates display strong localization,
some eigenstates localize in a weaker sense. These eigenstates
have significant support on multiple basis states at strong
disorder. However, the nonlocalized nature of these eigen-
states is not visible in the dynamics of observables at small
times. Let {|ẼD,m〉|m = 1, 2, . . .} be a set of such eigenstates
and recall that the degeneracy is lifted in second or higher
order of perturbation theory, i.e., Ẽ (1)

D,m = Ẽ (1)
D,m′ for m �= m′.

We return to the energies ED,m and eigenstates |ED,m〉 of the
original Hamiltonian. Using the relation ED,m = λẼD,m, the
gap between two such energy eigenstates is given by

ED,m − ED,m′ = λ
(
E (2)

D,m − E (2)
D,m′

)+ O(λ2), (B9)

where O(λ2) refer to second- or higher-order terms in λ.
Equation (B9) shows that the energy gap vanishes in the limit
of very strong disorder. The fact that these eigenstates have
similar energy eliminates all dynamics at small times. To illus-
trate this point, consider multiple eigenstates with significant
support on the same product states |ED,m〉 ≈ ∑

n cD;mn|D, n〉.
The system is initialized as one of these product states
|ψ (0)〉 = |D, n〉 and subsequently time evolved |ψ (t )〉 =
e−iĤt |ψ (0)〉. The time evolved state only differs slightly from
the initial state at small times, i.e., |〈ψ (0)|ψ (t )〉|2 ≈ 1.

3. Accuracy of the perturbative approach

The analysis above is, strictly speaking, only true in the
limit λ → 0 or alternatively W → ∞. However, we expect the
results to be a good approximation for large, finite disorder
strength. We verify the formulas presented in Sec. B 1 by
computing the zero-order coefficients c(0)

D;mn using Eqs. (B5)–
(B8). The corresponding zero-order eigenstates are denoted
|E (0)

D,m〉 = ∑
n c(0)

D;mn|D, n〉. Furthermore, we determine the true
eigenstates |Ei〉 at different disorder strengths using exact di-
agonalization. For each |E (0)

D,m〉, we determine the most similar

exact eigenstate, i.e., argmaxi(|〈E (0)
D,m|Ei〉|2), and compute the

“error”

εD,m = 1 − max
i

( ∣∣〈E (0)
D,m

∣∣Ei
〉∣∣2). (B10)

The distribution of εD,m is determined from 103 disorder
realizations. The error is displayed as a function of disorder
strength in Fig. 11. At weak disorder, the error is near its
maximum value εD,m ≈ 1 since all exact eigenstates are delo-
calized. The error decreases with increasing disorder strength

0 2 4 6 8 10 12 14
W

0.00

0.25

0.50

0.75

1.00

ε

εD,m

εproj
D,m

FIG. 11. The error measures εD,m (blue upper curve) and ε
proj
D,m

(red lower curve) as a function of disorder strength W for system size
Lx × Ly = 4 × 3, parameters J = c = μ = 1, and symmetry sector
M = 0. We consider the distribution of the error measures over
the full spectrum in 103 disorder realizations. The figure displays
the median (solid line) and the interquartile range (shaded area) of
the distribution of each error measure. Note that ε

proj
D,m can only be

determined at strong disorder 5 � W where the disorder indices of
energy eigenstates are well defined. The error εD,m decreases with
increasing disorder strength but remains finite due to support on
other subspaces VD′ with D′ �= D. However, the error εD,m will vanish
at large enough disorder. The quantity ε

proj
D,m is generally close to

zero indicating that the zero-order eigenstates correctly describe the
spectrum.

but remains strictly larger than zero even at very strong dis-
order. The error remains finite since all exact eigenstates have
a small overlap with other subspaces VD′ with D′ �= D. We
expect the error to vanish for large enough disorder strength.

