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Supersolids are a phase of matter exhibiting both superfluidity and a periodic density modulation typical of
crystals. When formed via quantum phase transition from a superfluid, they require a formation time before
their density pattern develops. In this paper protocols and schemes are proposed for experimental applications,
building on earlier descriptions of the role roton instability plays in the supersolid formation process and the
associated formation time. In particular, two protocols are put forward to shorten the formation time and lessen
the excitation produced when crossing the phase transition. As a case study of the impact that mechanical
fluctuations (noise) can have on the phase transition when conducting an experiment, the impact of a mechanical
kick before the transition is also investigated. The proposed schemes achieve a shortening of the formation
process for comparable levels of excitation, in the framework of extended Gross-Pitaevskii theory.

DOI: 10.1103/PhysRevA.109.023308

I. INTRODUCTION

In contrast to other Bose-Einstein condensates (BECs) in
which particles interact only via short-range interactions char-
acterized by the s-wave scattering length, ultracold dipolar
gases also exhibit long-range, anisotropic interactions (see,
e.g., Refs. [1,2]) due to their enormous electric or magnetic
momenta. A consequence of the dipole-dipole interaction is
the so-called roton mode, a local minimum in the dispersion
relation at nonzero momentum [3–8]. Depending on the in-
terplay between the density of the gas, its geometry, and the
strength of the interactions the roton mode may turn unstable
[9,10] and ignite behaviors such as droplet formation [11],
supersolids [12–14], and other phenomena [15,16].

The current paper focuses on supersolids, which combine
both a superfluid nature, linked with the phase coherence
absent in the droplet crystals [17,18], and a spatial modula-
tion breaking the translational symmetry typical of cristaline
structures [19–22]. Since the first proposals of supersolidity
in the past century for solid helium [23,24] did not achieve
a conclusive answer [25], the community has recently drawn
its attention towards dipolar gases as a framework to study
supersolidity [26–39], which has been experimentally proved
successful [40–53]. In dipolar quantum gases the supersolid
phase of matter may be reached both by a classical transition
from a noncondensed gas at finite temperature to a super-
solid [50] and by a quantum transition from an unmodulated
superfluid to a supersolid, whose character has been thor-
oughly researched in both theoretical and experimental works
[6,12,12,13,47,54–57], finding that the character of the transi-
tion can vary from continuous to discontinuous by tuning the
transversal trapping frequency [36,51].

The aforementioned phase transition is between an ordered
phase (supersolid) and a disordered one (superfluid), and as
such it exhibits clearly distinct behavior when the transition

is crossed towards the superfluid or towards the supersolid.
Namely, one can relax the supersolid towards the superfluid
almost adiabatically with ease, while on the other hand, the
supersolid requires a minimum formation time to develop its
characteristic density pattern [13,36,46,51].

This paper presents proposals to use the special character-
istics of the supersolid formation process to our advantage.
In an experiment we might desire to speed up the formation
process and/or minimize the produced excitation. This may
be achieved by altering the evolution of the roton population
with a time-dependent scattering length. In particular, acceler-
ating the formation time has a special interest, as it may assist
in reducing the effect of three-body losses the condensate
may suffer along the transition, effectively extending its useful
lifetime.

Although these optimization targets could also be ap-
proached within the framework of optimal control theory (see,
e.g., [58,59]), this work does not aim to provide a general
characterization of optimization techniques, rather focusing
our efforts on providing experimentally useful and theoret-
ically backed procedures. The shortcut approach to control
even though not always optimal has proven effective, and we
use its general point of view [60,61].

We propose a method to reduce the total formation time of
the supersolid (hereafter called the bang-bang method) as well
as a method with which the phase transition can be crossed
with small excitation without requiring infeasible formation
times (hereafter called the parachute-jump method). Another
proposal arising from this perspective, the kick-bang method,
can provide insight into mechanical noise. Furthermore, it
constitutes a proof of principle of how the transition may be
affected by perturbation arising from sources such as small
vibrations of the traps due to noise in the experimental setup
or impacts the condensate may suffer due to noncondensed
particles.
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The paper is organized as follows. In Sec. II an overview
of the system under consideration is provided alongside a
brief summary of the relevant formulas defining the extended
Gross-Pitaevskii theory for dipolar condensates. In Sec. III we
present a short review of roton instability emphasizing those
aspects relevant to our study [28] and propose the bang-bang
method. Section IV presents the parachute-jump proposal. In
Sec. V one will find how kicking the condensate before the
crossing may also reduce the total formation time. In Sec. VI
the effect of three-body losses in the proposed schemes is dis-
cussed. To recap, in Sec. VII the main results are summarized.

II. SYSTEM

Throughout this paper a single system has been chosen
to be considered, for the sake of simplicity, and despite the
fact that the proposals are not specific for such a system.
We study a dipolar Bose-Einstein condensate without thermal
fluctuations (T = 0) trapped in a harmonic trap along the three
spatial directions. In particular, we chose an experimental
setup previously used by the Dy lab in Pisa [51].

The effective dimensionality of the condensate is directly
related to the trap potential, featuring quasi-1D and quasi-
2D scenarios (see Refs. [36,51,62]). However, dimensionality
does not play an important role in the proposals put forward in
this paper, and thus only the quasi-1D geometry is considered
for the sake of briefness.

The system is made up of N = 3 × 104 magnetic atoms of
162Dy, which have a tunable s-wave scattering length as and
dipolar length add = 130 a0 (where a0 is the Bohr radius).
These atoms are trapped by a harmonic potential with frequen-
cies of (ωx, ωy, ωz ) = 2π × (15, 101, 94) Hz. It is noteworthy
that the parameters under consideration were selected based
on their experimental feasibility for a specific case. However,
it is imperative to bear in mind that the analysis presented
herein is conceptually generic and extendable to comparable
situations.

This system can be described in terms of an extended
Gross-Pitaevskii (GP) theory including dipolar interactions
[63] and the Lee-Huang-Yang (LHY) correction accounting
for quantum fluctuations, within the local density approx-
imation [64–66]. The energy functional can be written as
E = EGP + Edd + ELHY with

EGP =
∫ [

h̄2

2m
|∇ψ (r)|2 + V (r)n(r) + g

2
n2(r)

]
dr,

Edd = Cdd

2

∫∫
n(r)Vdd(r − r′)n(r′) dr dr′,

ELHY = 2

5
γLHY

∫
n5/2(r) dr, (1)

where EGP = Ek + Eho + Eint is the standard GP energy func-
tional including the kinetic, potential, and contact interaction
terms, V (r) = (m/2)

∑
α=x,y,z ω2

αr2
α is the harmonic trapping

potential, n(r) = N |ψ (r)|2 represents the condensate density
(while ψ is normalized to unity), g = 4π h̄2as/m is the contact
interaction strength, Vdd(r) = (1 − 3 cos2 θ )/(4πr3) is the in-
terparticle dipole-dipole potential, Cdd ≡ μ0μ

2 is its strength,
μ is the modulus of the dipole moment μ, r is the distance be-

tween the dipoles, and θ is the angle between the vector r and
the dipole axis, cos θ = μ · r/(μr). As in Refs. [36,51,62], the
magnetic dipoles are considered to be aligned along the z di-
rection by a magnetic field B. The LHY coefficient is γLHY =
128

√
π h̄2a5/2

s /(3m)(1 + 3ε2
dd/2), with εdd = μ0μ

2N/(3g).
The paper considers a phase transition between two states

of matter, the superfluid (not modulated) and the supersolid
(modulated), which have been proven to be able to exist in
the system just described [36,51,62]. Tuning as enables one to
perform a second-order transition from one phase to the other,
finding the transition point at ac

s � 94.4a0 [36,51,62]. Those
are not the only phases available within the parameter space
available to the system, for instance, at lower as values one
would encounter the droplet crystal regime where the phase
coherence between droplets is lost, out of the scope of this
work.

