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Topological bosonic Bogoliubov excitations with sublattice symmetry
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Here we investigate the internal sublattice symmetry, and thus the enriched topological classification of
bosonic Bogoliubov excitations of thermodynamically stable free-boson systems with nonvanishing particle-
number-nonconserving terms. Specifically, we show that such systems well described by the bosonic
Bogoliubov–de Gennes Hamiltonian can be in general reduced to particle-number-conserving (single-particle)
ones. Building upon this observation, the sublattice symmetry is uncovered with respect to an excitation energy,
which is usually hidden in the bosonic Bogoliubov–de Gennes Hamiltonian. Thus, we obtain an additional
topological class, i.e., class AIII, which enriches the framework for the topological threefold way of free-boson
systems. Moreover, a construction is proposed to show a category of systems respecting such a symmetry.
For illustration, we resort to a one-dimensional prototypical model to demonstrate the topological excitation
characterized by a winding number or symplectic polarization. By introducing the correlation function, we
present an approach to measure the topological invariant. In addition, the edge excitation together with its
robustness to symmetry-preserving disorders is also discussed.
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I. INTRODUCTION

Topological states of matter beyond the Landau paradigm
attract growing attention due to their fundamental novelty and
great prospect of applications [1–4]. In particular, a mature
framework has been established for classifying ground states
of topological insulators and superconductors of free fermions
based on the (internal) time-reversal, particle-hole, and chiral
symmetries, namely, the Altland-Zirnbauer (AZ) classifica-
tion [3,5–7]. In contrast to fermionic systems where all states
are equally occupied within bands below the Fermi level due
to the fermionic nature, the noninteracting bosons condense
to the lowest-energy mode (i.e., ground state) and, hence, do
not exhibit any topologically nontrivial phases. However, peo-
ple have found many exotic topological phenomena of wave
functions of bosonic excitations in photonic materials [8–25],
magnonic systems [26–39], optical lattices loaded with cold
bosonic atoms [40–48], etc. For instance, the spontaneous
symmetry breaking can result in the emergence of topolog-
ical superfluid in cold-atom optical lattices [44,49,50]. The
squeezed light can induce the inelastic edge-state transport
and even topological quantum fluctuation in photonic systems
[51,52].

Among them, the intriguing topological effects of ex-
citations are determined by the bosonic Bogoliubov–de
Gennes (BdG) Hamiltonian, which describes the system
emergent from (weakly) interacting bosons under the mean-
field approximation [53,54]. Such a system, dubbed the “free
boson,” manifests the pseudo-unitary structure inherently
[28,55,56], which has no counterpart in the AZ classi-
fication. To understand it, a framework of characterizing
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topological (high-energy) excitations of free-boson systems
in the thermodynamic-stability regime, which is distinct from
the classification of phases (i.e., ground-state physics), has
been built, known as the topological threefold way [57–62].
Remarkably, this new framework shows the topological
triviality of one-dimensional (1D) bosonic Bogoliubov exci-
tations. It is a great pity for both theoretical and experimental
researchers that the simplest subject has to be crossed off the
shortlist. Such a situation prompts us to doubt: Is the physics
of the topological bosonic Bogoliubov excitation for the ther-
modynamically stable free-boson system in one dimension
ruled out completely? Or is there any other internal symme-
try enabling the topological bosonic excitation? Answering
these questions will inspire us to deepen our understanding of
bosonic topological physics and to explore novel topological
phenomena.

In this work we study the topological bosonic Bogoliubov
excitation in the free-boson system with particle-number-
nonconserving terms under the thermodynamic-stability
regime. Specifically, we show that the particle-number-
nonconserving bosonic BdG Hamiltonian can be reduced
to a particle-number-conserving (single-particle) one via a
pseudo-unitary transformation if its Hamiltonian is positive
definite. This reduction enables us to map the free-boson
system to the one in the AZ classification without the particle-
hole and chiral symmetries. In terms of the absence or
presence of time-reversal symmetry, such systems are clas-
sified in the topological threefold way, i.e., classes A, AI, and
AII. It is worth noting that the mapping adopted here preserves
those symmetries concerned at the single-particle level in the
topological classification. We prove that this mapping adopted
from Ref. [60] even holds in the dynamical-stability regime
(that is, the modes of the Hamiltonian exhibit strictly bounded
motion in time), and it is topologically equivalent to that
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of Ref. [62] although their formulas are different from each
other. More importantly, based on the single-particle Hamilto-
nian, we point out the existence of sublattice symmetry, which
is usually hidden in the bosonic BdG Hamiltonian and math-
ematically similar to chiral symmetry at the single-particle
level for free-fermion systems. Such an internal symmetry
supplies an additional topological class AIII, and it implies the
existence of topological bosonic Bogoliubov excitation in one
dimension. Through a construction, we also show a category
of free-boson systems which physically have the sublattice
symmetry.

To illustrate the topological bosonic Bogoliubov excitation,
we provide a 1D prototypical bosonic model. Utilizing the
pseudo-unitary transformation, we show that such a model
has sublattice symmetry, and the associated band topology
is characterized by the winding number or, equivalently, the
symplectic polarization. To measure the nontrivial topology,
an approach is proposed by distinguishing the monotonic-
ity of envelope of the resonance reflected by the correlation
function in frequency domain. Explicitly, the resonance enve-
lope behaves monotonically as increasing the frequency for
the nontrivial topological number, while it does not for the
trivial number. Moreover, we present the edge excitation that
emerges when the open boundary condition is applied. It can
be diagnosed via the midgap peak of the resonance given by
the correlation function. As a topological effect, the edge ex-
citation is robust against the symmetry-preserving disorders.

The paper is organized as follows. In Sec. II, we intro-
duce the bosonic BdG Hamiltonian for the free-boson system
and demonstrate that it can be reduced to a particle-number-
conserving (single-particle) Hamiltonian by a pseudo-unitary
transformation. In Sec. III, we prove the mapping adopted
here preserves the symmetries concerned in the context of
AZ classification and, then, obtain the standard threefold way
for the bosonic system. Importantly, we unveil the hidden
sublattice symmetry and obtain the enriched topological clas-
sification, i.e., classes A, AI, AII, and AIII. A construction for
the bosonic BdG Hamiltonian with the sublattice symmetry is
also discussed. After that, we make comparisons with the ex-
isting literature. Section IV resorts an example to illustrate the
topological bosonic Bogoliubov excitation in one dimension.
The topological-invariant measurement together with the edge
excitation is subsequently discussed in detail. We also show
the robustness to symmetry-preserving disorders. Finally, the
conclusion is given in Sec. V.

