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Thermometry by correlated dephasing of impurities in a one-dimensional Fermi gas
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We theoretically investigate the pure dephasing dynamics of two static impurity qubits embedded within a
common environment of ultracold fermionic atoms, which are confined to one spatial dimension. Our goal is
to understand how bath-mediated interactions between impurities affect their performance as nonequilibrium
quantum thermometers. By solving the dynamics exactly using a functional determinant approach, we show
that the impurities become correlated via retarded interactions of the Ruderman-Kittel-Kasuya-Yosida type.
Moreover, we demonstrate that these correlations can provide a metrological advantage, enhancing the sensitivity
of the two-qubit thermometer beyond that of two independent impurities. This enhancement is most prominent
in the limit of low temperature and weak collisional coupling between the impurities and the gas. We show
that this precision advantage can be exploited using standard Ramsey interferometry, with no need to prepare
correlated initial states or to individually manipulate or measure the impurities. We also quantitatively assess the
impact of ignoring these correlations when constructing a temperature estimate, finding that acceptable precision
can still be achieved in some parameter regimes using a simplified model of independent impurities. Our results
demonstrate the rich nonequilibrium physics of impurities dephasing in a common Fermi gas, and may help to
provide better temperature estimates at ultralow temperatures.
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I. INTRODUCTION

The last decades have seen impressive developments in
experimental techniques for ultracold atomic gases. It is now
possible to tune the geometry and dimensionality of the sys-
tem, the nature and strength of interparticle interactions, and
even the exchange statistics of the constituent particles, en-
abling exploration of a wide range of fascinating physical
phenomena [1–4]. A particularly promising development in
this regard is the creation of homogeneous ultracold gases
[5–11]: these are especially useful for the quantum simula-
tion of condensed-matter and high-energy physics models, for
which translation invariance is crucial. However, measuring
the temperature of these systems is challenging. Standard
methods like time-of-flight measurements completely oblit-
erate the system, do not give access to spatially resolved
temperature information, and may suffer from a loss of pre-
cision at ultralow temperatures [12]. Other techniques such
as thermometry based on density fluctuations, although being
nondestructive, may also yield low precision at ultralow tem-
peratures [13–15].

An interesting alternative is to work with ultracold atomic
mixtures comprising more than one species of atom [16,17].
If the density of one species is much lower than the oth-
ers, they may be considered as impurities embedded in a
fluid of majority atoms. Such impurities exhibit a range of
interesting behavior straddling the interface between open
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quantum systems and condensed-matter physics. For ex-
ample, mobile impurities form polarons in bosonic [18,19]
and fermionic [20,21] environments, while a static impu-
rity exhibits universal dynamics manifesting the Anderson
orthogonality catastrophe [22–26]. By measuring static and
dynamic properties of the impurities, numerous experiments
have been able to accurately infer the temperature of the host
gas [27–34]. This opens up the tantalizing prospect of exploit-
ing the quantum-mechanical behavior of ultracold impurities
for improved thermometry, in a way that is also local and
minimally destructive, in principle.

The quest to understand the fundamental capabilities and
limits of quantum thermometry has inspired a substantial
theoretical literature (see Ref. [35] for a review). Seminal
early work established the optimum sensitivity and level
structure of fully equilibrated probes [36], while numerous
proposals have put forward the possibility of using nonequi-
librium impurity dynamics for thermometry, especially in
the context of ultracold gases [37–45]. More recently, it has
been established how temperature estimation is affected by
informational constraints such as limited measurement data
[46–51] or coarse-grained measurements [52,53]. A partic-
ularly important issue of current interest is to understand
how relevant physical effects such as strong system-bath cor-
relations [54–57] may affect thermometry protocols in real
impurity systems.

Another important physical effect is the interaction be-
tween several probes induced by their mutual interaction
with a common thermal environment. This is important be-
cause experiments typically operate in a regime with several
impurities—perhaps even hundreds or thousands—embedded
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in a single copy of the gas. Naively, increasing the number
of impurities is helpful to increase the signal-to-noise ratio,
which scales by a factor of

√
M for M independent impurities.

Yet independence is generally spoiled by bath-induced inter-
actions, which arise naturally in ultracold mixtures [58–67]
and have been observed in recent experiments [68,69]. Previ-
ous theoretical work has shown that, in some settings, trapped
impurities can be configured to suppress bath-mediated in-
teractions [39,70], but in general these interactions can give
rise to classical and quantum correlations between impuri-
ties [71]. It is well known that quantum correlations can
yield a metrological advantage in some scenarios [72,73]
and thermometry is no exception [74]. Indeed, recent works
have shown that bath-mediated interactions can improve tem-
perature estimation for impurities embedded in a bosonic
environment [75–77].

In this paper, we take the first steps towards understand-
ing how bath-induced interactions affect thermometry for
impurities embedded in a fermionic environment. Following
previous work by one of us [42], we focus on dephasing
probes [41,43–45], where information about the temperature
is imprinted on quantum coherences that can be measured ex-
perimentally by Ramsey interferometry [19,25,34,78]. Specif-
ically, we consider a system of two static impurities, each
possessing two internal states, which are coupled to a one-
dimensional (1D), homogeneous Fermi gas. Homogeneous
systems are particularly challenging for thermometry, since
absorption imaging of the spatial density provides no infor-
mation on temperature, while time-of-flight imaging of the
momentum distribution yields diminishing sensitivity at low
temperature because only a small number of atoms near the
Fermi energy yield useful information. In this context, we
show that correlations induced by bath-mediated interactions
can yield a collective enhancement for thermometry at low
temperatures. Remarkably, this advantage survives even when
one is limited to local observables that are accessible via
Ramsey interferometry.

In the following, we describe our two-impurity setup in
detail (Sec. II A) and explain how to solve the quantum
dynamics of the impurities exactly using a functional deter-
minant approach [79–81] (Sec. II B). We then analyze the
dephasing dynamics in detail (Sec. III), focusing especially
on the effect that the impurities have on each other via the
bath. Unlike the dipole-dipole interactions that typically arise
in bosonic baths, itinerant fermions induce Ruderman-Kittel-
Kasuya-Yosida (RKKY) interactions between localized spins
[82,83] with a nontrivial oscillatory spatial dependence whose
period is set by the Fermi wavelength. Static RKKY-like inter-
actions between impurities have already been shown to arise
in one-dimensional atomic Fermi gases [84,85]. Interestingly,
here we show that monitoring the two-impurity dynamics
allows one to observe the effect of RKKY-like interactions
developing in real time.

Next, we describe how temperature can be optimally
inferred from measurements on the impurities (Sec. IV A),
and propose a Ramsey protocol that is generally suboptimal
but experimentally feasible (Sec. IV B). Our approach is
based on local temperature estimation theory [35,86], where
the quantum Fisher information sets the ultimate limit for
precision. Using these tools, we analyze the temperature

sensitivity of the two-impurity system (Sec. IV C), finding
that bath-induced correlations enhance precision even under
local measurements, while using entangled initial states yields
no advantage.

Finally, we ask under what conditions the impurities can
be modeled as independent (Sec. IV D). This approximation
may be useful to simplify the construction of the tempera-
ture estimator, especially when scaling to a larger number
of impurities M > 2. For two impurities at fixed positions,
we find that the validity of this approximation depends quite
strongly on the impurity separation, but works best at higher
temperatures. Apart from their potential relevance for current
experiments on multiple impurities, our results open up sev-
eral interesting future directions for theoretical research that
we discuss in Sec. IV D.

II. SETUP

A. Description of the system

We consider a system S of two impurity atoms coupled to
an environment E comprising a gas of spin-polarized fermions
with homogeneous density, which is confined to a 1D box of
length L. We are interested in the ultralow-temperature regime
where s-wave scattering is dominant. Because of the anti-
symmetry of the fermionic wave function there is no s-wave
scattering between identical fermions, so the environment can
be treated as a noninteracting gas to a good approximation.