We present three different schemes, named bang-bang,
parachute-jump, and kick-bang, respectively. In order to avoid
unnecessary complications and facilitate comparisons, in all
three schemes we shall start at the same point above the tran-
sition, as = ac

s + 1.5 a0. The bang-bang method is presented
with the main objective of shortening the total formation time,
which is relevant mainly close to the transition point, where
the formation is slower. Thus, a convenient choice is to set
a supersolid with aobj

s close to ac
s as the end goal for the

bang-bang method. The end goal for the kick-bang method
is chosen to be the same aobj

s to avoid unnecessary complica-
tions.

The parachute-jump scheme seeks to reduce excitation,
which is more relevant once the supersolid gets far from the
transition point where the excitation generated by the single-
quench is greater. Thus the end goal of such an approach is
to finalize the process with a supersolid at a scattering length
await

s smaller than ac
s . Along the paper await

s is set to be both
the targeted scattering length for the parachute-jump scheme
and the waiting scattering length value of the bang-bang
scheme (see Sec. III), just to avoid introducing unnecessary
new parameters. Note, however, that they are completely in-
dependent.

The bang-bang and parachute-jump schemes are fairly gen-
eral and likely to be usefully implemented in the short term,
while the kick-bang scheme is presented here mainly as a
proof of principle and will require further elaboration. The
kick-bang method is also put forward here to highlight the
need for a more in-depth investigation of the role of mechani-
cal noise in the supersolid formation time.

III. BANG-BANG APPROACH TO ACCELERATE
THE SUPERSOLID FORMATION

When the scattering length of a superfluid is reduced below
the critical value ac

s the system starts to dynamically mute into
a supersolid; nevertheless, it requires a minimum time before
the density turns modulated and breaks the translational sym-
metry [13,36,62] We refer to the time between the crossing of
the transition point and the appearance of a stable modulated
density pattern as “formation time of the supersolid” or τSS.
The current understanding of the supersolid formation process
in the superfluid-supersolid transition indicates that it is a
consequence of the roton instability. The excitation spectrum
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of a dipolar Bose gas in a quasi-1D geometry [28],

h̄ωk = ±
√√√√ h̄2k2

2m

(
h̄2k2

2m
+ 2n0Ṽ (k) + 3γ

(1D)
LHY n3/2

0

)
, (2)

where Ṽ (k) denotes the total interparticle interaction po-
tential in momentum space, exhibits (for some ranges of
scattering length) a new local minimum around a finite mo-
mentum called roton momentum, krot (see, e.g., [7]). When
the scattering length is reduced below a critical value ac

s the
dipole-dipole interaction overcomes the repulsive contact in-
teraction and Eq. (2) becomes imaginary for some momenta
around krot, i.e., some momentum states become unstable and
experience a population growth. The supersolid is formed
when the roton momentum state is macroscopically occupied,
breaking the translational symmetry of the condensate by a
close to sinusoidal pattern, whose wavelength is associated
with the roton mode, λ = 2π/krot (see, e.g., [6,12,14,42,45]).

Both experimental and theoretical works [6,14,28,62] have
shown that the population increase of the roton mode is ex-
ponential in the initial stages of the phase transition, slowing
down once the modulation is formed and quantum fluctuations
stabilize the system. To study the speed of the formation one
can ignore other unstable momenta and consider only the
roton momentum, related to the highest value of |Im[ωk]|,
which corresponds to the momentum state whose population
grows the fastest. The imaginary part of the roton frequency
defines a timescale τR(as) decreasing with lowering scattering
lengths, which has been found to be proportional to the total
formation time τSS [62].

Now suppose we are interested in obtaining a supersolid
with scattering an objective length aobj

s below, but close to,
the critical value ac

s , which would need a long formation
time since close to the transition point the imaginary part of
ωk is small. This may be interesting, for instance, to study
supersolids with weak spatial modulation.

Drawing from current knowledge about the formation
process one can propose the following “shortcut” to the su-
persolid formation: The superfluid is quenched to a scattering
length await

s smaller than the target aobj
s , and kept “waiting” at

that value, await
s , almost until the formation time required with

such scattering length, twait � τSS(await
s ). After an evolution of

twait the scattering length is quenched again to the target value
(see the cyan line in Fig. 1).

In this scheme, the total formation time needed to form the
supersolid in the condensate can be divided between twait, the
time in which the system is with await

s , and tobj, the time in
which the system is with aobj

s . The former of both times, twait,
is much larger than the latter, tobj, if await

s is close to aobj
s (see

Fig. 5 below). At the time in which the scattering length is
suddenly changed to the desired value aobj

s , when τ = twait, the
roton mode is populated enough so as to be immediately no-
ticeable. In the rest of the evolution period, twait < τ < twait +
tobj, the already noticeable modulation grows until stabilizing
around an equilibrium value. This “shortcut,” called the bang-
bang method because it is implemented by two quenches, al-
lows us to create a supersolid with aobj

s , but waiting only close
to the duration of the formation time characteristic of await

s .

FIG. 1. Scheme of the presented procedures alongside single
quenches for comparison. In solid cyan the bang-bang method,
which goes to await

s until almost the formation time of the supersolid
τSS (await

s ) to then get back to aobj
s ; �τ indicates how much the super-

solid formation is shortened. In solid magenta the parachute-jump
method; after forming the supersolid by the bang-bang method, the
scattering length is linearly reduced back toward await

s . Note that the
end of the ramp for the parachute-jump scheme does not necessarily
coincide with τSS (aobj

s ). In dashed blue and red a quench directly from
the superfluid to aobj

s and await
s respectively.

Although the roton momentum slightly changes at varying
the scattering length, if |aobj

s − await
s | is around a couple of

a0 the shift should be small enough so as to ensure that
after the second quench the characteristic roton krot(a

obj
s ) is

also sufficiently populated. The effect of the changing roton
momentum and its relation to await

s is discussed at the end of
the section by using the results of the quasi-1D infinite model
alongside results from 3D simulations.

After one unstable momentum state starts to be macro-
scopically occupied the system leaves the linear excitation
regime and the computed Bogoliubov excitation spectrum of
Eq. (2) breaks down [the approximation n(x) ≈ n0 does not
hold anymore] [14,28]. As a consequence, the roton momen-
tum driving the modulation instability is no longer guaranteed
to be the characteristic momentum of the system, as neither
is, for instance, the wavelength of the ground state; thus, the
wavelength of the supersolid may be slightly shifted from the
roton one. This is manifested by the newly created maxima
moving from their creation positions, associated with the ro-
ton, and changing the relative distances (see Sec. IV). It is
also visible in the momentum density distribution after the
formation of the supersolid pattern (see, e.g., [62]).

Figure 2 shows an example of the effectiveness of the
bang-bang approach to shorten the formation time. Following
[62] the inverse participation ratio (IPR) is used as a proxy
for crystallization. The IPR is a measure of how localized a
system is [67–69], and in the context of superfluid-supersolid
phase transition how localized it is spatially. Although gen-
eralizations exist, a simple definition of IPR suffices for this
transition, namely, the integral over all space of probability
density (|ψ |2 instead of N |ψ |2) square,

∫ |ψ |4 dV [70].
The validity of the IPR as an indicator of the supersolid

structure resides in the significantly different localization
levels of superfluids and supersolids. The latter are signifi-
cantly more localized as the particles pack closely around the
separated clusters instead of spreading out. IPR also shows
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FIG. 2. Inverse participation ratio (with respect to the initial
value) along the time evolution, where τ is the time elapsed after
the first quench (equivalently, the time elapsed in the supersolid
regime). The plots follow the color scheme shown in the key box
above: Single quench scheme for final scattering value ac

s − 3.5 a0

(“Big Quench”) and ac
s − 1.0 a0 (“Small Quench”) and kick-bang

(Sec. V), bang-bang (see Sec. III), and parachute-jump (see Sec. IV)
schemes. The 20 ms before the first quench in the case of the
kick-bang scheme, which is left to evolve after the kick some time
before quenching, is not shown. The second quench for the bang-
bang method occurs at τ = 20 ms, denoted by a color change in the
background (from gray to white). The horizontal lines at the right
show the IPR for the ground-state configurations at ac

s − 3.5 a0 and
ac

s − 1.0 a0. Note that for τ � 20 ms the bang-bang and kick-bang
methods indicate supersolids at ac

s − 1.0 a0, while the magenta one
changes the scattering length gradually between ac

s − 1.0 a0 (at 20
ms) and ac

s − 3.5 a0 after the initial “solidification.”

information about dynamical excitations of the system that
localize or delocalize it. To extract the supersolid formation
time from simulation data we follow the criterion of Ref. [62]
for which the time until the first local maximum of IPR after
the exponential increase is used. See [67] for another example
of IPR in the context of phase transitions.