II. DECONSTRUCTION OF BOSONIC BOGOLIUBOV–DE
GENNES HAMILTONIAN

Generally, a free-boson system represents the mean-field
description of the (weakly) interacting bosonic system, which
ubiquitously exists in photonic systems [21,22], cold bosonic
atoms [63,64], magnonic crystals [65], exciton-polaritons
[66–68], etc. It is well described by the bosonic BdG
Hamiltonian in a d-dimensional (dD) spatial space

Ĥ =
N∑

i, j=1

[
â†

i Ki j â j + 1

2
(â†

i Mi j â
†
j + H.c.)

]
, (1)

where âi and â†
i (i = 1, 2, . . . , N) are the bosonic annihilation

and creation operators. Here N denotes the possible physi-
cal degrees of freedom in bosonic systems, such as orbitals,
(pseudo-)spins, sublattices, etc. The N-dimensional matrix
K (K = K†) describes the single-particle part in the free-
boson system and usually determines the energy dispersion.
The particle-number-nonconserving term 1

2

∑N
i, j=1 â†

i Mi j â
†
j +

H.c. (M = MT ) arises from the interaction under the mean-
field approximation. By adopting the Nambu spinor �̂ =
(â1, . . . , âN , â†

1, . . . , â†
N )T , we obtain Ĥ = 1

2 �̂†H�̂ − 1
2 TrK ,

where

H =
(

K M
M∗ KT

)
(2)

is the BdG Hamiltonian in the matrix form.
Suppose that the free-boson system has the translational

invariance and satisfies the periodic boundary condition. The
bosonic BdG Hamiltonian (1) can be transformed into the
momentum space and rewritten as Ĥ = 1

2

∑
k �̂

†
kH (k)�̂k −

1
2 TrK . Here �̂k = (âk1, . . . , âkÑ , â†

−k1, . . . , â†
−kÑ

)T , and the
Hamiltonian matrix in the momentum space is given by

H (k) =
(

K (k) M(k)
M∗(−k) KT (−k)

)
. (3)

Here M(−k) = MT (k) and k = (k1, k2, . . . , kd ) is the crystal
momentum in the dD space. In this case the dimension of
the BdG Hamiltonian matrix (2) 2N is reduced to 2Ñ by
eliminating the spatial degrees of freedom. The spinor �̂k
satisfies the following bosonic commutation relations:

[�̂ki, �̂k′ j] = iδkk′ (τ2)i j, τ2 =
( −iIÑ

iIÑ

)
, (4)

[�̂ki, �̂
†
k′ j] = δkk′ (τ3)i j, τ3 =

(
IÑ

−IÑ

)
, (5)

with IÑ being a Ñ-dimensional identity matrix. Hereafter,
τ1 = iτ3τ2. τ3 is the indefinite metric of the underlying Krein
space J [59,69,70], which is the tensor product of the non-
spatial physical space CÑ with the particle-hole degree of
freedom C2 [71,72].

The quadratic Hamiltonian on the Krein space can be
transformed to the one acting on the symplectic space.
To see this, instead of writing the quadratic Hamiltonian
Ĥ using the Nambu spinor, one can use the Hermitian
canonical coordinates and momenta, x̂ki = (âki + â†

−ki )/
√

2

and p̂ki = (âki − â†
−ki )/

√
2i [(âki )† = â†

−ki], which are also
called quadratures. In the quadrature representation, ξ̂k =
(x̂k1, . . . , x̂kÑ , p̂k1, . . . , p̂kÑ )T , the Hamiltonian Ĥ can be
rewritten as Ĥ = 1

2

∑
k ξ̂T

k R(k)ξ̂k − 1
2 TrK , and it describes a

system of Ñ mutually coupled quantum bosonic oscillators.
The Hermitian operator ξ̂k satisfy the commutation relation
[ξ̂ki, ξ̂k′ j] = δkk′ (τ2)i j . The quadrature and bosonic represen-
tation are related by ξ̂k = G�̂k and R(k) = GH (k)G†, where

G = 1√
2

(
IÑ IÑ

−iIÑ iIÑ

)
(6)

is a unitary matrix. Thus, the Krein space J is then trans-
formed into the space with the symplectic structure iτ2, i.e.,
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symplectic space, and they are related by the unitary transfor-
mation G.

Here we are interested in the thermodynamic-stability
regime where the system has a ground state and the energy
has a lower bound, E � 0 [73]. It leads to the positive semi-
definite condition for the BdG Hamiltonian matrix H (k), i.e.,
H (k) � 0.

A. Non-Hermitian dynamical matrix
and spectral decomposition

Equipped with the canonical commutation relations (4) and
(5), we obtain the equation of motion of the free-boson system
in the momentum space

∂t�̂k(t ) = −i[�̂k(t ), Ĥ ] = −iHτ (k)�̂k(t ), (7)

where Hτ (k) = τ3H (k) is the dynamical matrix. From it,
one can see that the evolution equation is nonunitary since
Hτ (k) is non-Hermitian. Only in this way is it ensured that
the Nambu spinor �̂k(t ) fulfills the canonical commutation
relations (4) and (5) arising from the Bose-Einstein statistics.

The spectrum of the BdG Hamiltonian (1) can be ob-
tained from the eigenvalues of the dynamical matrix Hτ (k).
Explicitly, the positive eigenvalues of Hτ (k) provide the
quasiparticle excitation spectrum for the free-boson system
in the thermodynamic-stability regime. To see it, we define
a Bogoliubov transformation

�̂k = V (k)

(
β̂k

β̂
†T
−k

)
, V (k) =

(
X (k) Y ∗(−k)

Y (k) X ∗(−k)

)
, (8)

where β̂k = (β̂k1, β̂k2, . . . , β̂kÑ )T is the array of the annihi-
lation operators. In this work we mainly focus on positive
definite H (k), and the Hamiltonian with zero-energy excita-
tion mode can be regarded as a special limit case. Due to
the Williamson theorem [74,75], the matrix R(k) can always
be symplectically diagonalized in the quadrature representa-
tion, i.e., R′(k) = JT (k)R(k)J (k), where R′(k) is a real and
diagonal matrix, and J (k) satisfies the symplectic condition
JT (k)iτ2J (k) = iτ2. Hence, one can also perform the Bogoli-
ubov transformation (8) to achieve

Ĥ = 1

2

∑
k

(
β̂

†
k β̂T

−k

)
τ3�(k)

(
β̂k

β̂
†T
−k

)
− 1

2
TrK

=
∑

k

β̂
†
kE (k)β̂k, (9)

where �(k) = diag(E (k),−E (−k)), and E (k) � 0 is an Ñ-
dimensional diagonal matrix and describes the Bogoliubov
excitation spectrum of the bosonic system. Since the spec-
tral decomposition does not change the nature of bosons, the
bosonic commutation relation retains, i.e., [β̂ki, β̂

†
k′ j] = δkk′δi j

with i, j = 1, 2, . . . , Ñ . Based on this, the transformation ma-
trix V (k) must satisfy the pseudo-unitary structure

V †(k)τ3V (k) = V (k)τ3V
†(k) = τ3, (10)

where V (k) belongs to the pseudo-unitary group U(Ñ, Ñ ).
Equipped with Eqs. (8)–(10), we obtain the eigenfunction

Hτ (k)V (k) = V (k)�(k). (11)

Equation (11) shows us that the spectrum of the system is
given by the eigenvalues of the non-Hermitian Hτ (k) and
its right eigenstates also determine the diagonalizing matrix
V (k).