The impurity atoms are modeled as two-level systems with
energy eigenstates |↑〉i and |↓〉i, with i = 1, 2 labeling the
two impurity qubits. We take the impurities to be stationary
and strongly localized at fixed positions x1 and x2, which can
be achieved using a species-selective optical lattice that only
affects the impurities [34,87,88]. We work in the pseudopoten-
tial approximation, which models s-wave collisions between
the impurities and the surrounding gas atoms as a contact
interaction. The total Hamiltonian is then

Ĥ = ĤS + ĤE + ĤI , (1)

ĤS =
2∑

i=1

εi|↑〉i〈↑|, (2)

ĤE = − h̄2

2m

ˆ L/2

−L/2
dx �̂†(x)∇2�̂(x), (3)

ĤI = − h̄2

ma

2∑
i=1

|↑〉i〈↑| ⊗ �̂†(xi )�̂(xi ), (4)

where εi is the local energy splitting between the impurity
eigenstates, �̂†(x) is the field operator that creates a fermion
of mass m at position x such that {�̂(x), �̂†(x′)} = δ(x − x′),
and a is the scattering length describing impurity-fermion
collisions. We have assumed that the states |↓〉i effectively do
not interact with the gas. This can be achieved, for example,
by using a spin-dependent Feshbach resonance [89] to tune
the corresponding scattering length to a very large value. Note
that in one dimension the interaction strength is inversely
proportional to the scattering length [90].

We assume that the environment is initially in thermal
equilibrium at temperature T , with ρ̂T ∝ e−ĤE /kBT the
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corresponding thermal state. The initial state of the system
and environment is taken to be a tensor product

ρ̂(0) = ρ̂S (0) ⊗ ρ̂T , (5)

which can be prepared since the |↓〉i states do not perturb
the gas. A specific experimental protocol to realize this is
discussed in Sec. IV B.

We want to infer the temperature of the gas by observing
the dynamics of the probes. The latter are described by their
reduced density matrix

ρ̂S (t ) = trE [e−iĤt/h̄ρ̂(0)eiĤt/h̄], (6)

obtained by tracing over the environment. Since [ĤI , ĤS] = 0,
the system Hamiltonian merely generates trivial phase factors
that are irrelevant for the system-environment dynamics. From
here on we remove these by working in a rotating frame
via the transformation ρ̂S (t ) → eiĤSt/h̄ρ̂S (t )e−iĤSt/h̄, which is
tantamount to setting εi = 0.

Let σ label the different internal states of S, taking
the values σ ∈ {↑↑,↑↓,↓↑,↓↓}. It is straightforward to
show that

〈σ |ρ̂S (t )|σ ′〉 = νσ,σ ′ (t )〈σ |ρ̂S (0)|σ ′〉, (7)

where we have defined the complex functions

νσ,σ ′ (t ) = trE [eiĤσ t/h̄e−iĤσ ′ t/h̄ρ̂T ], (8)

with Ĥσ denoting the Hamiltonian of the environment condi-
tioned on the internal state of the system:

Ĥσ = 〈σ |ĤE + ĤI |σ 〉. (9)

The diagonal elements of ρ̂S (t ), with σ = σ ′, are constant be-
cause the energy of the probes is conserved. The off-diagonal
terms with σ = σ ′ will evolve and generally decay in time
according to νσ,σ ′ (t ), which we refer to as the decoherence
functions of our system.

B. Calculation of the decoherence functions

To calculate the decoherence functions in Eq. (8), we em-
ploy the Levitov formula or functional determinant approach
(FDA) [79–81], which has been widely used to study nonequi-
librium impurity systems [91]. The FDA is a numerically
exact method that maps a many-body expectation value into
a determinant in single-particle space:

νσ,σ ′ (t ) = det[1 − n̂ + n̂eiĥσ ′ t/h̄e−iĥσ t/h̄]. (10)

This equation holds because Eq. (8) involves only expo-
nentials of quadratic fermionic operators. Here, ĥσ is the
single-particle equivalent of Ĥσ , i.e., the Hamiltonian of a
single particle in the gas conditioned on the impurities being
in state σ . Meanwhile, n̂ is an operator describing the initial
Fermi-Dirac distribution of the gas atoms:

n̂ = [1 + e(ĥ↓↓−μ)/kBT ]−1. (11)

We work in the grand canonical ensemble and use the chemi-
cal potential μ to fix the total number of atoms N = n̄L, where
n̄ is the number density of the atoms.

The box is modeled as an infinite square well with hard-
wall boundary conditions at x = ±L/2. The single-particle

FIG. 1. A sketch of the setup we are considering. Two impurities
separated by distance 2x0 (gray balls) embedded in a 1D Fermi gas
confined by a box potential of length L (blue background).

Hamiltonians ĥσ are then differential operators of the form

ĥσ = − h̄2∇2

2m
+ Vσ (x), (12)

defined on the interval x ∈ [−L/2, L/2]. Here, Vσ (x) is the
effective potential felt by the fermions when the impurities
are in state σ . In the pseudopotential approximation, we have

V↓↓(x) = 0, (13)

V↑↓(x) = − h̄2

ma
δ(x − x1), (14)

V↓↑(x) = − h̄2

ma
δ(x − x2), (15)

V↑↑(x) = V↑↓(x) + V↓↑(x). (16)

From here on, we take the impurities to be placed symmet-
rically around the center of the box, x1 = −x0 and x2 = +x0

(see Fig. 1 for a sketch of the setup). This assumption can be
made without loss of generality because we always take L to
be large enough to avoid boundary effects, so that only the im-
purity separation �x = x2 − x1 = 2x0 is relevant. Under this
assumption, there are four independent decoherence functions
that we need to fully describe the dynamics of the system.
Further details on how we evaluate Eq. (10) numerically can
be found in Appendix B.

III. DYNAMICS OF TWO IMPURITIES
DEPHASING IN A 1D FERMI GAS

In this section we systematically investigate the dephasing
dynamics of two impurities in a 1D Fermi gas. The physical
scales of the gas are fully determined by the fermion number
density, n̄ = N/L, and are given by the Fermi wave vector
kF = n̄π , the Fermi energy EF = h̄2k2

F /2m,the Fermi time
τF = h̄/EF , the Fermi velocity vF = h̄kF /m, and the Fermi
temperature TF = EF /kB. The interaction between the impuri-
ties and the gas is parametrized by the dimensionless parame-
ter kF a. We also define the interaction time between the impu-
rities τi = �x/vF . This can be understood as the time for ex-
citations to travel from one impurity to the other, i.e., the time
after which bath-mediated interactions begin to play a role.

In Fig. 2 we plot all four independent decoherence func-
tions for both kF a = −0.1 and −1, which correspond to
relatively strong and weak system-environment interaction
strengths, respectively. For strong system-environment cou-
pling we also plot the decoherence for temperatures T/TF =
0.1, 0.05, and 0.0001. Here we focus exclusively on negative
scattering lengths, in order to avoid the additional complica-
tion of the bound state that appears for a > 0. While in general
all four decoherence functions contribute to the dynamics,
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FIG. 2. [(a)–(d)] The full dynamics of two impurity qubits with
separation kF �x/2π = 3 coupled to a 1D fermionic bath at tem-
perature T = 0.0001TF (solid), T = 0.05TF (dash-dotted), and T =
0.1TF (dotted) with coupling strength kF a = −1 (blue upper solid)
and kF a = −0.1 (black lower). The gray dotted line denotes the
interaction time τi = �x/vF . [(e), (f)] The power-law behavior of
ν↑↑,↓↓ and ν↑↓,↓↑ for T = 0.0001TF with an interaction strength of
kF a = −5. The dotted lines are the power laws discussed in the main
text valid for low temperature and weak coupling.

each one can be tied to a distinct initial state ρ̂S (0), which
is helpful to interpret their features.

We begin by examining the decoherence function ν↑↓,↓↓
in Fig. 2(a). This describes the situation where only a single
impurity interacts with the gas. For example, given the initial
condition ρ̂S (0) = |+〉1〈+| ⊗ |↓〉2〈↓| with

|+〉i = 1√
2

(|↑〉i + |↓〉i ), (17)

the evolution of ρ̂S (t ) is determined purely by ν↑↓,↓↓(t ) and all
other matrix elements are constant or zero. The dynamics of a
single heavy impurity qubit interacting with a Fermi gas has
been extensively studied in the literature (e.g., see Ref. [26]
for a comprehensive review of the three-dimensional case and
the Supplemental Material of Ref. [42] for analysis of the
1D case).