Dark-red and blue solid lines in Fig. 2 represent the evo-
lution after a single quench to ac

s − 3.5 a0 and ac
s − 1.0 a0,

respectively, while the dashed cyan line is the result of the
bang-bang scheme with await

s = ac
s − 3.5 a0 and aobj

s = ac
s −

1.0 a0. A clear shortening of the formation time is observed, as
the total formation time is shorter in the bang-bang approach
than in the simple quench approach by a factor of around 2
(around 20 ms instead of around 50 ms).

Energywise, as long as no dissipation methods are present,
the bang-bang scheme is likely to get the system slightly more
excited than with a single quench. This happens because the
energy change of the system after a quench is [36]

�E ≈ 2π h̄2

m
�asE int[n], (3)

where E int[n] = ∫ |ψ |4 dV = IPR. Note that only when as

changes can the system change its energy; thus, the energy
is constant between the two quenches. It is straightforward to
see that the bang-bang scheme has an excitation of

aobj
s − await

s

m/2π h̄2 (E int[n(twait )] − E int[n(0)]), (4)

FIG. 3. Behavior of the energy normalized respect to the value at
the transition point, (E [as] − E [ac

s ])/h (where E [ac
s ]/h corresponds

to 432.2 Hz) for the ground state (black stars), a single quench to
aobj

s , bang-bang scheme, and the kick-bang scheme following the
color classification of Fig. 2, where points have been introduced
as an indication of the endpoints. The inset shows a zoom around
the aobj

s to make the energy difference of the energies after kick-
bang, bang-bang, and single quench schemes clear. Only the last
step of the parachute-jump scheme (the reduction of the scattering
length to ac

s − 3.5 a0 with a constant speed das/dt = 0.04 a0/ms)
is shown, with the color scheme of Fig. 2. This is done because the
previous step is to apply the bang-bang method, already shown. It is
apparent that the bang-bang method creates an “excess excitation”
as its endpoint, the cyan point, is higher than the endpoint of a
single quench, the blue point. Meanwhile, the transition performed
after a kick exhibits a sudden high excitation due to the kick which
is not able to dissipate afterward, ending the process with higher
excitation (see the location of the dark-green point with respect to the
others). Regarding the parachute-jump scheme there is a significant
energy reduction highlighted with the double-headed dark-orange
arrow between the energy after a single quench (red dot) and after
the parachute-jump scheme (dark-violet dot).

additional to the excitation a single quench scheme would
produce. The simple infinite quasi-1D models predict only the
growth of the roton mode [14,28], which would give near-zero
excess excitation as long as the second quench is applied
before the macroscopical occupation of krot. It is convenient
to perform the second quench a “safety time” �t—close to
the time interval between when the exponential growth of the
roton population starts to be noticeable in the IPR and the
end of such growth, which is less or equal to 3 ms for all
the performed simulations—before the formation time at the
waiting scattering length value. This is convenient to avoid
high excitation because otherwise, one quenches the system
with already formed [twait = τSS(await

s )] or almost formed su-
persolid structure. Thus, to avoid the risk of high excitation
twait = τSS(await

s ) − �t .
However, a finite 3D system also exhibits dynamical re-

sponses to the quenches other than the roton mode [36], which
can be responsible for a nonzero excess excitation [71]. We
depict in Fig. 3 the behavior of the energy and in Fig. 4 the
density distributions in selected times when this scheme—and
the schemes of Secs. IV and V—is applied.

The scheme’s efficacy resides in two properties: (1) that
the growth of the roton mode is faster with smaller scattering
length values and (2) that the momentum states populated dur-
ing the waiting time are close to (overlap significantly with)
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FIG. 4. Comparison of the density configurations when applying a single quench (left) and the proposed shortcut schemes (center and
right) for τ = 0 ms (a), (d), and (g), τ = 20 ms (b), (e), and (h), τ = 40 ms (c), (f), and (i). Note that for the kick-bang method τ = 0 ms
represent 20 ms after the kick. The color scheme is the same for all figures as well as Fig. 7 below.

the unstable momenta at the desired scattering length. Notice
that there is no need for the waiting configuration to be inside
the supersolid regime; one may, for instance, implement it
with await

s , which would not support a supersolid, namely, if
we lower further the scattering length we would find ourselves
in the droplet crystal regime, where the phase coherence and
superfluidity are lost.

One could be interested in optimizing the formation pro-
cess within the aforementioned limitations. To do this one
must take into account that to each await

s corresponds a char-
acteristic roton momentum krot(await

s ) given by the maximum
instability in Eq. (2), which is related to the formation time of
the supersolid [62]. When the system “waits” in await

s not only
the roton but also close momenta get unstable and grow expo-
nentially, among which we are interested in the characteristic
momentum of the desired supersolid, krot(a

obj
s ).

As previously studied (see [62]) the supersolid formation
time for a given scattering length is τSS(as) = ατR(as) where
α is a numerical constant dependent on geometry and initial
momentum distribution (estimated as 6.5 for this system) and

τR(as) = 1

Maxk[|Im[ωk (as)]|] (5)

is the inverse frequency of the most unstable mode given by
Eq. (2). Since the evolution of the roton and the other unstable
momentum states is exponential, the population growth of
each mode will be given by

Pk (τSS)/Pk (0) = exp[2τSS(as)/τk (as)], (6)

where τk (as) is the inverse of the imaginary part of the fre-
quency k at the given scattering length and the 2 factor arises
from the population being the square of the module. Here-
inafter momenta corresponding to rotons for aobj

s and await
s are

denoted with R(obj) and R(wait), respectively, instead of a
general k. Therefore, after waiting for τSS(await

s ) the popula-
tion growth of the objective roton will have been dictated by
τR(obj)(await

s ) > τR(obj)(a
obj
s ).

The total formation time of the bang-bang method can
be divided in the supersolid formation time for the waiting
scattering length [twait � τSS(await

s )] and the time it inhabits
in aobj

s until the formation ends (tobj). Considering the upper
bound for twait and the exponential growth of the momentum

states it follows that

ατR(wait)
(
await

s

)
τR(obj)

(
await

s

) + tobj

τR(obj)
(
aobj

s
) = ατR(obj)

(
aobj

s

)
, (7)

and thus, the lower bound for the total formation time of the
bang-bang scheme, τBB

SS , is given by

τBB
SS

α
= τR(wait)

(
await

s

) + τR(obj)
(
aobj

s
)

τR(obj)
(
await

s

)
×[

τR(obj)
(
await

s

) − τR(wait)
(
await

s

)]
, (8)

which may increase when reducing twait.
Using the quasi-1D model used in [28,62] one sees that

although the first term of Eq. (8) decreases when lowering
await

s , the second one increases [72]. The total formation time
decreases at the beginning (see Fig. 5) to later slow down
when the second term becomes more relevant and compen-
sates for the reduction of the first one.