B. Reduction of the bosonic BdG Hamiltonian

Here we review that the bosonic BdG Hamiltonian with
particle-number-nonconserving terms [M(k) �= 0] can be
transformed to a particle-number-conserving Hamiltonian,
i.e., a single-particle one, if H (k) is positive definite [60]. Due
to the pseudo-unitary structure (10) and τ1V ∗(k)τ1 = V (k),
there is an essential observation

V (k) = eW (k)

(
U (k)

U ∗(−k)

)
, (12)

W (k) = 1

2
ln[V (k)V †(k)] =

(
W̄ (k)

W̄ ∗(−k)

)
, (13)

where U (k) is unitary and W̄ (k) = W̄ T (−k). Here
eW (k) ∈ SU(Ñ, Ñ ) satisfies eW (k)τ3eW (k) = τ3 and det eW (k) =
eTrW (k) = 1. Then the diagonalization (11) can be rewritten as

Hτ (k)eW (k) = eW (k)

(
K̃ (k)

K̃T (−k)

)
, (14)

where K̃ (k) = U (k)E (k)U †(k) is positive semidefinite due to
E (k) � 0. Thus, the non-Hermitian dynamical matrix Hτ (k)
has been transformed to a block-diagonal Hermitian one. Sub-
stituting Eqs. (8) and (12) back into the BdG Hamiltonian, we
arrive at a single-particle Hamiltonian,

Ĥ = 1

2

∑
k

�̂
†
ke−W (k)

(
K̃ (k)

K̃T (−k)

)
e−W (k)�̂k

− 1

2
TrK

= 1

2

∑
k

�̃
†
k

(
K̃ (k)

K̃T (−k)

)
�̃k − 1

2
TrK

=
∑

k

β̃
†
kK̃ (k)β̃k, (15)

where

�̃k = e−W (k)�̂k =
(

β̃k

β̃
†T
−k

)
, (16)

with β̃k = (β̃k1, β̃k2, . . . , β̃kÑ )T satisfying the commutation
relations (4) and (5). Here K̃ (k) stands for the Bloch Hamil-
tonian of the system in the quasiparticle basis. Note that
Eq. (16) is called squeezing transformation in quantum optics
[76]. The ground state of the system is no longer the bosonic
vacuum state, but a squeezed vacuum state,

|GS〉 =
∏

k

exp

(
1

2
�̂

†
kτ3W (k)�̂k

)
|0〉,

where |0〉 denotes the bosonic vacuum state.
In short, Eq. (15) shows us that the BdG Hamiltonian

with particle-number-nonconserving terms (M(k) �= 0) can
be reduced to a particle-number-conserving (single-particle)
one for the free-boson system if H (k) is positive definite.
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This result even holds when the system is dynamically stable
[77]. The relevant details of dynamical stability for free-boson
system (e.g., connection between thermodynamic and dynam-
ical stability) are provided in Appendix A. This reduction
inherently arises from the bosonic nature as the mapping eW (k)

adopted here is a representation transformation.

III. HIDDEN SUBLATTICE SYMMETRY AND ENRICHED
TOPOLOGICAL CLASSIFICATION

A. Topological threefold way

The AZ classification concerns the symmetry properties
and topological features of Hamiltonians at the single-particle
level for free fermions in terms of the standard time-reversal,
particle-hole, and chiral symmetries [3,6,7]. Inherited from
the framework of the AZ classification, here we will show
how to rigorously and quickly achieve the topological three-
fold way (i.e., classes A, AI, and AII) for the fully gapped
free-boson system. Here we adopt the notion of symmetry
introduced in the review [3] (more details of the symmetry are
found in Appendix B). Nevertheless, it is worth noting that the
particle-hole and chiral symmetries sometimes are interpreted
as “constraints” because they arise naturally for free fermions
as “descendants” of special many-body symmetries and lack
of physical interpretations [61].

Now we review the time-reversal, particle-hole, and chiral
symmetries for the free-boson system, respectively, defined by
[60] (more details seen in Appendix B)

T H∗
τ (−k)T −1 = Hτ (k), [T , τ3] = 0, (17)

CH∗
τ (−k)C−1 = −Hτ (k), {C, τ3} = 0, (18)

	Hτ (k)	−1 = −Hτ (k), {	, τ3} = 0, (19)

where the unitary matrices T , C, 	 denote time reversal,
particle hole, and chiral, respectively, and 	 is the combi-
nation of T and C, i.e., 	 = T C∗. The time-reversal and
particle-hole symmetries correspond to antiunitary transfor-
mations in the Krein space, while the last one corresponds
to a unitary transformation. The commutation of T and anti-
commutation of C, 	 with τ3 originate from the necessity of
the symmetry-preserving bosonic nature. Notably, the bosonic
BdG Hamiltonian intrinsically has the particle-hole symmetry
with C = τ1. Thus, T is block diagonal, i.e., T = T̃ ⊕ T̃ ∗,
and 	 = T τ1 is block off-diagonal.

Here we argue that in terms of these three symmetries, the
topological classification for fully gapped free-boson systems
is identical to that of the single-particle systems with Hamilto-
nian matrix K̃ (k). To verify it, we can utilize a useful lemma.

Lemma 1. The mapping eW (k) preserves those symmetries
that commute or anticommute with τ3 if the bosonic BdG
Hamiltonian is dynamically stable.