Figure 2(a) reproduces the behavior expected from these
previous studies. For intermediate times between the Fermi
time and the thermal timescale, τF � t � h̄β, the deco-
herence function has a universal power-law decay, with an
exponent that depends on the interaction between the impu-
rity and Fermi gas. For later times, thermal effects dominate
and the decoherence function decays exponentially in time
with a rate proportional to temperature. In order to elucidate
this behavior, in Appendix C we derive an expression for
the decoherence functions valid in the weak-coupling and
low-temperature regime, using a cumulant expansion method
adapted from Ref. [42]. The result is that

|ν↑↓,↓↓(t )| ∼
{

t−α (τF � t � h̄β )

e−αt/h̄β (h̄β � t ),
(18)

where the exponents are determined by the dimensionless
coupling strength:

α = (πkF a)−2. (19)

The decoherence functions ν↑↓,↓↑ and ν↑↑,↓↓ are shown in
Figs. 2(b) and 2(c). These are the relevant decoherence func-
tions for initial Bell state preparations ρ̂S (0) = |�±〉〈�±| and

|±〉〈±|, respectively, where

|�±〉 = 1√
2

(|↑1↓2〉 ± |↓1↑2〉),

|±〉 = 1√
2

(|↑1↑2〉 ± |↓1↓2〉).

(20)

For short times, t � τi, both decoherence functions have the
same power-law behavior as two impurities in independent
baths, i.e., νσ,σ ′ ∼ t−2α . This reflects the fact that, for times
much less than the bath-mediated interaction time, the two
impurities should evolve independently. This implies that, for
t � τi, we have

ρ̂S (t ) = E ρ̂S (0) ≈ (E1 ⊗ E1)ρ̂S (0), (21)

where E is the quantum channel describing the exact two-
impurity evolution and E1 is the channel describing a single
impurity immersed in a Fermi gas. Equation (21) imme-
diately implies that ν↑↓,↓↑ ≈ |ν↑↓,↓↓|2 and ν↑↑,↓↓ ≈ ν2

↑↓,↓↓.
Therefore, the phase of ν↑↓,↓↑ vanishes while the phase of
ν↑↑,↓↓ is twice that of a single impurity, and their mag-
nitudes are identical. However, around the interaction time
τi these two decoherence functions begin to show drasti-
cally different behavior: the decay of ν↑↓,↓↑ slows down
completely, while ν↑↑,↓↓ begins to show marked oscillations
with approximate period τi. These oscillations represent a
non-Markovian effect, where excitations from one impurity
travel through the gas and hit the other one, represent-
ing backflow of information from the environment into the
system [92,93].

These dynamical features for t � τi are qualitatively cap-
tured by the cumulant expansion derived in Appendix C.
For short times t � τi, our analytical theory predicts that
both ν↑↓,↓↑ and ν↑↑,↓↓ behave as νσ,σ ′ (t ) ∼ t−2α , as expected
for independent impurities. After the impurity interaction
time t = τi, we find that the algebraic decay changes
exponent as

α → α[1 ± cos2(2kF �x)], (22)

where the plus and minus signs correspond to ν↑↑,↓↓ and
ν↑↓,↓↑, respectively. A comparison between this analytical
prediction and the exact numerics can be seen in Figs. 2(e)
and 2(f), demonstrating excellent agreement within the weak-
coupling and low-temperature regime where the cumulant
expansion is valid.

The change of exponent at t = τi manifests the well-
known phenomenon of super- and subdecoherence [94–97]. In
Appendix C we provide an explanation for this effect: the
Bell states |±〉 and |�±〉 couple respectively to density
fluctuations at the impurity positions that are in phase or an-
tiphase, respectively, which have very different low-frequency
properties. Moreover, in Eq. (22) we recognize the sinusoidal
spatial dependence that typically arises in perturbed Fermi
gases, with the same period of π/kF that characterizes both
Friedel oscillations and the RKKY interaction. Therefore, the
transition from normal to sub- or superdecoherent dynamics
manifests the time-retarded effect of RKKY-like correlations
developing in real time. Note that the sub- and superdeco-
herent behavior persists only up to the thermal time, t � h̄β,
after which both decoherence functions decay exponentially
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as ∼e−2αt/h̄β . This is the decay expected for two independent
impurities, meaning that thermal noise washes out the dy-
namical effect of RKKY-like interactions on the decoherence
signal at long times. We note that RKKY-like interactions
have been observed in ultracold atomic gases recently [68].

Finally, Fig. 2(d) shows the decoherence function |ν↑↑,↑↓|.
This is the relevant decoherence function for the initial
state ρ̂S (0) = |↑〉1〈↑| ⊗ |+〉2〈+|, which describes a situation
where the pseudospin of the first impurity is flipped at the
same time that the second impurity is prepared in a super-
position. Thus, for short times, ν↑↑,↑↓ is indistinguishable
from ν↑↓,↓↓. For times t � τi the perturbations from the first
impurity hit the second one, causing the decoherence to slow
down. The cumulant expansion at second order fails to cap-
ture this behavior, indicating that this is a nonperturbative
effect.

Aside from the temperature dependence of the long-time
exponential decay, the interaction effects discussed above de-
pend strongly on both temperature and coupling strength. In
particular, non-Markovian effects due to exchange of excita-
tions are most prominent at low temperatures, and disappear
as the temperature increases. Observing these features thus
yields useful information on temperature, as we show in the
next section.

IV. THERMOMETRY WITH CORRELATED
DEPHASING PROBES

A. Local temperature estimation theory

Since the impurity dynamics depends on the temperature
of the gas, we can infer the temperature from measurements
of many identical preparations of the probes. We first consider
a general “prepare and measure” scenario: a given probe state
ρ̂S (0) is prepared as in Eq. (5), the system decoheres for a
time t , and then a measurement in a given basis is made on
the resulting state ρ̂S (t ). Repeating this procedure for M iden-
tical preparations yields a sequence of measurement outcomes
x = {x1, x2, . . . , xM}. In the most general case, the measure-
ment may be a positive operator-valued measure (POVM): a
collection of positive operators �̂(x) > 0 that are normalized
as
∑

x �̂(x) = 1.
Using our knowledge of the temperature dependence of

ρ̂S (t ), a temperature estimate Ť (x) can be constructed from
the measurement data x, e.g., using maximum-likelihood es-
timation. Any such estimate will carry uncertainty due to the
randomness inherent to quantum measurements and the finite
number of samples M. The achievable precision depends not
only on the probe state ρ̂S (T ) but also the specific choice of
POVM {�̂(x)}.

To quantify the precision attainable in our setup, we
use the theory of local quantum parameter estimation [86].
Here, the central quantity is the quantum Fisher information
(QFI), FT , which provides a lower bound on the variance of
any unbiased estimator. In particular, an unbiased estimator
obeys E[Ť (x)] = T , while its variance obeys the (quantum)
Cramér-Rao bound [98]:

E{[Ť (x) − T ]2} � 1

MFT
� 1

MFT
. (23)

Here, FT is the Fisher information for the measurement
{�̂(x)}:

FT (ρ̂S (t ), {�̂(x)}) =
∑

x

p(x)

(
∂ ln p(x)

∂T

)2

, (24)

where p(x) = tr[ρ̂S (t )�̂(x)] is the probability of obtaining
outcome x. The QFI is defined as maximum of the Fisher
information over all POVMs [98]:

FT [ρ̂S (t )] = max
{ ˆ�(x)}

FT (ρ̂S (t ), {�̂(x)}). (25)

Therefore, the QFI quantifies the maximum information on
temperature that can be obtained from repeated measurements
on the state ρ̂S (t ).