The time inhabiting as = await
s is limited by τSS(await

s ), the
formation time of the supersolid at that scattering length. This

FIG. 5. τBB
SS (solid blue) and the formation time’s term given by

the time spent in await
s (dashed red), predicted with the quasi-1D

model used in [28,62] with aobj
s = ac

s − 1.0a0 just as for the shown
simulations. Points indicate simulation results for the total time of the
bang-bang method, where the second bang was performed a safety
time (of 3 ms) before the formation times τSS(await

s ). The inset shows,
in logarithmic scale, the same information together with the time
required in aobj

s for the formation to be completed according to the
second term of Eq. (8) (dotted-dashed green).

023308-5



AITOR ALAÑA PHYSICAL REVIEW A 109, 023308 (2024)

is so because the second quench must be performed before
allowing the system to develop the supersolid structure, to
avoid unnecessary excitation [see Eq. (4)]. When await

s and
aobj

s are not too different both roton modes grow at a simi-
lar pace, and thus after τSS(await

s ) both rotons are populated
enough. However, when await

s � aobj
s both rotons develop at

different pace, inducing a nonideal population of R(aobj
s ) after

the waiting time, which must be compensated by time waiting
in as = aobj

s .
The improvement one gets from reducing await

s diminishes
gradually. Thus, it is convenient to keep the values below but
relatively close to aobj

s as done in the examples provided in
this paper. Although there is nothing preventing us from de-
creasing as to very low values to get the extra reduction in the
formation time, this would generate more excitations, which
may not be desirable. Indeed, performed simulations show
that it gets more and more difficult to apply the scheme for
lower as values, since the collective oscillations get stronger
because of the high excitation [see Eq. (4)].

IV. THE PARACHUTE-JUMP APPROACH
TO EXCITATION REDUCTION

Shortening the supersolid formation time is a relevant topic
for experimental realizations of supersolids and possible ap-
plications. This is also the case for the reduction of excitation
created when crossing the phase transition, as it may assist
in reducing undesired effects and enable the study of subtle
phenomena that could be unobservable for excited states.
Adiabatically crossing the phase transition from superfluid to
supersolid requires really slow scattering change rates so as
to allow the system to create a supersolid pattern even for
as ≈ ac

s , which may not be feasible due to (1) experimental
impossibility of a slow enough ramp speed or (2) the length
such a ramp would require to be longer than the lifespan of
the condensate.

An alternative way, as we propose here, is to create
a close-to-transition supersolid by the bang-bang shortcut
(see Sec. III), and afterward to carry it towards the de-
sired supersolid state with a finite ramp velocity. The name
“parachute-jump” makes reference to the initial bang-bang
shortcut, the “jump,” and the slow as reduction afterwards, the
“parachute.”

The initial supersolid formation carries an a priori unnec-
essary excitation [see Eq. (4)]. However, after the end of the
bang-bang protocol, the translational symmetry of the super-
fluid is already broken and the supersolid can continuously
morph, decreasing the energy through the ramp. Thus, the
scheme works by compensating the excitation created by the
bang-bang method with a subsequent “adiabatic” ramp.

Figure 3 shows the behavior of the energy along the
protocol. The cyan dashed-dotted line is the first part, the
bang-bang method, and the magenta solid one the following
“parachute.” It is apparent that for das/dt = 0.04 a0/ms the
final energy is reduced below the single-quench approach. The
chosen speed is just an example to show the ideal behavior of
the supersolid under the scheme, while for each experimen-
tal application, one should find the optimal speed (naturally,

(a)

(b)

FIG. 6. Parachute-jump procedure for different speeds in the
last ramp, namely, v = ∞ or quench (dark orange), v = 1 a0/ms
(orange), v = 0.5 a0/ms (magenta), v = 0.1 a0/ms (purple), v =
0.05 a0/ms (dark violet). (a) Energy difference respect to a single
quench (�Energy) vs the time spent in the last ramp (�t) in loga-
rithmic scale. (b) Energy plot for the initial bang-bang method (color
scheme of Figs. 2 and 3) and different ramps. The bang-bang method
applied in all cases is the same, shown also in Figs. 2 and 3, and the
ramps are initiated 3 ms after the second quench.

slower changes allow the system to adapt better). See Fig. 6
for examples of other ramp speeds.

In experimental realizations of BECs dissipative mecha-
nisms may exist which reduce the energy of the system over
time. In such cases, the excitation level of a condensate during
a ramp would be dependent both on the speed of the ramp
(how adiabatic it is) and on the strength of the dissipative
phenomena. If one ignores the dissipation when performing
numerical simulations—as may be done, e.g., to have a clearer
picture of the underlaying mechanisms or for a lack of knowl-
edge of the dissipative mechanism of the system—the ramp
would need to excite the system less and be more adiabatic
(slow) in order to render a similar excitation level as the
experiment. For instance, in [51] they found that for their
specific realization (which is the one featured in this paper)
the measured excitation levels corresponded well with the
simulations of slower ramps, which were done disregarding
dissipative phenomena. Using slower ramps to simulate dissi-
pation may be more problematic if the ramp crosses a phase
transition [73].
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FIG. 7. Comparison of the density configurations when applying a single quench (left), the parachute-jump protocol (center), and the
ground-state configuration for as of the corresponding parachute-jump image (right). Panels (a)–(c) and (d)–(e) show the density distribution
after the quench at τ = 0, τ = 20 ms, and τ = 85 ms of the single quench and the parachute-jump methods, respectively. Panels (g)–(i) show
the ground-state density distribution at as = ac

s + 1.5 a0, as = ac
s − 1.0 a0, and as = ac

s − 3.5 a0, which correspond to the as values the system
has in panels (d), (e), and (f). The color distribution is the one used in Fig. 4 for all panels, for a better comparison.

In Fig. 7 the density distributions along the parachute-
jump scheme is compared both to the single quench approach
and the ground state. By comparing the initial phase of the
supersolid formation—Figs. 7(b) and 7(e)—with the corre-
sponding ground state in Fig. 7(h) it is apparent that the
distance between the maxima is longer for the ground state,
i.e., the characteristic momentum of the supersolid is lower
than the krot of the superfluid. The maxima in both the single
quench and the parachute-jump protocol tend to separate in
the evolution, as indicated by Figs. 7(c) and 7(f).

The behavior of the IPR along the scheme (see magenta
double dotted dashed line in Fig. 2) shows that not only
the collective oscillations are less prevalent than with a sin-
gle quench—the IPR oscillations have a significantly smaller
amplitude—but also that the finale IPR value is really close
to the one of the ground state contrary to what happens after
a single quench. Figures 7(c), 7(f), and 7(i) also confirm the
higher resemblance to the ground state.

Regarding the design of this scheme for a particular case
one must optimize the first step, the bang-bang method (see
discussion at the end of Sec. III). In addition, there is a tradeoff
with the speed of the linear ramp reducing the scattering
length. Slower ramps would render better energy reduction
(the aim of the proposal), but they come at the expense of
higher atom loss. Since one could also see an energy reduction
when instead of a linear ramp a quench is used, one has the ca-
pability to choose the optimal speed for the given experiment.
Find in Fig. 6 simulation result for parachute jumps using
different speeds. It is also convenient to keep in mind that
aobj

s < ac
s must be chosen far from the desired final scattering

value since the energy reduction is greater when aobj
s is further

from the final value (see lines in Fig. 6).