The proof is given in Appendix C. Here we prove this
lemma for the positive-definite case. Suppose H (k) is positive
definite, H (k) > 0; thus, W (k) is uniquely determined by

e2W = H−1/2(H1/2τ3Hτ3H1/2)1/2H−1/2. (20)

It is obtained from the relation e2W He2W = τ3Hτ3. We
temporarily suppress the k dependence of H and W for

brevity. Considering a linear or antilinear internal symmetry
OHτ (εOk)O−1 = ηOHτ (k), where the unitary or antiunitary
matrix O obeys Oτ3 = ηOτ3O, and ηO, εO = ±, one can easily
find that Oe2W (εOk)O−1 = e2W (k) or

OW (εOk)O−1 = W (k). (21)

Note that εO = − is responsible for the symmetry case with
an antiunitary transformation. Then the block-diagonal Her-
mitian matrix H ′

τ (k) = K̃ (k) ⊕ −K̃∗(−k) satisfies

OH ′
τ (εOk)O−1 = ηOH ′

τ (k). (22)

Thus, Lemma 1 is true for the positive-definite case.
Suppose there is a band gap (i.e., topological obstruction)

in the eigenvalues �(k) for all k, and Hτ (k) and eW (k) are con-
tinuous with respect to k [78]. The dynamical matrix Hτ (k)
can be continuously deformed to H ′

τ (k) while preserving the
gap and the three standard symmetries with the virtue of
Lemma 1 (e.g., [60]),

Hτ (k; λ) = e(1−λ)W (k)H ′
τ (k)e−(1−λ)W (k), (23)

with λ ∈ [0, 1]. This mapping satisfies Hτ (k; λ = 0) = Hτ (k)
and Hτ (k; λ = 1) = H ′

τ (k) and preserves the three symme-
tries. As the mapping eW (k) is intrinsically a Bogoliubov
(squeezing) transformation, Hτ (k) and H ′

τ (k) share the same
eigenvalues and, hence, the band gap. Here we prove that the
continuous mapping adopted from Ref. [60] even holds in the
dynamical-stability regime. We also note that our recipe is
also similar to the one derived via the polar decomposition
in Ref. [79]. Therefore, the topological classification of the
dynamical matrix Hτ (k) is identical to topologically classi-
fying all the possible blocks of H ′

τ (k), i.e., K̃ (k), in terms
of the time-reversal, particle-hole, and chiral symmetries. It
is worth noting that although this mapping does not preserve
all symmetries, e.g., total-number symmetry, here only these
three symmetries are concerned for topologically classifying
the free-boson system.

Now we focus on the block K̃ (k) and classify its ensemble
in terms of the three symmetries. The block K̃ (k) describes
a single-particle system in k space and has no particle-
hole-mixing term (i.e., particle-number-nonconserving term).
It means the total-number symmetry recovers, but the
particle-hole and chiral symmetries are dismissed [80]. As
a consequence, we just keep the time-reversal symmetry in
consideration, which is then given by

T̃ K̃∗(−k)T̃ −1 = K̃ (k), T̃ T̃ ∗ = ±I. (24)

Armed with the framework of the AZ classification, we obtain
class A (absence of time-reversal symmetry), AI (T̃ T̃ ∗ =
+I), and AII (T̃ T̃ ∗ = −I) for the free-boson system, which
are also known as the standard threefold way [81,82].

So far, we have discussed the diagonalizable case of the
dynamical matrix Hτ (k). In fact, one may encounter the non-
diagonalization of Hτ (k) when the bosonic BdG Hamiltonian
matrix is positive semidefinite, H (k) � 0 [83,84]. Such a case
describes the emergence of the exceptional point at zero en-
ergy, at which energies and eigenstates both coalesce [85]. In
fact, it can be addressed safely by adding an infinitesimal on-
site energy I ( → 0+) to H (k) since this treatment would
not influence the topological bosonic Bogoliubov excitation
of the system at zero energy (see Appendix D for details).

023307-4



TOPOLOGICAL BOSONIC BOGOLIUBOV EXCITATIONS … PHYSICAL REVIEW A 109, 023307 (2024)

TABLE I. Topological classification for d-dimensional (dD)
fully gapped free-boson systems. Classes A, AIII, AI, and AII
are the symmetry classes for the single-particle Hamiltonian with
no symmetry, sublattice symmetry (S), time-reversal symmetry
(T̃ T̃ ∗ = +I), and time-reversal symmetry (T̃ T̃ ∗ = −I), respec-
tively, in the framework of the AZ classification. The second column
denotes the classifying space. The entries Z (2Z), Z2 represent the
types of topological bosonic Bogoliubov excitation, while 0 indicates
the absence of nontrivial topological bosonic Bogoliubov excitation.

d

AZ class 0 1 2 3 4 5 6 7

A C0 Z 0 Z 0 Z 0 Z 0
AIII C1 0 Z 0 Z 0 Z 0 Z
AI R0 Z 0 0 0 2Z 0 Z2 Z2

AII R4 2Z 0 Z2 Z2 Z 0 0 0

B. Hidden sublattice symmetry and enriched topological
classification of bosonic Bogoliubov excitations

For free-fermion systems, especially superconductors
(with pairing terms), zero energy is usually assumed as the
band gap, and the ground state can have a nontrivial topology
and host in-gap edge (surface) states because states below the
gap are fully occupied at zero temperature. In contrast, the
bosonic ground state must have a trivial topology in the free-
boson system [57], which has been summarized by a no-go
theorem [61]. But one can still study the bosonic Bogoliubov
excitation with finite energy since it could be topologically
nontrivial as predicted by the threefold way, i.e., classes A,
AI, and AII in Table I. However, the threefold way still shows
topological triviality of bosonic Bogoliubov excitation for the
free-boson system in one dimension. It makes us wonder if
there are any other internal symmetries to support the 1D
topological bosonic excitation.

Here we will show that the free-boson system can have an
additional internal symmetry, i.e., sublattice symmetry, which
can supply nontrivial topological excitations in odd dimen-
sion.

We first focus on the single-particle Hamiltonian matrix
K̃ (k) (K̃ (k) � 0) as the dynamically stable BdG Hamiltonian
can be reduced to a particle-number-conserving one based
on the aforementioned mapping, or explicitly, pseudo-unitary
transformation eW (k). Sublattice symmetry for the system in
the quasiparticle basis is defined as

S̃h(k)S̃−1 = −h(k), S̃2 = I, (25)

where h(k) = K̃ (k) − εI denotes the traceless part of the
single-particle Hamiltonian matrix and ε = TrK̃/Ñ is an on-
site energy independent of k, and S̃ is a unitary and Hermitian
matrix, S̃ = S̃† = S̃−1. Note that the onsite energy ε is a
necessity to guarantee the existence of ground state for the
bosonic system, as it keeps the spectrum non-negative. This
symmetry gives rise to a symmetric spectrum of the single-
particle system with respect to the finite energy ε: if |u j (k)〉
is an eigenstate of K̃ (k) with energy Ej (k) � 0, then S̃|u j (k)〉
is also an eigenstate but with energy [2ε − Ej (k)] � 0. One
can see that S̃ is a unitary transformation on the underlying
Hilbert space for the single-particle system, S̃ : H → H. In

the diagonal form of S̃ , h(k) is block off-diagonal and can be
written as

h(k) =
(

D(k)
D†(k)

)
, (26)

where D(k) is a ÑA × ÑB rectangular matrix and ÑA/B (ÑA +
ÑB = Ñ) is the number of sites on sublattice A/B. As an ex-
ample, sublattice symmetry appears in bipartite lattices where
particle hopping only connects sites on different sublattices,
such as the Su-Schrieffer-Heeger (SSH) model with nonzero
onsite energy.