The maximum in Eq. (25) is achieved by projective mea-
surements of the symmetric logarithmic derivative (SLD),
�̂T . Writing the probe state in its eigenbasis as ρ̂S (t ) =∑

n rn|rn〉〈rn|, the QFI and SLD are given explicitly by [86]

FT = 2
∑
m,n

|〈rm|∂T ρ̂S|rn〉|2
rm + rn

, (26)

�̂T = 2
∑
m,n

〈rm|∂T ρ̂S|rn〉
rm + rn

|rm〉〈rn|. (27)

Note that the SLD is explicitly dependent on temperature,
and the quantum Cramér-Rao bound (23) can only be sat-
urated in the asymptotic limit of M � 1. Therefore, local
estimation theory is most relevant when some coarse infor-
mation on temperature is already known and a large quantity
of measurement data is available. Alternative approaches to
temperature estimation based on Bayesian statistics [46–51]
and single-shot information theory [99] have recently been de-
veloped, allowing thermometry even with few measurements
and no prior information. Nevertheless, the QFI is very useful
as a quantitative benchmark for our impurity thermometer in
different parameter regimes.

B. Ramsey interferometry protocol

Since the impurities become correlated through their in-
teraction with the gas, the SLD is generally a nonlocal
observable that may be difficult to measure. We there-
fore consider the following thermometry protocol based on
Ramsey interferometry, which is feasible in cold-atom sys-
tems [25,34]. To generate the initial product state (5), both of
the impurities start in the noninteracting state |↓〉i while the
gas is prepared in a thermal state. The impurities may either
be left in situ during this preparation phase [25], or transported
into the Fermi gas by a moving trap potential [34,88]. At
t = 0, a π/2 pulse is applied to the impurities, generating the
initial state

ρ̂S (0) = |+〉1〈+| ⊗ |+〉2〈+|. (28)

The system is then left to decohere in contact with the gas
for a time t , giving rise to a state ρ̂S (t ) which is a function of
all four decoherence functions discussed in Sec. III. Finally,
another π/2 pulse is applied with a phase φ relative to the first
pulse, and then the population of the qubit energy eigenstates
is immediately measured projectively, e.g., by using laser
pumping to induce state-dependent fluorescence.
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FIG. 3. [(a), (b)] The signal-to-noise ratio of different measurements for the two impurity qubits separated by kF �x/2π = 5, temperature
T = 0.05TF , and interaction strength kF a = −1 (a) and kF a = −0.1 (b). Measurement of the SLD including bath-induced interactions (upper
blue solid lines), the SLD of two independent impurities (green dashed lines), and the operator of Eq. (30) with angle φ that gives the maximum
information (middle orange solid line). We also investigated the effect of starting in one of the Bell states |�+〉〈�+| or |+〉〈+| and doing
measurement on their respective SLD (lower red dash-dotted and purple solid lines). (c) The difference between maximal sensitivity with and
without bath-induced interactions [see Eq. (33)] for different temperatures.

In experiments with multiple impurities embedded in ul-
tracold atomic gases, it is typically not possible to address the
individual impurities during the measurement. Instead, only
the total measurement signal is accessible, e.g., in Ref. [34]
the total number of impurities left in the ground state after the
final π/2 pulse is counted. This is equivalent to measuring the
expectation value of the observable

Ô(φ) =
2∑

i=1

[
cos(φ)σ̂ x

i + sin(φ)σ̂ y
i

]
. (29)

The temperature uncertainty �T expected for M � 1 mea-
surements of this observable can be quantified by the error
propagation formula [100]

�T = �Ô√
M|∂T 〈Ô〉| , (30)

where �Ô2 = 〈Ô2〉 − 〈Ô〉2 is the operator variance and 〈Ô〉
is the expectation value in the state ρ̂S (t ). The signal-to-noise
ratio is then

T

�T
=

√
M

T |∂T 〈Ô〉|
�Ô

≡
√

MST (Ô) (31)

which defines the effective temperature sensitivity ST (Ô) for
measurements of the observable Ô.

The sensitivity ST will be our metric of performance in the
following. It can be shown that the sensitivity is maximized
by measurements of the SLD because [56]

ST (�̂T ) = T
√
FT , (32)

in which case, according to Eq. (31), the temperature error �T
asymptotically saturates the quantum Cramér-Rao bound (23).
For local observables of the form in Eq. (29), the sensitivity

is generally smaller; however, for any state ρ̂S (t ) we can find
the optimal operator Ô(φ) to measure by maximizing ST over
φ. Like the SLD, the optimal φ depends on T and thus some
prior knowledge about the temperature is needed for this to
work in practice.

C. Thermometric performance and collective advantages

We now discuss how the dynamical features explored in
Sec. III affect the performance of our two-qubit thermometer.
The blue curves in Figs. 3(a) and 3(b) show the optimal
sensitivity, ST (�̂T ) = T

√
FT , as a function of time in various

different scenarios for temperature T = 0.05TF and two inter-
action strengths: kF a = −1 [Fig. 3(a)] and −0.1 [Fig. 3(b)].
The sensitivity peaks at a particular moment in time, which
defines the optimal time to perform the measurement. We see
that the peak sensitivity is generally larger at weak system-
environment coupling but also occurs at a later time. A similar
tradeoff between sensitivity and measurement time was found
in previous work on thermometry with single impurities [42].
At stronger coupling, the optimal sensitivity exhibits compli-
cated oscillations. These are a consequence of non-Markovian
effects induced by the impurities exchanging excitations via
the gas, as discussed in Sec. III.

An interesting question is whether bath-induced interac-
tions improve the precision of our two-impurity thermometer.
In order to assess this, we compare to the case of two in-
dependent impurities with ρ̂S (t ) = [ρ̂1(t )]⊗2, where ρ̂1(t ) is
the state of a single impurity dephasing in a 1D Fermi gas.
That is, the diagonal elements of ρ̂1(t ) are constant while the
off-diagonal elements are proportional to ν↑↓,↓↓(t ). This is
equivalent to the situation where the impurity separation is
very large, so that τi � h̄β and thermal decoherence kicks
in before interactions can play any role. The corresponding
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QFI is additive, FT {[ρ̂1(t )]⊗2} = 2FT (ρ̂1). Figure 3(a) shows
that the optimal sensitivity of two impurities in a common
bath can be markedly larger than the corresponding value for
two independent impurities [green dashed curves in Figs. 3(a)
and 3(b)]. This effect, which only arises for sufficiently weak
coupling and low temperature, indicates that bath-induced
interactions yield an advantage for thermometry.

Remarkably, this advantage persists even when restricted to
more realistic local observables as in Eq. (29). To show this,
we numerically optimize the angle φ to find the observable
that gives the largest sensitivity ST at each point in time.
The results, shown by the orange curve in Figs. 3(a) and
3(b), demonstrate that optimal local measurements may yield
almost as much temperature information as measurements of
the SLD. This is true for a wide range of parameters. Similar
effects have been observed previously in the context of equi-
librium thermometry [101].

To quantify how the collective thermometry advantage de-
pends on temperature, we compute the difference in peak
thermometric performance between the independent impuri-
ties and impurities with bath-induced interactions:

�ST

T
= max

t

√
FT [ρ̂S (t )] − max

t

√
2FT [ρ̂1(t )]. (33)

Here, as above, ρ̂S (t ) is the state of two impurities immersed
in a common environment, whereas ρ̂1(t ) is the state of a
single impurity dephasing in a 1D Fermi gas. As shown in
Fig. 3(c), we observe a large and positive �ST at low temper-
atures, signifying a significant collective advantage. However,
at higher temperatures this trend reverses and we find that in-
dependent impurities yield higher thermometric precision. At
even higher temperatures, the difference goes to zero because
thermal fluctuations wipe out any bath-induced interactions.
Similarly, we have observed the collective advantage to be
most prominent at weak coupling. In all the cases we have
investigated, sufficiently strong coupling led to independent
impurity probes outperforming the correlated probes. An ex-
ample of this can be seen in Fig. 3(b).