V. KICK-BASED PRESOLIDIFICATION
(KICK-BANG APPROACH)

The philosophy behind the bang-bang method is to in-
crease the spontaneous formation rate of the roton by creating
favorable conditions (see Sec. III). An alternative path is to in-
duce an excitation of the system before crossing the transition.
The idea is to mechanically “kick” the system so as to excite

it in such a way that the roton gets populated and quench it
afterward, thus starting the formation process with an already
well-populated roton mode. Within such a framework the
system does not strictly experience a phase transition with its
spontaneous symmetry breaking, as the symmetry breaking
may occur “artificially” in the superfluid phase in the form
of a mechanical excitation. Ideally, such an excited state is
later stabilized by reducing the scattering length. This process
is presented as a proof of principle, with the view to study
the characteristics of mechanical excitation and how they may
affect the transition between a superfluid and a supersolid.
This aim guided the choice of the “kick” presented in this
paper, which instead of targeting the roton specifically has a
more general shape.

Choosing the initial superfluid state to be close enough
to the transition—it can always be quenched close to the
transition point without almost any excitation—the excitation
spectrum will have a local minimum around k = krot. In such
a case there is no need to even target the roton specifically,
as more general kicks will also be able to excite the roton
significantly (although specially targeting it will obviously
yield higher roton populations).

In the example of this mechanism presented here, the sys-
tem is excited by applying a force of f /kB ≈ 6 nK/µm (where
kB is the Boltzamann constant) towards positive y in some
range of x values, between 8 µm and 10 µm, and towards
negative y between−8 µm and −10 µm [74]. General as it
could be, the applied kick must in some way break the trans-
lational symmetry along the supersolid formation direction.
Otherwise, only the dipole or scissor modes could be excited.

The force is applied for 2 ms—enough to deform the con-
densed gas—and afterward switched off. The system is left to
evolve for 18 ms and then quenched to the “slow” formation
value of ac

s − 1.0 a0. If instead of 18 ms the system evolves
less time before the quench the formation shortening may
very well occur. However, it has been left to evolve to allow
the deformation to spread and thus reduce the dependence on
the specific characteristics of the applied kick in the data [see
Fig. 4(g)].

The process creates a significant excitation (see Fig. 3).
There is a first excitation period due to the applied kick and a
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consecutive energy reduction due to the quench. One could in
principle engineer the kick to increase the IPR at the moment
of the quench, thus reaching a more efficient energy reduction.

The time elapsed after the kick increases the population of
the roton at the moment of the quench with respect to the case
of a not kicked condensate. Such an increase in population
is, in fact, accelerating the formation process (see Fig. 2).
This can be seen in the value of IPR, which for the kick-bang
scheme reaches the equilibrium value after 20 ms of being at
as < ac

s , instead of almost 50 ms it would have required if it
was just transferred to aobj

s without a previous kick. Note that
although it oscillates around the equilibrium IPR value as the
single quench and the bang-bang method do, they do not reach
the same state, as all of them are different excited states of the
supersolid; if dissipation mechanisms were considered they
could all converge to the same state after some relaxation time.

Figure 4 enables us to make a comparison both between
this “scheme” and the cases of a single quench to aobj

s and
with the bang-bang scheme. The modulation apparent in the
density distribution coincides with the IPR values of Fig. 2,
confirming the acceleration of the formation.

Note that the configuration of the condensate after the
kick-bang scheme is slightly different, as it shows a minimum
in the center instead of a maximum. This is a consequence
of two almost degenerate states being realizable within these
parameters. The phase of the density, i.e., where the maximum
density points are located, is not relevant for infinite systems;
however, when we impose a trap only two configurations
survive, the ones seen in Fig. 4. Small variations in the initial
conditions of the superfluid make it select one or the other
supersolid configuration.

There is an infinite amount of “kicking” protocols that
could be implemented, one will expect that one of the most
efficient kicks to accelerate the formation process would be to
switch on a cosine-like potential with λ = 2π/krot for some
time (which would directly target the excitation of the roton).
Performed simulations indicate that indeed such kick proto-
col, which contrary to the presented one does not require to
wait after the kick in order to allow the excitations to populate
the roton, is efficient in speeding up the evolution with less
excitation than a more general kick. Since the aim of this
section is to show a proof of principle of how noise can affect
the formation process we did not comment the sinusoidal kick,
despite its effectiveness.

VI. THREE-BODY LOSSES

Together with the enabling of the exploration of close-to-
transition supersolids, one of the principal advantages of the
presented bang-bang method is the reduction of atom losses
and required waiting time during the supersolid preparation
procedure. This section devotes itself to analyzing the viabil-
ity of the bang-bang procedure to obtain this loss reduction.
Since the aim of the parachute-jump method is to reduce
the excitation, the values of atom loss are not especially
relevant—although they will be commented on at the end of
the section—as neither are they for the kick-bang method,
which is a proof of concept rather than a proposal with an
experimental application in mind.

The atom loss may occur due to various phenomena (e.g.,
finite size of the trapping potential allowing atoms to escape).
In the experiment from which this proposals are inspired they
had three-body collisions as the main atom loss mechanism
[12], which are not considered in the derivation of the GP
equation. Such atom loss can be included in the GP equa-
tion by introducing a new term into the Hamiltonian

ih̄∂tψ =
[

ĤGP − ih̄
L3N2

2
|ψ |4

]
ψ, (9)

where L3 is a positive constant which we call “loss rate” and
ĤGP is the Hamiltonian given by the functional differentiation
of the energy functional [see Eq. (1)].

Calculating the loss rate is a challenging task since it relies
on the bound state of two particles that are formed during
a collision. Although some predictions explicitly dependent
on as have been made (see, e.g., [75,76]), there is no general
formula to obtain the loss rates and must thus be evaluated (be
it theoretically or experimentally) for each particular case of
interest but for extreme cases such as very high as.

The schemes presented here rely on manipulating the ro-
ton instability and can be applied to various physical setups,
regardless of their atom loss rates, as long as they exhibit a
roton instability that drives a phase transition. However, it is
useful to examine the example of atom loss in the system of
162Dy atoms that was presented.

Although the scaling of the loss rate has already been inves-
tigated in the case of dipolar particles [77], the specific region
around the superfluid-supersolid phase transition, where char-
acteristic scattering lengths of contact and dipolar interactions
are similar, is difficult to compute. In 2019 Tanzi et al. noted
that for the specific case of 162Dy the loss rate was not known,
and thus they performed experimental measures of it in vari-
ous regimes [12], providing the value L3 ≈ 2 × 10−28 cm6/s
[78]. Since posterior experiments with this isotope around the
relevant scattering values for the superfluid-supersolid phase
transition did not observe any anomalous behavior regarding
the atom loss rate when changing as, there is nothing indicat-
ing that the quenches and linear ramps used in the proposals
would affect the L3 significantly.

The total atom number change rate can be written as

Ṅ/N = −L3〈n2〉 = −L3N2〈|ψ |4〉 = −L3N2
∫

|ψ |6 dV,

(10)

thus, the atom loss is directly related to the integral of |ψ |6
[79]. During the formation process, 〈|ψ |4〉 of the conden-
sate (which has similar behavior to IPR in Fig. 2) is close
to the initial one, with some small oscillations, which be-
cause of their small module are not relevant for the total
atom loss. The performed simulations predict 〈|ψ |4〉 ≈ 1.5 ×
10−5 1/µm6 for the superfluid case. Although atom losses
could modify 〈|ψ |4〉, the steady state can be changed by the
number of atoms after all [80], and their effect would be low
according to GP simulations. Then 〈|ψ |4〉 can be approxi-
mated as stable during the formation process regarding the
effect on atom loss, rendering

N (t ) = N0/

√
1 + 2N2

0 L3〈|ψ |4〉t, (11)
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where N0 is the initial number of atoms. Plugging in the
relevant numbers one sees that the atom losses in the single
quench and bang-bang schemes are

�NQuench ≈ 3400, �NBang-Bang ≈ 1500, (12)

therefore proving the positive effect of the bang-bang scheme.
When the system forms the supersolid 〈|ψ |6〉 gets bigger,
which accelerates atom loss.