In the original basis, this symmetry can be identi-
fied by the pair of non-negative eigenvalues of Hτ (k),
i.e., (Ej (k), ε − Ej (k)) � 0, with the corresponding eigen-
states (|φ j (k)〉, S|φ j (k)〉), respectively, where |φ j (k)〉 =
eW (k)(|u j (k)〉T , 0)T and S = S̃ ⊕ S̃∗. Here we have as-
sumed that the mapping also preserves sublattice symmetry,
SeW (k) = eW (k)S . Notice that these pairs have the positive
square norm, i.e., 〈φ j (k)|τ3|φ j (k)〉 = 〈φ j (k)|S†τ3S|φ j (k)〉 >

0. Such a symmetry acting on the subspaces of the Krein space
(J±) can be immediately applied to invert the dynamics of this
free-boson system U (t ) = exp[−iHτ (k)t]:

U (−t ) = exp (2itετ3e−2W (k) )SU (t )S−1. (27)

The additional term ετ3e−2W (k) corresponds to a particle-
number-nonconserving one in the bosonic BdG Hamiltonian.
But it describes a uniform onsite potential with finite energy ε

when the Hamiltonian is transformed into the quasiparticle ba-
sis. More details of sublattice symmetry on the many-particle
space are provided in Appendix E.

In terms of a band gap at energy ε, the positive-definite
matrix e±W (k) preserving sublattice symmetry considered here
can be continuously deformed to an identity matrix in the
dynamical matrix Hτ (k), as shown in Eq. (23). Therefore,
the topological classification of these BdG Hamiltonians is
equivalent to topologically classify the family of the single-
particle ones with sublattice symmetry. In the framework of
AZ classification, these single-particle Hamiltonians are ac-
tually classified to class AIII as the sublattice symmetry is
mathematically similar to chiral symmetry in free-fermion
systems. In this class, there may exist topological bosonic
Bogoliubov excitations supported by sublattice symmetry in
odd dimension, as shown in Table I.

Before proceeding, we provide some remarks on the
proposed sublattice symmetry (25). First, this symmetry is
usually hidden in terms of the original dynamical matrix
Hτ (k), since the implicit term ετ3e−2W (k) is not easily distin-
guished from the dynamical matrix Hτ (k).

Second, sublattice symmetry is not physically identical to
the chiral symmetry at the single-particle level in the free-
boson system even if Eqs. (19) and (25) share the same
mathematical form. This is because the chiral operation 	

mixes the particles and holes while the sublattice operation
S does not, i.e., {	, τ3} = 0 and [S, τ3] = 0. It also implies
that the combination of time-reversal symmetry and sublattice
symmetry is not particle-hole symmetry.

Third, the sublattice symmetry is actually ubiquitous in
bosonic systems. Explicitly, bipartite lattices where a particle
only tunnels to different sublattices can be realized in many
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platforms, such as the photonic superlattice [86], bosonic
cold atoms loaded in a double-well potential [87], plasmonic
waveguide arrays [88,89], etc.

C. A construction of the bosonic BdG Hamiltonian
with sublattice symmetry

In the above, we have shown that the free-boson sys-
tem could possess a sublattice symmetry through an implicit
single-particle Hamiltonian matrix h(k). But it drives us to
wonder what kind of the bosonic BdG Hamiltonian matrix
H (k) should be. Here we provide a possible construction of
the bosonic BdG Hamiltonian which has the sublattice sym-
metry.

Suppose that the matrix K (k) = εI + h(k) (ε > 0), and
h(k) respects the time-reversal symmetry (24) with T̃ = I
and sublattice symmetry (25). Notice that K (k) corresponds
to the single-particle part in the free-boson system (1). For
the particle-number-nonconserving term, we also assume the
matrix M(k) = ξS , with ξ ∈ C and the sublattice operation
S = ST being symmetric. Then the associated bosonic BdG
Hamiltonian matrix can be rewritten as

H (k) =
(

εI + h(k) ξS
ξ ∗S εI + h(k)

)
. (28)

Now let us show that the free-boson system with Eq. (28)
respects the sublattice symmetry. Following the block-
diagonalization treatment discussed in Sec. II B, we perform
a pseudo-unitary transformation eW (k) ∈ SU(N, N ) with

W (k) =
(

�S
�∗S

)
(29)

and � = eiφ|�| ∈ C such that the dynamical matrix Hτ (k)
can be block-diagonalized, i.e.,

Hτ (k)eW (k) = eW (k)

(
K̃ (k)

−K̃T (−k)

)
. (30)

After some algebra, the solutions of |�| and φ are obtained by

|�| = 1

2
ln

√
ε − |ξ |
ε + |ξ | , φ = arg(ξ ). (31)

Thus, the single-particle Hamiltonian matrix in the new quasi-
particle basis is given by

K̃ (k) = εI + h(k), (32)

where ε =
√

ε2 − |ξ |2. It can been seen that the system has
the sublattice symmetry (25). Therefore, we have proved that
the category of free-boson systems with Eq. (28) respects the
sublattice symmetry.

D. Comparison to the existing literature

Recently, the topological classification for free-boson sys-
tems has been demonstrated in Refs. [57–62]. It is necessary
to discuss the relation and crucial distinction between these
works and ours.

In Refs. [57,58,60], the standard K-theory approach [6] is
exploited to achieve the topological classes, i.e., classes A,
AI, and AII, for free-boson systems in the thermodynamic-
stability regime, as presented in Table I. Such an approach is

powerful, but complex and hard to follow. Apart from this, the
insight that the particle-hole symmetry is intrinsically a con-
straint rather than a symmetry in Refs. [59,90] is deep, but also
incomprehensible. In contrast, our method of the Hamiltonian
reduction shown in Sec. III A provides a easy and rigorous
shortcut to obtain the topological classification based on the
framework of AZ classification. We note that the constraint
mentioned above does not carry any symmetry properties of
Hamiltonians at the single-particle level concerned in the AZ
classification, and this notion is totally distinguished from
the particle-hole symmetry (sometimes dubbed particle-hole
constraint [61]) of free-fermionic systems.

An alternative approach is based on the squaring map from
a fermionic BdG Hamiltonian matrix Hf (k) to a bosonic
BdG one [61]. In this case, the particle-hole symmetry
and chiral symmetry disappear and the constructed bosonic
BdG Hamiltonian H2

f (k) is classified into the standard topo-
logical threefold way. However, as discussed in Ref. [62],
the squaring map H2

f (k) is not surjective onto the col-
lection of any BdG Hamiltonian matrices H (k). In other
words, H2

f (k) cannot represent any bosonic BdG Hamiltonian
matrices. As a contrast, we have shown that a particle-
number-nonconserving bosonic BdG Hamiltonian one-to-one
corresponds to a particle-number-conserving one through a
special pseudo-unitary transformation eW (k) if the free-boson
system is dynamically stable [77].