To further elucidate the role of bath-induced interactions,
we quantify the correlations that develop between the two
impurity probes using the quantum mutual information

I (1 : 2) = S(ρ̂1) + S(ρ̂2) − S(ρ̂S ), (34)

where ρ̂i is the reduced density matrix for impurity i, e.g.,
ρ̂1 = tr2(ρ̂S ), and S(ρ̂ ) is the von Neumann entropy:

S(ρ̂ ) = −tr(ρ̂ ln ρ̂ ). (35)

We also investigate the amount of correlation that is purely
quantum in nature by means of the quantum discord
[102,103]. The quantum discord is the difference between the
mutual information and the purely classical correlations:

D(1 : 2) = I (1 : 2) − C(1 : 2). (36)

Further details on the quantum discord, and the precise def-
inition of the classical correlations C(1 : 2), are given in
Appendix D (and see Ref. [104] for a comprehensive re-
view). Figure 4 shows the mutual information and quantum
discord of the two probes as a function of time. We see that
correlations, both quantum and classical, are strongest in the

FIG. 4. The mutual information (solid lines) and quantum dis-
cord (dotted lines) between the two impurity probes as a function of
time, with separation kF �x/2π = 5, interaction strength kF a = −1,
and temperatures T = 0.05TF (upper blue lines) and T = 0.125TF

(lower orange lines).

low-temperature regime. We also find that the correlations be-
tween the impurities are much weaker in the regime of strong
impurity-gas coupling (not shown in figure). Conversely, for
high temperature or strong coupling, the correlations quickly
vanish.

However, correlations alone are not sufficient to obtain a
precision advantage, as the following example demonstrates.
Consider preparing the impurities in the maximally entangled
Bell states ρ̂S (0) = |+〉〈+| or ρ̂S (0) = |�+〉〈�+|. Entan-
gled initial states are known to give a precision boost in many
metrological settings, e.g., for phase estimation in cold atom
systems [105,106]. For our system, however, this is not the
case, as shown by the purple and red curves in Fig. 3. For
the |�+〉 state, this can be understood because the relevant
decoherence function is almost purely real, while much of the
temperature information at weak coupling is known to be con-
tained in bath-induced phase shifts [42]. For the initial |+〉
state, phase information is amplified but the superdecoherence
effect discussed in Sec. III causes the matrix elements of ρ̂S to
decay too quickly to take advantage of this effect.

In summary, correlations between the impurities are gener-
ated by bath-mediated interactions, and these correlations can
increase the temperature sensitivity. This effect is strongest at
weak coupling and low temperature and, most interestingly,
can be exploited using only product-state preparations and
local measurements, e.g., via Ramsey interferometry. How-
ever, since these bath-mediated interactions vary rapidly with
the distance between the impurities, the impurity’s positions
must be controlled with a precision comparable to the Fermi
wavelength [see Eq. (22)] to take advantage of these col-
lective effects. Moreover, finding the optimal measurement
and constructing the estimator requires solving the dynami-
cal problem for two impurities, which is significantly more
complicated than the single-impurity case. In the following
section, therefore, we consider whether one may ignore bath-
induced correlations and still obtain a reasonable temperature
estimate.
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FIG. 5. The relative error when assuming uncorrelated impurity
probes as a function of temperature for coupling strength kF a = −1.
The blue and orange points are for separations such that kF �x = nπ

and nπ/2, respectively.

D. When can we assume uncorrelated probes?

In principle, our functional determinant approach can be
scaled to describe the dynamics of an arbitrary number of
probes, M. In practice, however, this becomes impractical
due to the large number of different decoherence functions
that must be evaluated, as well as numerical instabilities
and convergence issues that must be carefully addressed (see
Appendix B). This motivates us to ask under what conditions
the bath-induced correlations can be ignored without sacrific-
ing the quality of the temperature estimate. This would enable
one to treat the impurities as independent, so that only the
dynamics of a single impurity need be solved, which is far
simpler.

To investigate the error arising in the temperature estimate
by assuming the two impurity probes are uncorrelated, we
adopt the following procedure.

(1) Numerically find the operator Ômax(φ) that gives the
most information on temperature as well as the optimal time
tmax to perform the measurement, assuming the impurities are
evolving in independent Fermi gases of temperature T . This
yields the optimum measurement that an experimenter who is
unaware of bath-induced interactions would perform.

(2) Evaluate the reduced density matrix for two impurities
in a shared bath of temperature T and evaluate the expectation
value 〈Ômax〉 = tr[ρ̂S (tmax)Ômax]. This yields the expected re-
sult that the unaware experimentalist would measure.

(3) Find Test, the temperature that the unaware experi-
menter would infer from the result 〈Ômax〉 (assuming M → ∞
measurements), using the model of independent impurities.

(4) Compare Test with T to infer the error that would be
incurred.

The error in assuming uncorrelated probes depends cru-
cially on the dynamics of the system at the measurement
time tmax. If tmax � τi, the impurities remain uncorrelated and
Test = T to an excellent approximation. Therefore, we instead
focus on impurities with a separation such that the interac-
tion time is less than or similar to tmax, where the effect of
bath-induced interactions on the temperature estimate is most
significant.

Figure 5 shows the error in assuming uncorrelated
probes for different temperatures for two separations of the

impurities. From Sec. III, we know the effect of the bath-
induced impurity interaction is quantified by cos2(2kF �x).
We consider the two extremal cases 2kF �x = nπ and nπ/2
(n ∈ Z), where this interaction is maximal or minimal, respec-
tively. We find that in both cases, and for most temperatures
considered, approximating the impurities as independent
yields a relative error |T − Test|/T � 10%. However, the error
depends in a complicated way on the temperature, because
this determines the optimal measurement time tmax. For exam-
ple, at temperature T = 0.175TF the error for the maximally
interacting probes is large because tmax is close to an integer
multiple of τi.

These results suggest that, at least for two fixed impuri-
ties, achieving the best precision requires an estimator that
explicitly accounts for bath-induced correlations. However,
one may hope that, when averaging over the signal from
many impurities at widely varying positions, the effect of
correlations averages out. This presumably depends on the
impurities’ spatial distribution, but we leave a careful analysis
of this problem for M > 2 to future work.

V. DISCUSSION AND CONCLUSIONS

In this paper, we have proposed and analyzed a thermom-
etry protocol based on the dynamics of two qubit impurities
dephasing in a 1D gas of ultracold fermions. We have solved
the quantum evolution of the two impurities exactly, includ-
ing the effect of bath-induced interactions. We have also
gained valuable physical intuition into the observed behavior
at different timescales by means of a perturbative cumulant
expansion. We have found that certain impurity decoherence
functions manifest a retarded RKKY-like interaction, giving
rise to sub- and superdecoherent behavior depending on the
initial state, which persists for intermediate times τi < t < h̄β

and is eventually washed away by thermal fluctuations.
To understand how the bath-mediated interactions affect

the achievable precision, we have compared the thermal
sensitivity of our two-qubit thermometer to a pair of impu-
rities interacting with independent environments. We have
found that, at low temperatures and weak coupling, bath-
induced correlations between the impurities can enhance
precision. These results reinforce other recent work showing
that bath-mediated interactions can be helpful in the context
of low-temperature thermometry [75–77]. This conclusion is
by no means obvious, since correlations between the impuri-
ties could also arise from redundant encoding of temperature
information, thus reducing the signal-to-noise ratio relative to
truly independent measurements [39,70].

In order to exploit these correlations to the fullest, one
would need to measure the nonlocal SLD observable. How-
ever, we have shown that a simple Ramsey protocol can
approach the optimal precision, without the need to individ-
ually address the impurities or perform entangling operations.
Moreover, we have quantified the systematic error incurred by
neglecting correlations altogether. Our results show that this
error depends strongly on the impurity separation, but remains
on the order of a few percent for most system parameters
at not-too-low temperatures. This suggests that it may be an
acceptable approximation to neglect bath-induced correlations
in most situations, potentially simplifying future thermometry
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experiments with many impurities embedded in a single copy
of the gas.

We have found that bath-mediated correlations can yield
a thermometric advantage at weak coupling and low tem-
perature when both classical and quantum correlations are
allowed to build up between the impurities. These correlations
are temperature dependent and thus contain more information
on temperature than would be available for independent im-
purities, thus allowing for increased precision. However, our
analysis also shows that correlations can be detrimental to
thermometric precision. Indeed, the loss of precision in the
presence of correlations has also been shown for classical
processes [107]. The question of when correlations are helpful
or harmful to precision would be an interesting starting point
for further studies.

It is possible to generalize the techniques presented in
this paper to investigate other systems, for example higher-
dimensional systems. It has recently been suggested that the
precision one is able to obtain depends crucially on the spa-
tial dimensionality of the system [108] and that thermometry
in higher dimensions could be more effective. However, we
also expect bath-induced interactions to be less prominent in
higher dimensions because the excitations from the impurity-
bath interactions will spread out more. It would be interesting
to investigate how the dynamics, as well as the thermometric
performance, would change for several impurities decohering
in a higher-dimensional Fermi gas.