The procedure could fail to obtain a supersolid if the
number of atoms at the end is such that the roton is sta-
bilized [see Eq. (2)]. However, in that scenario the single
quench would not obtain a supersolid, as losses are higher
for it. Furthermore, for some cases the bang-bang method
would generate supersolids where the single quench was not
able to.

Regarding the parachute-jump method, the same applies:
The main issue with the atom number is that at the end of
the procedure, there should be enough atoms so that the su-
persolid remains energetically favorable. The atom loss of the
ramp must then also be included into account. Fortunately it
is not necessary to have an adiabatic ramp to obtain an energy
reduction, and thus the speed can be tuned to accommodate
the atom preservation constraint.

It is worth remarking that the proposed protocols are quite
general and could be applied to cases in which the particle loss
has a significantly different L3 or where the main loss mech-
anism is not three-body losses. Thus, the discussed numbers
for particle losses may change for different systems.

VII. CONCLUSIONS

As shown, it is possible to reduce the formation time of a
supersolid by changing the scattering length to lower values
before arriving at the desired value. The losses in the particle
number that are present along the formation process thus can
be reduced, extending the time left in which to experiment
with the supersolid. The atom loss has been estimated for
the specific example of the 162Dy isotope, although noting
the generality of the proposals. It also extends the range of
supersolids that are experimentally viable, namely, the ones
really close to the transition point, which would require times
too long to form.

When the desired supersolid is well below the transition
point, the excitation may be enormous if the transition is not
driven in a slow enough manner. One should ideally drive the
system as slowly as needed to allow the density to redistribute,
adiabatically. This, however, is hardly possible due to the slow
speeds it would require close to the transition point, where
the formation time gets large [6,36,62]. The slow enough
speeds could be experimentally inaccessible, or the required
time so long that the three-body losses would eliminate the
condensate altogether. Precisely to address this issue has the
parachute-jump scheme been proposed.

Our proposal is to use the bang-bang approach to accelerate
the formation of the supersolid close to the transition and
then reduce the scattering length by a “slow” ramp. Once the
supersolid pattern has formed the system is able to adjust to
new scattering values swiftly, which allows a quasi-adiabatic
driving towards the endpoint. Nevertheless, following Eq. (4)
we noted that fast ramps and quenches may also reduce the

overall energy, thus allowing us to choose the parachute-jump
method’s speed regarding the specific characteristics of the
experiment, slowing the ramp if atom loss is low and speeding
it up if atom loss is high, since for this scheme there is a
tradeoff between excitation and atom loss.

Both the bang-bang and the parachute-jump schemes rep-
resent the most simple, yet effective, optimization techniques
for the superfluid-supersolid phase transition. Within the limi-
tation of both proposals optimization has been discussed using
the quasi-1D infinite model [28,62], noting also the range of
applicability both of the model and the scheme. One can of
course follow the philosophy of these proposals with more
complex schemes. Another way forward in the path of transi-
tion optimization could be to combine the dynamical change
of scattering length with another dynamical change of the
trapping potential.

We also investigate how a mechanical kick before the tran-
sition affects the formation time. We find that even with a kick
not aimed to excite any particular momentum state the roton
momentum gets populated, which accelerates the formation
of the supersolid pattern. This indicates that in addition to
the nonzero temperatures present in the experiments, which
would be linked to a greater roton population [53], mechanical
noise may also have a role in explaining the shorter formation
times with respect to the mean-field calculations.

Moreover, the outcomes of the kick-bang scheme provide
a pathway to assess the impact of mechanical noise on a dipo-
lar gas, which is challenging to estimate through theoretical
means. To achieve this, one can compare the time it takes for a
supersolid to form under specific scattering conditions after a
sudden change, focusing on two scenarios: (1) when the initial
superfluid is near the transition point (displaying a distinct
local minimum around the roton) and (2) when the initial
superfluid possesses a scattering length significantly above the
transition point and lacks a distinct local minimum apart from
k = 0. If there is a significant difference in the formation times
between these cases, it may suggest that the roton mode is
being influenced by mechanical noise, providing an additional
check of the accuracy of the experiment.

Although the schemes have been presented only in the
framework of the superfluid to supersolid phase transition, the
philosophy behind them is more general, and they could easily
be adapted for other phase transitions driven by modulation
instabilities in which the researcher, by means of experimental
parameters, is able to tune one of the following: (1) the initial
population of the unstable modes and (2) the imaginary part
of the unstable frequency. An example outside of the dipolar
atoms in which these schemes could be implemented may
be the soliton creation after an interaction quench in a two-
component Bose condensate (see, e.g., [81]).

ACKNOWLEDGMENTS

This work was supported by Grant
No. PID2021-126273NB-I00 funded by
MCIN/AEI/10.13039/501100011033 and by “ERDF A
way of making Europe,” by the Basque Government through
Grant No. IT1470-22, and by the European Research Council
through the Advanced Grant “Supersolids” (No. 101055319).
I thank Prof. Giovanni Modugno, Luca Tanzi, Nicolò

023308-9



AITOR ALAÑA PHYSICAL REVIEW A 109, 023308 (2024)

Antolini, and Giulio Biagioni alongside all people from the
Dy lab at Pisa for interesting discussions, as well as Luca
Cavicchioli from the K-Rb laboratory at Florence. I also

thank my Ph.D. supervisors Michele Modugno and Iñigo L.
Egusquiza from the University of the Basque Country for
useful feedback.

[1] T. Lahaye, C. Menotti, L. Santos, M. Lewenstein, and T. Pfau,
Rep. Prog. Phys. 72, 126401 (2009).

[2] M. A. Baranov, M. Dalmonte, G. Pupillo, and P. Zoller, Chem.
Rev. 112, 5012 (2012).

[3] L. Santos, G. V. Shlyapnikov, and M. Lewenstein, Phys. Rev.
Lett. 90, 250403 (2003).

[4] D. H. J. O’Dell, S. Giovanazzi, and G. Kurizki, Phys. Rev. Lett.
90, 110402 (2003).

[5] S. Ronen, D. C. E. Bortolotti, and J. L. Bohn, Phys. Rev. Lett.
98, 030406 (2007).

[6] L. Chomaz, R. M. W. van Bijnen, D. Petter, G. Faraoni, S. Baier,
J. H. Becher, M. J. Mark, F. Wächtler, L. Santos, and F. Ferlaino,
Nat. Phys. 14, 442 (2018).

[7] D. Petter, G. Natale, R. M. W. van Bijnen, A. Patscheider, M. J.
Mark, L. Chomaz, and F. Ferlaino, Phys. Rev. Lett. 122, 183401
(2019).

[8] J.-N. Schmidt, J. Hertkorn, M. Guo, F. Böttcher, M. Schmidt,
K. S. H. Ng, S. D. Graham, T. Langen, M. Zwierlein, and T.
Pfau, Phys. Rev. Lett. 126, 193002 (2021).

[9] S. Giovanazzi, D. O’Dell, and G. Kurizki, Phys. Rev. Lett. 88,
130402 (2002).

[10] S. M. Roccuzzo and F. Ancilotto, Phys. Rev. A 99, 041601(R)
(2019).

[11] H. Kadau, M. Schmitt, M. Wenzel, C. Wink, T. Maier, I. Ferrier-
Barbut, and T. Pfau, Nature (London) 530, 194 (2016).

[12] L. Tanzi, E. Lucioni, F. Famà, J. Catani, A. Fioretti, C.
Gabbanini, R. N. Bisset, L. Santos, and G. Modugno, Phys. Rev.
Lett. 122, 130405 (2019).

[13] F. Böttcher, J.-N. Schmidt, M. Wenzel, J. Hertkorn, M. Guo, T.
Langen, and T. Pfau, Phys. Rev. X 9, 011051 (2019).