Moreover, Ref. [62] has proposed an adiabatic map-
ping (i.e., continuous deformation) from a particle-number-
nonconserving bosonic BdG Hamiltonian to a particle-
number-conserving one, which preserves symmetries com-
muting with τ3. Actually, their mapping is topologically
equivalent to ours, although it does not keep the excitation
spectrum of the system. One can obtain their proposed map-
ping by the replacement e±(1−λ)W (k) → [cosh W (k) ± (1 − λ)
sinh W (k)] in Eq. (23), with λ ∈ [0, 1], and thus arrive at
a particle-number-conserving Hamiltonian. The replacement
does not close the band gap and preserves the referred symme-
tries due to the positive definiteness of eW (k) and cosh W (k).
Notably, we have also proved that the proposed mapping
eW (k) preserves symmetries that anticommute with τ3. Be-
sides, we have provided a physical picture of the reduction
of the dynamically stable BdG Hamiltonian: the free-boson
system with particle-number-nonconserving terms is actually
a single-particle one with the squeezed vacuum state |GS〉 in
the quasiparticle basis.

In addition to these differences, we also find the in-
ternal sublattice symmetry (25) in the free-boson system.
Systems with this symmetry are classified to an additional
topological class, i.e., class AIII, and can have a Z-type
topological bosonic Bogoliubov excitation in odd spatial di-
mension shown in Table I. It is worth noting that spatial
symmetry can also support topological bosonic excitations
in 1D systems. For example, a high-lying topological band
supported by inversion symmetry has been reported in 1D
optical lattice loaded with bosonic cold atoms [91]. Actually,
additional spatial symmetry can modify the topological clas-
sification [92]. However, the purpose of this work is to find
topological bosonic Bogoliubov excitations in one dimension
guaranteed by additional internal symmetries. Our obtained
topological classification enriches the current threefold way
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(b)(a)

BB AA

(c)

FIG. 1. (a) The prototypical model whose unit cell is formed by
the sublattices A and B. The shaded arrows denote the biparticle
processes at sublattice A with ξ = |ξ |eiφ and B with −ξ . (b) The
Bloch excitation bands of the BdG Hamiltonian matrix HI (k) (shaded
areas) characterized by the winding number ν as a function of t2 for
μ = 5t1 and ξ = t1. (c) The circles defined by q(k) in the trivial (solid
blue circle) and topological (dashed red circle) invariants. For t1 < t2,
the dashed red circle encloses the origin once while the winding
number is vanishing for t1 > t2.

and opens a new avenue to study topological physics of the
free-boson system.

IV. TOPOLOGICAL BOSONIC BOGOLIUBOV
EXCITATION IN ONE DIMENSION

A. Prototypical model

Here we resort to a 1D prototypical model to illustrate the
nontrivial topological bosonic Bogoliubov excitation with the
hidden sublattice symmetry. Specifically, suppose that there
is a dimer chain formed by bosonic modes and each mode
is coupled to nearest-neighbor sites, as shown in Fig. 1(a).
The associated BdG Hamiltonian of such a system ĤI is
divided into two parts: the single-particle part Ĥ (1)

I and
particle-number-nonconserving term Ĥ (2)

I . The former part is
expressed as

Ĥ (1)
I =

L∑
j=1

[
μ

∑
s=±

â†
j,sâ j,s+(t1â†

j,+â j,−+t2â†
j+1,+â j,−+H.c.)

]
,

(33)

where μ > 0 is the onsite potential and t1, t2 > 0 are the intra-
and intercell couplings, respectively. Here â j,s (â†

j,s) are the
bosonic annihilation (creation) operators, and j denotes the
jth unit cell while the subscripts s = ± label the sublattices A
and B, respectively. The latter is given by

Ĥ (2)
I = ξ

2

L∑
j=1

∑
s=±

sâ†
j,sâ

†
j,s + H.c., (34)

where ξ = |ξ |eiφ ∈ C, |ξ | and φ denote the strength and
phase of the particle-number-nonconserving term, respec-
tively. Subject to the translation-invariance and periodic
boundary condition, the bosonic BdG Hamiltonian can be
transformed into the momentum space, and obtained by ĤI =
1
2

∑
k �̂

†
kHI(k)�̂k , where �̂k = (âk+, âk,−, â†

−k,+, â†
−k,−)T is

the bosonic Nambu spinor of the chain and k ∈ [0, 2π ) is the
momentum. Note that we have neglected the constant in the

BdG Hamiltonian. The Bloch BdG Hamiltonian matrix reads

HI(k) =
(

H (1)
I (k) H (2)

I[
H (2)

I

]∗ [
H (1)

I (−k)
]∗

)
,

H (1)
I (k) = μI + (t1 + t2 cos k)σ1 + t2 sin kσ2,

H (2)
I = ξσ3, (35)

where σ1,2,3 are the conventional Pauli matrices.
From Eq. (9), the bosonic BdG Hamiltonian can be diago-

nalized via a Bogoliubov transformation,

ĤI =
∑

k

∑
s=±

Es(k)γ̂ †
k,sγ̂k,s, (36)

where the Bloch excitation spectrum is

E±(k) = μ̃ ±
√

t2
1 + t2

2 + 2t1t2 cos k, (37)

with μ̃ =
√

μ2 − |ξ |2. Here the annihilation operators of the
quasiparticle are γ̂k,s = 〈vs(k)|τ3�̂k and |vs(k)〉 are the eigen-
states of the dynamical matrix Hτ I(k) = τ3HI(k). It can be
seen that a excitation gap is open at μ̃ if t1 �= t2, which is
shown in Fig. 1(b). By the way, μ̃ � t1 + t2 is assumed for
the thermodynamic stability.