In our current paper we have only considered a noninter-
acting environment. An interesting question is then whether
bath-mediated correlations will still be useful in the presence
of interactions between the bath atoms. If the environment
is two- or three-dimensional, we expect Fermi liquid theory
to apply (for repulsive interactions at low temperature). The
environment will then behave as a collection of noninteracting
fermions and our discussion above on higher-dimensional sys-
tems should still hold. If the interaction is attractive, we expect
the environment to behave as a BCS Fermi superfluid, and it
has been shown that the FDA can be straightforwardly gener-
alized to this case [109,110]. In the case of an environment of
interacting fermions in one dimension, we expect the environ-
ment to behave as a Luttinger liquid at low temperatures, with
low-energy excitations that are bosonic. Several works have
investigated the use of impurity dynamics for thermometry
of one-dimensional bosonic superfluids [45,56,108], and it
has been shown that bath-mediated interactions can enhance
thermometric precision [76].

Our approach could also be adapted to explore thermom-
etry in the presence of different confining potentials [24]
or charged impurities [43]. Other properties of these sys-
tems beyond temperature, such as transport coefficients [111],
could also be extracted using correlated impurities. Moreover,
it has been suggested that using multidimensional spec-
troscopy instead of the Ramsey protocol considered in this
paper could yield extra information [112,113], and the pro-
cedure presented here could be generalized to such scenarios
as well.

Finally, it would be interesting to see how thermometric
performance scales with the number of impurities M,
especially for M � 1. A closely related question is how
disturbing such a temperature measurement would be in

terms of heat absorbed by the environment [114]. Intuitively,
one may expect that improved precision comes at the cost of
increased measurement backaction, especially if the number
of impurities scales extensively with system size. This could
be quantified using the recently developed thermodynamic
description of decoherence [115,116].
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APPENDIX A: SOLUTIONS TO THE SINGLE-PARTICLE
SCHRÖDINGER EQUATIONS

In this section, we solve the single-particle Schrödinger
equation for a particle in a box, with no, one, or two delta
potentials present. We will solve the equations

ĥσψ (σ )
n = E (σ )

n ψ (σ )
n (A1)

for each σ .
For ĥ↓↓, this is simply given by

ψ (↓↓)
n ≡ ψn =

√
2

L
sin [kn(x + L/2)], (A2)

and En = h̄2k2
n/2m, with kn = nπ/L.

We next consider the case of σ =↓↑. The eigenfunctions
in this case are given by

ψ (↓↑)
n =

{
An sin [k′

n(x + L/2)], −L/2 < x < x0

Bn sin [k′
n(x − L/2)], L/2 > x > x0

(A3)

with energy

E (↓↑)
n ≡ E ′

n = h̄2k′2
n

2m
(A4)

and k′
n is given by the quantization condition

cot[k′
n(x0 + L/2)] − cot[k′

n(x0 − L/2)] = 1

k′
na

. (A5)

The coefficients An and Bn can be found by the normalization
requirement.

The solution for σ =↑↓ is similar to the one above. We can
note immediately that the eigenfunctions should be mirrored
versions of Eq. (A3) around the center of the box. Indeed we
find that

ψ (↑↓)
n =

{
(−1)−nBn sin [k′

n(x + L/2)], −L/2 < x < −x0

(−1)−nAn sin [k′
n(x − L/2)], L/2 > x > −x0

(A6)

with the same eigenenergies as above.
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For σ =↑↑ we treat the even and odd eigenfunctions sepa-
rately. For n even we find that the solution can be written

ψ (↑↑)
n =

⎧⎪⎨
⎪⎩

Cn sin (k′′
n x − δn), −L/2 < x < −x0

Dn sin (k′′
n x), −x0 < x < x0

Cn sin (k′′
n x + δn), L/2 > x > x0

(A7)

where k′′
n = kn − 2δn/L and the quantization condition takes

the form

cot(k′′
n x0) − cot(k′′

n x0 + δn) = 2

k′′
n a

. (A8)

For n odd, the eigenfunctions are given by

ψ (↑↑)
n =

⎧⎪⎨
⎪⎩

Cn cos (k′′
n x − δn), −L/2 < x < −x0

Dn cos (k′′
n x), −x0 < x < x0

Cn cos (k′′
n x + δn), L/2 > x > x0

(A9)

with k′′
n the same as above. The quantization condition this

time takes the form

tan(k′′
n x0 + δn) − tan(k′′

n x0) = 2

k′′
n a

. (A10)

The eigenenergy is in both cases given by

E (↑↑)
n ≡ E ′′

n = h̄2k′′2
n

2m
, (A11)

and the coefficients Cn and Dn can be found by requiring
normalized states. It is worth noting that one may run into
numerical instabilities when solving for k′′

n and δn. We im-
plement some safety procedures to check the validity of our
solutions. The phase shift should never be higher than π , and
the magnitude of δn can oscillate but should be contained
within a decaying envelope function going to zero as n in-
creases. If these conditions are not satisfied for any given pair
δn and k′′

n , we find that rewriting the quantization conditions
may help in solving the equations.

APPENDIX B: COMPUTATIONAL DETAILS
FOR THE DECOHERENCE FUNCTIONS

In this section, we give some computational details for
evaluating Eq. (10).

For each temperature T , we need to determine the chemical
potential μ. We do this by solving the equation

trn̂ = Ns, (B1)

with Ns the number of particles in our gas. The trace is com-
puted over a large basis set. In our calculations, we used ≈104

basis states.
We go to the thermodynamic limit by increasing the num-

ber of particles in the gas Ns while keeping the density n̄ =
Ns/L fixed until convergence is reached. For the timescales
we are considering, we find that using Ns in the range of
500–1000 gives good convergence avoiding finite-size effects
in the time scale we are interested in.

We need to calculate the matrix elements of operators like

Â = 1 − n̂ + n̂eiĥ↑↓t/h̄e−iĥ↓↑t/h̄. (B2)

This matrix is in principle infinite-dimensional, but we can get
a good approximation by using a finite basis set of size N . We

determine N by requiring

∣∣ N∑
i=1

f (Ei ) − Ns

∣∣ < ε, (B3)

with f (E ) the Fermi-Dirac distribution of the unperturbed
gas. We find that using ε = 10−3 gives good convergence. In
Appendix A we calculated the eigenfunctions and energies
of the single-particle operators. We insert the resolution of
identity and get the matrix elements of the N × N matrix:

Anm = [1 − f (En)]δnm + f (En)
N ′∑

i=1

N ′∑
j=1

N ′′∑
k=1

× ei(E ′
i −E ′

j )t/h̄〈∗〉ψnψ
(↑↓)
i 〈∗〉ψ (↑↓)

i

× ψk〈∗〉ψkψ
(↓↑)
j 〈∗〉ψ (↓↑)

j ψm. (B4)

We have to fix the size of the perturbed basis set N ′. We do
this by the requirement of unitarity:

N ′∑
n=1

|〈∗〉ψmψ (↑↓)
n |2 > 1 − ε, (B5)

for any m � N . We then use this to determine the size of the
unperturbed basis set, and we also insert N ′′ by requiring

N ′′∑
n=1

|〈∗〉ψ (↑↓)
m ψn|2 > 1 − ε, (B6)

for any m � N ′. We find that using ε ≈ 10−4 yields excellent
convergence. In a completely analogous way, we can calculate
the other three decoherence functions.

APPENDIX C: CUMULANT EXPANSION FOR WEAK
COUPLING AND LOW TEMPERATURE

In this section, we derive the behavior of the decoherence
functions, both in the power-law and thermal regimes. We
explicitly go through the derivation for ν↑↓,↓↑(t ) and state the
results for the other three. They can be found in a completely
analogous way. Our results are valid in the weak-coupling
kF a � 1 and low-temperature T/TF � 1 regime. This calcu-
lation follows closely to the one discussed in the supplemental
material of Ref. [42].