[14] L. Chomaz, D. Petter, P. Ilzhöfer, G. Natale, A. Trautmann, C.
Politi, G. Durastante, R. M. W. van Bijnen, A. Patscheider, M.
Sohmen et al., Phys. Rev. X 9, 021012 (2019).

[15] M. Wenzel, F. Böttcher, T. Langen, I. Ferrier-Barbut, and T.
Pfau, Phys. Rev. A 96, 053630 (2017).

[16] L. Klaus, T. Bland, E. Poli, C. Politi, G. Lamporesi, E. Casotti,
R. N. Bisset, M. J. Mark, and F. Ferlaino, Nat. Phys. 18, 1453
(2022).

[17] E. P. Gross, J. Math. Phys. 4, 195 (1963).
[18] L. Pitaevskii and S. Stringari, Bose-Einstein Condensation and

Superfluidity, International Series of Monographs on Physics,
Vol. 164 (Oxford University Press, Oxford, 2016).

[19] E. P. Gross, Phys. Rev. 106, 161 (1957).
[20] D. A. Kirzhnitis and Yu. A. Nepomnyashchii, Sov. Phys. JETP

32, 1191 (1971).
[21] M. Boninsegni and N. V. Prokofev, Rev. Mod. Phys. 84, 759

(2012).
[22] V. I. Yukalov, Physics 2, 49 (2020).
[23] A. J. Leggett, Phys. Rev. Lett. 25, 1543 (1970).
[24] G. V. Chester, Phys. Rev. A 2, 256 (1970).
[25] M. W. Meisel, Phys. B: Condens. Matter 178, 121 (1992).
[26] Y.-C. Zhang, F. Maucher, and T. Pohl, Phys. Rev. Lett. 123,

015301 (2019).

[27] S. C. Schuster, P. Wolf, S. Ostermann, S. Slama, and C.
Zimmermann, Phys. Rev. Lett. 124, 143602 (2020).

[28] P. B. Blakie, D. Baillie, and S. Pal, Commun. Theor. Phys. 72,
085501 (2020).

[29] S. M. Roccuzzo, A. Gallemí, A. Recati, and S. Stringari, Phys.
Rev. Lett. 124, 045702 (2020).

[30] A. Gallemí, S. M. Roccuzzo, S. Stringari, and A. Recati, Phys.
Rev. A 102, 023322 (2020).

[31] P. B. Blakie, D. Baillie, L. Chomaz, and F. Ferlaino, Phys. Rev.
Res. 2, 043318 (2020).

[32] M. N. Tengstrand, D. Boholm, R. Sachdeva, J. Bengtsson, and
S. M. Reimann, Phys. Rev. A 103, 013313 (2021).

[33] Y.-C. Zhang, T. Pohl, and F. Maucher, Phys. Rev. A 104, 013310
(2021).

[34] J. Hertkorn, J.-N. Schmidt, M. Guo, F. Böttcher, K. S. H.
Ng, S. D. Graham, P. Uerlings, H. P. Büchler, T. Langen,
M. Zwierlein, and T. Pfau, Phys. Rev. Lett. 127, 155301
(2021).

[35] J. Hertkorn, J.-N. Schmidt, M. Guo, F. Böttcher, K. S. H. Ng,
S. D. Graham, P. Uerlings, T. Langen, M. Zwierlein, and T.
Pfau, Phys. Rev. Res. 3, 033125 (2021).

[36] A. Alaña, N. Antolini, G. Biagioni, I. L. Egusquiza, and M.
Modugno, Phys. Rev. A 106, 043313 (2022).

[37] S. M. Roccuzzo, S. Stringari, and A. Recati, Phys. Rev. Res. 4,
013086 (2022).

[38] T. Ilg and H. P. Büchler, Phys. Rev. A 107, 013314 (2023).
[39] J. C. Smith, D. Baillie, and P. B. Blakie, Phys. Rev. A 107,

033301 (2023).
[40] L. Pollet, Nature (London) 569, 494 (2019).
[41] T. Donner, Physics 12, 38 (2019).
[42] L. Tanzi, S. M. Roccuzzo, E. Lucioni, F. Famà, A. Fioretti, C.

Gabbanini, G. Modugno, A. Recati, and S. Stringari, Nature
(London) 574, 382 (2019).

[43] M. Guo, F. Böttcher, J. Hertkorn, J.-N. Schmidt, M. Wenzel,
H. P. Büchler, T. Langen, and T. Pfau, Nature (London) 574,
386 (2019).

[44] G. Natale, R. M. W. van Bijnen, A. Patscheider, D. Petter, M. J.
Mark, L. Chomaz, and F. Ferlaino, Phys. Rev. Lett. 123, 050402
(2019).

[45] L. Tanzi, J. G. Maloberti, G. Biagioni, A. Fioretti, C. Gabbanini,
and G. Modugno, Science 371, 1162 (2021).

[46] J. Hertkorn, J.-N. Schmidt, F. Böttcher, M. Guo, M. Schmidt,
K. S. H. Ng, S. D. Graham, H. P. Büchler, T. Langen, M.
Zwierlein, and T. Pfau, Phys. Rev. X 11, 011037 (2021).

[47] D. Petter, A. Patscheider, G. Natale, M. J. Mark, M. A. Baranov,
R. van Bijnen, S. M. Roccuzzo, A. Recati, B. Blakie, D. Baillie
et al., Phys. Rev. A 104, L011302 (2021).

[48] M. A. Norcia, C. Politi, L. Klaus, E. Poli, M. Sohmen, M. J.
Mark, R. N. Bisset, L. Santos, and F. Ferlaino, Nature (London)
596, 357 (2021).

[49] F. Böttcher, J.-N. Schmidt, J. Hertkorn, K. S. H. Ng, S. D.
Graham, M. Guo, T. Langen, and T. Pfau, Rep. Prog. Phys. 84,
012403 (2021).

023308-10

https://doi.org/10.1088/0034-4885/72/12/126401
https://doi.org/10.1021/cr2003568
https://doi.org/10.1103/PhysRevLett.90.250403
https://doi.org/10.1103/PhysRevLett.90.110402
https://doi.org/10.1103/PhysRevLett.98.030406
https://doi.org/10.1038/s41567-018-0054-7
https://doi.org/10.1103/PhysRevLett.122.183401
https://doi.org/10.1103/PhysRevLett.126.193002
https://doi.org/10.1103/PhysRevLett.88.130402
https://doi.org/10.1103/PhysRevA.99.041601
https://doi.org/10.1038/nature16485
https://doi.org/10.1103/PhysRevLett.122.130405
https://doi.org/10.1103/PhysRevX.9.011051
https://doi.org/10.1103/PhysRevX.9.021012
https://doi.org/10.1103/PhysRevA.96.053630
https://doi.org/10.1038/s41567-022-01793-8
https://doi.org/10.1063/1.1703944
https://doi.org/10.1103/PhysRev.106.161
http://jetp.ras.ru/cgi-bin/dn/e_032_06_1191.pdf
https://doi.org/10.1103/RevModPhys.84.759
https://doi.org/10.3390/physics2010006
https://doi.org/10.1103/PhysRevLett.25.1543
https://doi.org/10.1103/PhysRevA.2.256
https://doi.org/10.1016/0921-4526(92)90186-V
https://doi.org/10.1103/PhysRevLett.123.015301
https://doi.org/10.1103/PhysRevLett.124.143602
https://doi.org/10.1088/1572-9494/ab95fa
https://doi.org/10.1103/PhysRevLett.124.045702
https://doi.org/10.1103/PhysRevA.102.023322
https://doi.org/10.1103/PhysRevResearch.2.043318
https://doi.org/10.1103/PhysRevA.103.013313
https://doi.org/10.1103/PhysRevA.104.013310
https://doi.org/10.1103/PhysRevLett.127.155301
https://doi.org/10.1103/PhysRevResearch.3.033125
https://doi.org/10.1103/PhysRevA.106.043313
https://doi.org/10.1103/PhysRevResearch.4.013086
https://doi.org/10.1103/PhysRevA.107.013314
https://doi.org/10.1103/PhysRevA.107.033301
https://doi.org/10.1038/d41586-019-01585-w
https://doi.org/10.1103/Physics.12.38
https://doi.org/10.1038/s41586-019-1568-6
https://doi.org/10.1038/s41586-019-1569-5
https://doi.org/10.1103/PhysRevLett.123.050402
https://doi.org/10.1126/science.aba4309
https://doi.org/10.1103/PhysRevX.11.011037
https://doi.org/10.1103/PhysRevA.104.L011302
https://doi.org/10.1038/s41586-021-03725-7
https://doi.org/10.1088/1361-6633/abc9ab


SUPERSOLID-FORMATION-TIME SHORTCUT AND … PHYSICAL REVIEW A 109, 023308 (2024)

[50] M. Sohmen, C. Politi, L. Klaus, L. Chomaz, M. J. Mark,
M. A. Norcia, and F. Ferlaino, Phys. Rev. Lett. 126, 233401
(2021).