We further investigate the validity of our approach by con-
sidering another error measure. In the following discussion,
we consider sufficiently strong disorder 5 � W so each exact
eigenstate has well-defined disorder indices D. Let |Eproj

D,m〉 be
the normalized projection of |ED,m〉 onto the subspace VD:

∣∣Eproj
D,m

〉 = P̂|ED,m〉√
〈ED,m|P̂|ED,m〉

, (B11)

where P̂ is the projection onto VD. We consider the fidelity
between |Eproj

D,m〉 and the matching zero-order eigenstate from

perturbation theory |〈E (0)
D,m|Eproj

D,m〉|2. We study the error

ε
proj
D,m = 1 − ∣∣〈E (0)

D,m

∣∣Eproj
D,m

〉∣∣2. (B12)

The distribution of ε
proj
D,m is determined from 103 disorder

realizations. Figure 11 illustrates this error as a function of
disorder strength. The error approaches zero at large disorder
indicating that the perturbative approach yields the correct
zero-order eigenstates at strong, but finite, disorder strength.
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scars and weak breaking of ergodicity, Nat. Phys. 17, 675
(2021).

[39] S. Moudgalya, B. A. Bernevig, and N. Regnault, Quantum
many-body scars and Hilbert space fragmentation: A review of
exact results, Rep. Prog. Phys. 85, 086501 (2022).

[40] A. Chandran, T. Iadecola, V. Khemani, and R. Moessner, Quan-
tum many-body scars: A quasiparticle perspective, Annu. Rev.
Condens. Matter Phys. 14, 443 (2023).

[41] D. P. Arovas, Two exact excited states for the S = 1 AKLT
chain, Phys. Lett. A 137, 431 (1989).

023310-14

https://doi.org/10.1038/nature06838
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1103/PhysRevLett.95.206603
https://doi.org/10.1016/j.aop.2005.11.014
https://doi.org/10.1103/PhysRevB.75.155111
https://doi.org/10.1002/andp.201600362
https://doi.org/10.1103/PhysRevLett.109.017202
https://doi.org/10.1103/PhysRevLett.110.260601
https://doi.org/10.1103/PhysRevB.90.174302
https://doi.org/10.1103/PhysRevLett.118.237202
https://doi.org/10.1103/PhysRevLett.111.127201
https://doi.org/10.1103/PhysRevB.90.174202
https://doi.org/10.1103/PhysRevLett.122.040606
https://doi.org/10.1073/pnas.1819316116
https://doi.org/10.1103/PhysRevA.103.023323
https://doi.org/10.1103/PhysRevB.96.020201
https://doi.org/10.1103/PhysRevB.97.100301
https://doi.org/10.1103/PhysRevB.102.024201
https://doi.org/10.1103/PhysRevB.77.064426
https://doi.org/10.1103/PhysRevB.82.174411
https://doi.org/10.1103/PhysRevB.91.081103
https://doi.org/10.1103/PhysRevA.95.021601
https://doi.org/10.1103/PhysRevLett.119.246601
https://doi.org/10.1103/PhysRevLett.126.180602
https://doi.org/10.1126/science.aaa7432
https://doi.org/10.1126/science.aaf8834
https://doi.org/10.1038/nphys3783
https://doi.org/10.1103/PhysRevLett.120.050507
https://doi.org/10.1103/PhysRevX.9.041014
https://doi.org/10.1103/PhysRevLett.117.027201
https://doi.org/10.1103/PhysRevB.102.064207
https://doi.org/10.1103/PhysRevE.102.062144
https://doi.org/10.1103/PhysRevB.103.024203
https://doi.org/10.1016/j.aop.2021.168415
https://doi.org/10.1103/PhysRevB.102.100202
https://doi.org/10.1038/s41567-021-01230-2
https://doi.org/10.1088/1361-6633/ac73a0
https://doi.org/10.1146/annurev-conmatphys-031620-101617
https://doi.org/10.1016/0375-9601(89)90921-3


TOWER OF TWO-DIMENSIONAL SCAR STATES IN A … PHYSICAL REVIEW A 109, 023310 (2024)

[42] S. Moudgalya, N. Regnault, and B. A. Bernevig, Entanglement
of exact excited states of Affleck-Kennedy-Lieb-Tasaki models:
Exact results, many-body scars, and violation of the strong
eigenstate thermalization hypothesis, Phys. Rev. B 98, 235156
(2018).

[43] C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn, and
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