B. Topological invariant and its measurement

Now let us show that such a 1D free-boson system supplies
nontrivial topological invariant. We first show that the single-
particle part Ĥ (1)

I in the bosonic BdG Hamiltonian respects
the sublattice symmetry in the interaction picture with ÛI(t ) =∏

k,s exp(−iμâ†
k,sâk,st ). That is, one can obtain Eq. (25) by the

replacements h(k) → h(1)
I (k) = [H (1)

I (k) − μI] and S → σ3.
It is worthwhile to mention that the Hamiltonian matrix h(1)

I (k)
describes the SSH model. It can be readily to verify that the
single-particle Hamiltonian respects the time-reversal symme-
try

T̃
[
H (1)

I (−k)
]∗T̃ −1 = H (1)

I (k), T̃ = I,

and the matrix of the particle-number-nonconserving term is
symmetric (H (2)

I )T = H (2)
I . Therefore, following the treatment

in Sec. III C, we perform the pseudo-unitary transformation
eW with

W = r

(
eiφσ3

e−iφσ3

)
,

r = ln
√

(μ − |ξ |)/(μ + |ξ |)/2. Then the bosonic BdG
Hamiltonian can be transformed to a single-particle one,

ĤI =
∑

k

{μ̃(β̂†
k,+β̂k,+ + β̂

†
k,−β̂k,−)

+ [(t1 + t2e−ik )β̂†
k,+β̂k,− + H.c.]}, (38)

where β̂k,± = cosh râk,± ± eiφ sinh râ†
−k,±. The associated

Bloch Hamiltonian matrix becomes

H̃I(k) = μ̃I + (t1 + t2 cos k)σ1 + t2 sin kσ2. (39)

Explicitly describing the SSH model, such a Hamiltonian
respects the sublattice symmetry and is classified to class
AIII. It implies that this model can have nontrivial topological
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bosonic Bogoliubov excitation. To characterize its topology,
we can define the winding number

ν = 1

2π i

∫
BZ

q−1(k) dq(k) = 1

2π

∫ 2π

0
∂kϕ(k) dk, (40)

where q(k) = t1 + t2eik and ϕ(k) = arg[q(k)]. It turns out
that the winding number ν is nontrivial only if t1 < t2 is
satisfied.

Alternatively, the symplectic polarization of the 1D system
P is also capable of characterizing the topology of the high-
lying excitation. The symplectic polarization, by definition, is
given by

P = 1

2π

∫ 2π

0
dkA(k), A(k) = i〈v−(k)|τ3|∂kv−(k)〉, (41)

where A(k) is the Berry connection and |v−(k)〉 is the lower
excitation band of the Bloch BdG Hamiltonian matrix (35).
We note that the inner product has the symplectic structure τ3

due to the commutation relation (5). In general, the symplectic
polarization, which is a geometrical quantity, is not quantized
because of the gauge dependence of the Berry connection
A(k). In the presence of the sublattice symmetry, the sym-
plectic polarization P is quantized in units of 1/2 (see the
proof in Appendix F). Considering the eigenstate of the lower
band

|v−(k)〉 = 1√
2

eW

⎛
⎜⎜⎝

e−iϕ(k)

1
0
0

⎞
⎟⎟⎠,

we obtain the symplectic polarization of the system

P = 1

4π

∫ 2π

0
∂kϕ(k) dk = ν

2
. (42)

Eliminating the U(1) gauge redundancy, we have a univer-
sal relation between the symplectic polarization and winding
number, i.e., P = ν/2 mod 1 [93].

Based on the above topological invariants, there is a more
transparent way to characterize the band topology, that is,
by counting the number of times that eiϕ(k) wraps around
the origin for k ∈ [0, 2π ). Figure 1(c) plots the circle of the
function q(k) centered at (t1, 0) in the complex plane. The
winding number ν is nonvanishing and the phase ϕ(k) is
surjective to [0, 2π ) once the origin is enclosed by q(k). For
the trivial winding number (ν = 0), the origin is not inside the
circle of q(k), which corresponds to the nonsurjection of ϕ(k).
Explicitly, the phase |ϕ(k)| < π/2 in k ∈ [0, 2π ) for ν = 0.

We note that such a topological excitation can be measured
in experiments. To do this, we define the correlation function
Cj (t ) = −i�(t )〈[x̂ j (t ), x̂ j (0)]〉 of a unit cell operator x̂ j =∑

s=±(â j,s + â†
j,s)/

√
2. Here � is the Heaviside step function.

In the periodic boundary condition, Cj (t ) does not depend
on the index j. Transformed into the frequency domain, the
correlation function is obtained by Cj[ω] = 1

2L

∑
k (Ck,+[ω] +

Ck,−[ω]) (L is the number of unit cells), where

Ck,±[ω] = cosh 2r ± cos ϕ(k)

ω − E±(k) + iκ
, (43)

1

0

-1 -2 0 2

(a)
Trivial excitation
Top. excitation

(c)

3 4 5 6 7

Top. excitation
10

5

03 4 5 6 7

(b) Trivial excitation

FIG. 2. (a) cos ϕ vs k. Solid blue and dashed red curves represent
the trivial and topological excitations, respectively. (b), (c) The imag-
inary part of the correlation function −ImCj[ω] vs frequency ω for
the trivial (b) and topological (c) excitations. The number of the unit
cell is assumed as L = 30. The solid blue and dashed red contours
in (b) and (c) denote the envelopes of the resonance, respectively.
Parameters: μ = 5t1, ξ = t1, κ = 0.006t1, and t2 = 0.7t1 for (b), and
t2 = 1.3t1 for (c).

and κ−1 depicts the lifetime of the particle. Note that we have
neglected the nonresonant terms.

The imaginary part of the correlation function −ImCj[ω]
reflects the resonance of the excitation spectrum of the sys-
tem. More precisely, −ImCk,+[ω] and −ImCk,−[ω] exhibit the
resonance of the upper band E+(k) and lower band E−(k)
at momentum k, respectively, since −ImCk,±[ω] ∝ δ(ω −
E±(k)) in the limit κ → 0+. It implies that, for sufficiently
small κ , each peak of −ImCj[ω] represents the resonance of
frequency ω with the bands at momenta k, i.e., ω � E±(k)
[see Figs. 2(b) and 2(c)]. These resonance peaks one-to-one
correspond to k ∈ [0, π ] since E±(k) change monotonically
and Ck,±[ω] = C−k,±[ω].

More importantly, the envelope of the resonance of
−ImCj[ω] carries the topological information of the system
through the numerators cosh 2r ± cos ϕ(k). Figure 2(a) plots
cos ϕ(k) for the trivial (solid blue contour) and nontrivial
(dashed red contour) winding number. When ν = 1, the func-
tion cos ϕ(k) monotonically changes from 1 to −1 for k ∈
[0, π ]. We thus expect that the resonance envelope manifests
the monotonicity for the high-lying topological excitation.
Such a result can be verified by the dashed red contour
plotted in Fig. 2(c). In contrast, cos ϕ(k) nearly equals 1 in
k ∈ [0, π ] and ϕ(0) = ϕ(π ) = 0 when ν = 0. Therefore, as
shown in Fig. 2(b), the envelope (solid blue contour) presents
the nonmonotonic behavior. As a summary, one can measure
the monotonicity of the resonance envelope of a Bloch band
to examine the topological or trivial bosonic Bogoliubov ex-
citation for the 1D model. In addition, this monotonicity also
reflects the Zak phase of a 1D system with inversion symmetry
[94].
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FIG. 3. (a) Excitation spectrum E vs t2 in the open boundary
condition with L = 100 and μ = 5t1. (b) Amplitude of the left edge
excitation operator, corresponding to the dashed red line in (a). The
circles denote the analytical solution given by Eq. (44), and the
lines are numerically plotted. The solid (dashed) lines and circles
are responsible for the particle (hole) parts of the edge mode. (c), (d)
−ImC1[ω] vs ω for the trivial and nontrivial topological invariants.
The peak occurred at the midgap in (d) represents the resonance of
the left edge-excitation operator. The related parameters are L = 30,
μ = 5t1, ξ = t1, κ = 0.006t1, and t2 = 0.7t1 for (c), and t2 = 1.3t1

for (d).