[51] G. Biagioni, N. Antolini, A. Alaña, M. Modugno, A. Fioretti, C.
Gabbanini, L. Tanzi, and G. Modugno, Phys. Rev. X 12, 021019
(2022).

[52] T. Bland, E. Poli, C. Politi, L. Klaus, M. A. Norcia, F. Ferlaino,
L. Santos, and R. N. Bisset, Phys. Rev. Lett. 128, 195302
(2022).

[53] J. Sánchez-Baena, C. Politi, F. Maucher, F. Ferlaino, and T.
Pohl, Nat. Commun. 14, 1868 (2023).

[54] Y. Pomeau and S. Rica, Phys. Rev. Lett. 72, 2426 (1994).
[55] T. Macrì, F. Maucher, F. Cinti, and T. Pohl, Phys. Rev. A 87,

061602(R) (2013).
[56] Z.-K. Lu, Y. Li, D. S. Petrov, and G. V. Shlyapnikov, Phys. Rev.

Lett. 115, 075303 (2015).
[57] N. Sepúlveda, C. Josserand, and S. Rica, Phys. Rev. B 77,

054513 (2008).
[58] V. F. Krotov, in Advances in Nonlinear Dynamics and Control:

A Report from Russia (Birkhäuser, Boston, 1993), p. 74.
[59] L. Sonneborn and F. Van Vleck, J. Soc. Ind. Appl. Math. Ser.

A: Control 2, 151 (1964).
[60] J.-F. Schaff, P. Capuzzi, G. Labeyrie, and P. Vignolo, New J.

Phys. 13, 113017 (2011).
[61] D. Guéry-Odelin, A. Ruschhaupt, A. Kiely, E. Torrontegui, S.

Martínez-Garaot, and J. G. Muga, Rev. Mod. Phys. 91, 045001
(2019).

[62] A. Alaña, I. L. Egusquiza, and M. Modugno, Phys. Rev. A 108,
033316 (2023).

[63] S. Ronen, D. C. E. Bortolotti, and J. L. Bohn, Phys. Rev. A 74,
013623 (2006).

[64] A. R. P. Lima and A. Pelster, Phys. Rev. A 86, 063609 (2012).
[65] F. Wächtler and L. Santos, Phys. Rev. A 94, 043618 (2016).
[66] M. Schmitt, M. Wenzel, F. Böttcher, I. Ferrier-Barbut, and T.

Pfau, Nature (London) 539, 259 (2016).
[67] M. Calixto and E. Romera, J. Stat. Mech.: Theory Exp. (2015)

P06029.
[68] E. Cuevas, Phys. Rev. B 66, 233103 (2002).
[69] N. C. Murphy, R. Wortis, and W. A. Atkinson, Phys. Rev. B 83,

184206 (2011).
[70] More generally one can consider a system well described by an

orthonormal basis {|i〉}i such that any state is given by |ψ〉 =∑
i p(i)|i〉 with p(i) as the probability to inhabit the eigenstate.

For such system IPR = ∑
i p(i)2. Thus, if a state “participates”

only in one state, |ψ〉 = |1〉 the IPR is 1, while if it participates
in N states with probability p(i) = 1/N the IPR is 1/N (less
localized).

[71] E int changes after the first quench; depending on its value at
the moment of the second quench the excitation will vary. The
excess excitation could be negative (the system will be less
excited than for the single-quench scheme) if E int[n(t2ndBang)] <

E int[n(t1stBang)].
[72] The model works better with await

s inside the supersolid regime.
It underestimates a bit the formation times when it is close to
the transition point, and it overestimates the values for very
low as, however, providing good agreement a couple of Bohr
radii below transition, e.g., τSS(91.0a0 ) = 22 (really close to the
simulations). Nevertheless, it correctly predicts the behavior of
the system qualitatively, as also shown by [28,62]. The diver-
gence may be explained by excitations, since both close and
far below the transition they get strong in respect to the modul-
ation of the supersolid ground state (which close to the tran-
sition is weakly modulated). However, given the simplicity of
the quasi-1D infinite model, it predicts remarkably well the
behavior of the transition.

[73] In their case, although they crossed a transition, both the exper-
imental and theoretical ramps were shorter than the formation
time of the supersolid, and thus they did not see an issue due to
crossing.

[74] The inverse direction of the applied forces is done to keep the
center of mass stable during the evolution; it is not, however,
necessary to see the formation acceleration.

[75] P. F. Bedaque, E. Braaten, and H.-W. Hammer, Phys. Rev. Lett.
85, 908 (2000).

[76] J. P. D’Incao and B. D. Esry, Phys. Rev. Lett. 94, 213201
(2005).

[77] C. Ticknor and S. T. Rittenhouse, Phys. Rev. Lett. 105, 013201
(2010).

[78] They performed two sets of measures rendering the values
2.5 × 10−28 cm6/s and 2.1 × 10−28 cm6/s.

[79] As a matter of fact, this value may also be referred to as an IPR
[68]. We abstain from doing so in order to avoid confusion.

[80] C. Eberlein, S. Giovanazzi, and D. H. J. O’Dell, Phys. Rev. A
71, 033618 (2005).

[81] A. Cidrim, L. Salasnich, and T. Macrì, New J. Phys. 23, 023022
(2021).

023308-11

https://doi.org/10.1103/PhysRevLett.126.233401
https://doi.org/10.1103/PhysRevX.12.021019
https://doi.org/10.1103/PhysRevLett.128.195302
https://doi.org/10.1038/s41467-023-37207-3
https://doi.org/10.1103/PhysRevLett.72.2426
https://doi.org/10.1103/PhysRevA.87.061602
https://doi.org/10.1103/PhysRevLett.115.075303
https://doi.org/10.1103/PhysRevB.77.054513
https://doi.org/10.1137/0302013
https://doi.org/10.1088/1367-2630/13/11/113017
https://doi.org/10.1103/RevModPhys.91.045001
https://doi.org/10.1103/PhysRevA.108.033316
https://doi.org/10.1103/PhysRevA.74.013623
https://doi.org/10.1103/PhysRevA.86.063609
https://doi.org/10.1103/PhysRevA.94.043618
https://doi.org/10.1038/nature20126
https://doi.org/10.1088/1742-5468/2015/06/P06029
https://doi.org/10.1103/PhysRevB.66.233103
https://doi.org/10.1103/PhysRevB.83.184206
https://doi.org/10.1103/PhysRevLett.85.908
https://doi.org/10.1103/PhysRevLett.94.213201
https://doi.org/10.1103/PhysRevLett.105.013201
https://doi.org/10.1103/PhysRevA.71.033618
https://doi.org/10.1088/1367-2630/abdbe2