The starting point of our derivation is the many-body ex-
pectation value of Eq. (8) of the main text which for the
decoherence function we consider reads

ν↑↓,↓↑(t ) = 〈eiĤ↑↓t/h̄e−iĤ↓↑t/h̄〉. (C1)

We might write the Hamiltonians appearing as Ĥσ = Ĥ0 + V̂σ

with

Ĥ0 =
∑

k

Ekc†
kck, (C2)

Ĥσ =
∑
n,m

V (σ )
nm c†

ncm, (C3)
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FIG. 6. The contour γ on which the time ordering needs to be
performed. In the time ordering, operators on the lower branch are
later than operators on the upper branch.

where c†
n creates a fermion in the state ψn given in Eq. (A2).

The interaction matrix V (σ )
nm has elements given by

V (σ )
nm =

ˆ L/2

−L/2
dxψn(x)λδ(x ± x0)ψm(x)

= 2λ

L
sin
(

knx0 ± π

2

)
sin
(

kmx0 ± π

2

)
, (C4)

where λ = −h̄2/ma, kn = nπ/L, and the plus (minus) sign is
valid for σ =↑↓ (↓↑).

To simplify notation we will from now denote ν↑↓,↓↑ =
|ν|eiφ . We can write this as a time-ordered exponential, which
can be expanded in terms of time-ordered cumulants [117]:

|ν|eiφ =
〈
T exp

[ ˆ
γ

dt ′ V̂ (t ′)
ih̄

]〉

≈ exp

[〈 ˆ
γ

dt ′ V̂ (t ′)
ih̄

〉
c

+ T
2

〈(ˆ
γ

dt ′ V̂ (t ′)
ih̄

)2〉
c

]
,

(C5)

where the symbol T denotes time ordering on the curve γ

shown in Fig. 6 such that operators on the branch t+ occur at
a later time than operators on the t− branch. The integration
is performed over this same curve. 〈•〉 denotes the thermal
expectation value with respect to the initial thermal state, and
〈•〉c is the corresponding cumulant. The operator V̂ (t ) in the
equation above takes the form

V̂ (t ) =
{

V̂↑↓(t ), t ∈ t−

V̂↓↑(t ), t ∈ t+
(C6)

on the two branches of the curve γ . The operators are written
in the interaction picture such that V̂σ (t ) = eiĤ0t/h̄V̂σ e−iĤ0t/h̄.
In the second line of Eq. (C5) we have neglected terms of
order O(V̂ 3).

By using the thermal expectation value 〈c†
ncm〉 = f (En)δnm,

with f (E ) being the Fermi-Dirac distribution, we find that the
first cumulant isˆ

γ

dt ′〈V̂ (t ′)〉c

=
ˆ t

0
dt ′ 〈V̂↑↓(t ′)〉c

ih̄
+
ˆ 0

t
dt ′ 〈V̂↓↑(t ′)〉c

ih̄

= t

ih̄

∑
n

f (En)
(
V (↑↓)

nn − V (↓↑)
nn

) = 0. (C7)

To capture the decay of the decoherence function we calculate
the second cumulant. We use the standard relation for Gaus-
sian fermionic states 〈c†

ncmc†
kcl〉c = f (En)[1 − f (Em)]δnlδmk

to get

〈V̂σ (t )V̂σ ′ (t ′)〉c

=
∑
n,m

V (σ )
nm V (σ ′ )

mn ei(En−Em )(t−t ′ )/h̄ f (En)[1 − f (Em)].

(C8)

The terms with n = m will contribute a term proportional to
t2, and will go to zero as L−1, and can be neglected in the
thermodynamic limit. We then use this result to compute the
second cumulant. After integrating over the contour γ , being
careful of the time ordering, we find that

−�(t ) ≡ −T
2

〈(ˆ
γ

dt ′ V̂ (t ′)
ih̄

)2〉
c

=
∑
n =m

f (En)[1 − f (Em)]
1 − cos[(En − Em)t/h̄]

(En − Em)2
V 2

nm,

(C9)

where we have defined Vnm = V (↑↓)
nm − V (↓↑)

nm . Note that
Eq. (C9) is a real number, so the decoherence function is real
at least to second order in V̂ . This is unique for the ν↑↓,↓↑, and
will not hold true for the other decoherence functions.

To simplify Eq. (C9), we introduce the spectral density

J (ω) = 1

h̄

∑
n,m

V 2
nm f (En)[1 − f (Em)]δ(h̄ω + En − Em)

= 1

h̄

ˆ ∞

0
dE f (E )[1 − f (E + h̄ω)]

×
∑
n =m

V 2
nmδ(E − En)δ(h̄ω + E − Em) (C10)

representing the coupling strength to particle-hole excitations
weighted by the finite temperature density of states. The de-
coherence rate then takes the form

�(t ) = −
 ∞

−∞
dω

1 − cos(ωt )

ω2
J (ω), (C11)

where
ffl

denotes the principal value integral excluding ω = 0.
To make further progress we take the continuum limit, intro-
ducing the s-wave density of states

Ds(E ) = 1

L

∑
n

δ(E − En) = 1

π h̄

√
m

2E
(C12)

valid when L → ∞. We replace Vnm by V (E ) by letting

kn → k(E ) =
√

2mE

h̄2 . (C13)

Doing this simplifies the spectral density to take the form

J (ω) = 2λ2

h̄

ˆ ∞

0
dE f (E )[1 − f (E + h̄ω)]

× Ds(E )Ds(E + h̄ω)g(E , ω) (C14)

where we have introduced the function g capturing the effect
of the impurities on the gas. We can write it as

g(E , ω) = 1 − cos[2k(E )x0] cos[2k(E + h̄ω)x0]. (C15)
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We are interested in low temperatures such that T � TF

and μ ≈ EF . For h̄ω � −EF , J (ω) is exponentially sup-
pressed. If we for a second ignore g(E , ω) in Eq. (C14),
we see that J (ω) ∼ √

ωτF for h̄ω � EF . Going back to
Eq. (C11), such contributions can be neglected in �(t ). Includ-
ing g(E , ω) will only make J (ω) grow slower as a function
of γ , and thus we can restrict ourselves to low frequen-
cies h̄|ω| � EF . In this regime, the function f (E )[1 − f (E +
h̄ω)] is sharply peaked around E = EF , and we may re-
place

√
E (E + h̄ω → √

EF (EF + h̄ω ≈ EF . In g(E , ω) we
make the replacement E → EF and make a series expansion
in h̄ω/EF in k(E + h̄ω). We also introduce the interaction
time τi = 2x0/vF as discussed in the main text to get the
expression

g(ω) = 1 − cos(2τi/τF ) cos(2τi/τF + τiω). (C16)

The remaining integral in Eq. (C14) can then be computed to
yield

J (ω) = 1
2αωg(ω)[1 + coth(h̄βω/2)], (C17)

which is valid for |ω| < �, where � ∼ EF /h̄ is a cutoff fre-
quency. Here, we have introduced the dimensionless coupling
strength α = (πkF a)−2.

Going back to Eq. (C11), we have to calculate the follow-
ing integral:

�(t ) = − α

2

 �

−�

dω
1 − cos ωt

ω
g(ω)[1 + coth(h̄βω/2)]

= − α

2

 ∞

−∞
dω

1 − cos ωt

ω
g(ω)[1 + coth(h̄βω/2)]

+ α

ˆ ∞

�

dω
1 − cos ωt

ω
g(ω), (C18)

where in the third line we have used that coth(h̄βω/2) ≈
sign(ω) for |ω| > �, which is valid as long as h̄β� � 1.
The two integrals in the second equality of Eq. (C18) can be
evaluated by writing the cosines as complex exponentials and
we end up with nine terms of the form

−α

2

 ∞

∞
dωeiyω[1 + coth(h̄βω/2)]/ω + α

ˆ ∞

�

dωeiyω/ω.

(C19)

For the first of these integrals, we extend ω to the complex
plane, and depending on the sign of y we close the contour in
either the upper or lower plane, being careful going around the
origin. We then employ the residue theorem, and end up with
a geometric series over the residues at the poles at ω = iωn

with ωn = 2nπ/h̄β the bosonic Matsubara frequencies. n runs
over n = ±1,±2, . . . where the +(−) sign is valid if y > 0
(y < 0) such that the integrand vanishes on the edge of the
contour.

The second integral in Eq. (C19) can be explicitly eval-
uated by adding a small imaginary part to y → y + iε
and taking the limit ε → 0. The integral will be propor-
tional to the incomplete gamma function �(0, iy). Com-
bining this we obtain the following expression for the

decoherence rate:

�(t ) = − 2α

[
ln

h̄�β

π
sinh

(
πt

h̄β

)
− Ci(�t ) + γE

]

− α cos2 2τi

τF
ln

(
1 − e− 2πτi

h̄β

)2

(
1 − e− 2π (t+τi )

h̄β

)(
1 − e− 2π |t−τi |

h̄β

)
+ α cos2 2τi

τF
{2Ci(τi�) − Ci[(t + τi )�]

− Ci(|t − τi|�)}

+ α cos
2τi

τF
sin

2τi

τF
{2Si(τi�) − Si[(t + τi )�]

− Si(|t − τi|�)}, (C20)

where Ci and Si denote the cosine and sine integrals, γE is the
Euler constant, and we have used the relation

eiθ�(0, ix) + e−iθ�(0,−ix)

= −2 cos θCi(x) − 2 sin θ [Si(x) − π/2]. (C21)

We are interested in how the decoherence behaves in time, so
all constant terms will be neglected. The terms proportional to
Ci(�t ), Ci[�(t + τi )], and Si[�(t + τi )] are oscillating, but
will quickly become negligible compared to the other terms.
The terms proportional to Ci(|t − τi|�) and Si(|t − τi|�) reg-
ulate the solution at t = τi. If these terms did not appear, the
decoherence function would go to zero at this point. We are
left with a decoherence function of the following form:

ν↑↓,↓↑(t ) ∝
[

h̄β

πτF
sinh

πt

h̄β

]−2α

×

⎡
⎢⎣

(
1 − e− 2πτi

h̄β

)2

(
1 − e− 2π (t+τi )

h̄β

)(
1 − e− 2π |t−τi |

h̄β

)
⎤
⎥⎦

−α cos2 2τi
τF

.

(C22)

Here, we got rid of the cutoff dependence by using that
(�/EF )−2α ≈ 1.

We find three regimes of the decoherence function. First,
if t � τi � h̄β, we have algebraic decoherence with an ex-
ponent 2α. This is the same as two independent impurities
decohering. If we have τi � t � h̄β the exponent changes
to −2α[1 − cos(4kF x0)]. Thus the bath-induced interaction
leads to suppressed decoherence. This effect is known as sub-
decoherence [94,95], and will be discussed more in the next
paragraph. As the impurities are only able to produce low-
energy, long-wavelength excitations, the decoherence slows
down. Finally, for t � h̄β the decoherence is exponential:
ν↑↓,↓↑(t ) ∝ e−γ t with γ = 2απ

h̄β
.

To see why the subdecoherence occurs for ν↑↓,↓↑ it is
useful to rewrite the interaction Hamiltonian in the Bell basis.
It can easily be checked that the interaction Hamiltonian can
be written as

ĤI

λ
= 1

2
Î ⊗ (n̂1 + n̂2) + 1

2
(|+〉〈−| + H.c.) ⊗ (n̂1 + n̂2)

+ 1

2
(|�+〉〈�−| + H.c.) ⊗ (n̂1 − n̂2), (C23)
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where n̂1 and n̂2 are density operators for the gas at posi-
tions ±x0. It is clear that decoherence functions like ν↑↓,↓↑
couple to density differences in the gas. At long times,
only low-frequency excitations are relevant for the decoher-
ence function: in particular, at time t only excitations with
frequencies ω � 1/t contribute significantly. Low frequency
generally entails long wavelength, and density excitations
with wavelengths much greater than the impurity separation
are not able to create an appreciable density difference at the
positions of the impurities. In particular, excitations close to
the Fermi surface have a wavelength λ ≈ 2πvF /ω, and there-
fore the decoherence signal slows down significantly when
t � τi after which time all relevant wavelengths exceed �x.

Following the approach outlined in this section, we can
also compute the behavior of the other decoherence functions.
Here, we just state the results. For the decoherence function
ν↑↓,↓↓, the behavior is that of a single qubit in a thermal
bath. For short times t � h̄β we have algebraic decay with
exponent α, while for long times t � h̄β we have exponential
decay ∼e−απt/h̄β .

For the decoherence function ν↑↑,↓↓, we have the same
behavior as ν↑↓,↓↑ for short times, that is, algebraic decay with
exponent 2α, but for the intermediate regime, τi � t � h̄β

the exponent changes to −2α[1 + cos(4kF x0)]. As can be
seen from Eq. (C23), this decoherence function couples to
low-frequency excitations, leading to the phenomena of su-
perdecoherence. Finally, in the limit t � h̄β the decoherence
is exponential: ∼e−2απt/h̄β .

Finally, for ν↑↑,↑↓, the low-T weak-coupling expansion
breaks down. The derivation of the cumulant expansion of
ν↑↑,↑↓ will be almost identical to that given above, the only
change being that V̂ (↓↑) → V̂ (↑↑), where

V̂ (↑↑)
mn = V̂ (↑↓)

mn + V̂ (↓↑)
mn (C24)

are the matrix elements of the interaction Hamiltonian when
both impurities are in the state |↑〉. Looking at Eq. (C9),
this means that the Vnm that appears will change into Vnm =
V (↑↓)

nm − V (↑↑)
nm = −V (↓↑)

mn . This in turn means that the effect
of the first impurity interacting with the gas cancels out, and
we end up with essentially the same behavior for ν↑↑,↑↓ as
for ν↑↓,↓↓, i.e., a single impurity interacting with a bath of
fermions. In order to capture the slowing down of the decoher-
ence observed in Fig. 2 of the main text, we need to consider
higher-order cumulants.

APPENDIX D: QUANTUM CORRELATIONS

In this section, we investigate the nature of the correlations
emerging between the two impurities due to the bath-mediated
interactions between them.

The first and most obvious check for quantum correlations
is to look for entanglement between the impurities. It is well
known that for a two-qubit system the Peres-Horodecki cri-
terion [118,119] is necessary and sufficient for a state to be
separable. The criterion states that the partial transpose of the
density matrix must be positive for the state to be separable.
We find that our two-qubit state remains separable for all times
and for all parameters.

However, quantum correlations may exist beyond entan-
glement (see e.g., Ref. [104] for a comprehensive review).
It is well established in the literature that the total amount
of correlations between subsystems 1 and 2 is given by the
mutual information [Eq. (34) in the main text]. One mea-
sure of genuine quantum correlation is the quantum discord
[102,103], defined as the difference between mutual informa-
tion and classical correlations:

D(1 : 2) = I (1 : 2) − C(1 : 2). (D1)

This measure is in general not symmetric under the permu-
tation of the subsystems; however, in our case it is. We can
also think of the quantum discord as the amount of mutual
information of subsystems 1 and 2 that cannot be extracted
by local measurements on one of the subsystems. Thus, it
becomes clear that the classical correlations can be defined as
the maximum change in entropy of subsystem 1 upon a local
projective measurement {�̂2

i } on subsystem 2,

C(1 : 2) = S(ρ̂1) − min
{�̂2

i }

∑
i

piS(ρ̂1|2=i ), (D2)

with {pi, ρ̂1|2=i} being the postmeasurement ensemble:

pi = tr
[(

I ⊗ �̂2
i

)
ρ̂
(
I ⊗ �̂2

i

)†]
, (D3)

ρ̂1|2=i =
(
I ⊗ �̂2

i

)
ρ̂
(
I ⊗ �̂2

i

)†

pi
. (D4)

We can immediately see that the quantum discord is in general
difficult to calculate due to the optimization required over
the local projection operator. Luckily, for a two-qubit system,
analytical results have been obtained. In order to compute
the quantum discord we follow the procedure outlined in
Ref. [120], where the optimization has been replaced with
solving transcendental equations involving the elements of the
density matrix of the system, i.e., the decoherence functions
calculated in the main text. The equations can easily be im-
plemented on a computer, but are quite involved. We refer the
interested reader to Ref. [120] for further details on how to
calculate the quantum discord.
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