C. Edge excitation and robustness against
symmetry-preserving disorders

The bulk-edge correspondence ensures the occurrence of
the edge excitation in the bulk gap when the open boundary
condition is applied, as shown in Fig. 3(a). Performing the
condition to the system, we adopt the ansatz for the edge-
excitation operators as

β̂L =
L∑

j=1

δ j β̂ j+, β̂R =
L∑

j=1

δL− j+1β̂ j−, (44)

where δ = −t1/t2 (t1 < t2). Here the subscript L/R denotes
the left/right chirality of the system. It turns out that these
edge-excitation operators β̂L and β̂R satisfy[

β̂L, Ĥ (OBC)
I

] = μ̃β̂L + O(δL+1),[
β̂R, Ĥ (OBC)

I

] = μ̃β̂R + O(δL+1), (45)

where Ĥ (OBC)
I denotes the Hamiltonian of the system in the

open boundary condition. The last terms of Eq. (45) are van-
ishing in the thermodynamic limit (L → ∞).

In the original basis, the edge-excitation operators are
formed by the “particles” (â j,s) and “holes” (â†

j,s). For exam-

ple, β̂L = ∑
j (cosh rδ j−1â j,+ + eiφ sinh râ†

j,+). Figure 3(b)
plots the amplitude of the left edge-excitation operator for
L = 100. The numerical result is consistent with our ana-
lytical solution. Moreover, the edge excitations can also be
measured by the correlation function Cj=1[ω] at the left-end
unit cell. We note that this correlation-function approach can
also be utilized to identify the signature of non-Hermitian

2

1
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0 0.5 1 0 0.5 1

2

1

0

-1

-2

(a) (b)

FIG. 4. (a), (b) The mean excitation spectra E of 100 samples as
a function of the disorder strength D in the open boundary condition.
The dashed red lines in the midgap denote the edge modes in the
presence of disorders. Here E0 is the center of the excitation spec-
trum. In (a) the disorder is in the hopping terms of the samples while
it is in onsite-energy terms in (b). The disorder is assumed to range
[−D, D]. The parameters are L = 50, μ = 5t1, ξ = t1, t2 = 1.3t1.

(or spectral) topology within dissipative settings, such as the
bosonic analog of Majorana zero mode [95]. As shown in
Figs. 3(c) and 3(d), −ImC1[ω] has a peak at ω = μ̃ for ν = 1
while absent for ν = 0. Such a resonance peak indicates the
occurrence of the left edge-excitation operator β̂L. Notably,
here the resonance envelope is different from the case shown
in Figs. 2(b) and 2(c) due to the effect of the open boundary
condition.

Due to the topological protection, the existence of
such edge-excitation operators is robust against symmetry-
preserving disorders. Here let us discuss the influence of two
types of disorders on the edge excitations for comparison, i.e.,
hopping and onsite disorders. The former type preserves the
sublattice symmetry and time-reversal symmetry. In this case,
the edge-excitation operators still occur at the midgap and are
modified to

β̂
(dis)
L =

L∑
j=1

⎛
⎝ j∏

l=1

− t2l−1

t2l

⎞
⎠β̂ j,+,

β̂
(dis)
R =

L∑
j=1

⎛
⎝L− j+1∏

l=L

− t2l−1

t2l

⎞
⎠β̂ j,−, (46)

where t2l−1 and t2l are the strengths of intra- and intercell
hoppings at the lth unit cell. The two edge-excitation oper-
ators commute with the disordered Hamiltonian when L is
sufficiently large. It indicates that the edge excitations are
robust against the symmetry-preserving disorder. Figure 4(a)
shows that the edge excitations remain unchanged even in
the presence of strong disorder with strength D, which is
consistent with our analysis. In contrast, the presence of onsite
disorder breaks the sublattice symmetry. It, therefore, leads to
the disappearance of edge excitations. In Fig. 4(b) the edge
excitations become nondegenerate and gradually join the bulk
without closing the band gap when the strength of disorder
D becomes strong. This contrast verifies that the high-lying
topological bosonic Bogoliubov excitation (40) is intrinsically
supported by the sublattice symmetry.
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V. CONCLUSIONS

In conclusion, we have investigated the free-boson sys-
tem governed by the bosonic BdG Hamiltonian in the
thermodynamic-stability regime (or slightly positive definite
regime). The reduction of the particle-number-nonconserving
BdG Hamiltonian to a single-particle one has been shown via
a pseudo-unitary transformation. Building on this, we have
unveiled the existence of the sublattice symmetry for the Bo-
goliubov excitation. Such a symmetry supplies an additional
topological class, i.e., class AIII, which enriches the current
framework for the topological threefold way of the free-boson
system. A category of bosonic BdG Hamiltonians respect-
ing the sublattice symmetry has been presented. To further
illustrate the topological Bogoliubov excitation of the 1D
free-boson system, we have also studied a prototypical model
which has the nontrivial winding number (or symplectic po-
larization) guaranteed by this symmetry. A measurement of
the topological invariant through the correlation function has
been proposed. Moreover, as a topological effect, edge exci-
tations have also been demonstrated, which are robust against
symmetry-preserving disorders. Our work is expected to in-
spire the experimental activity since the proposed 1D model
can be readily implemented in various platforms including
the photonic system [96], superconducting circuit [97], optical
lattice loaded with cold bosonic atoms [98], etc.
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APPENDIX A: DYNAMICAL STABILITY AND ITS
CONNECTION TO THERMODYNAMIC STABILITY

Here we discuss the dynamical stability for the free-boson
system. A free-boson system is dynamically stable if the dy-
namical matrix Hτ (k) is diagonalizable and its eigenvalues are
real, i.e., there exists a pseudo-unitary matrix such that

Hτ (k)V (k) = V (k)�(k),

where �(k) = E (k) ⊕ −E (−k) is a real and diagonal matrix.
It implies that the normal mode of the dynamically stable
Ĥ exhibits strictly bounded motion [72,83]. Hence, the dy-
namical stability can be signaled by the complex eigenvalue
or Jordan block. For instance, the non-Hermiticity of Hτ (k)
allows the appearance of imaginary modes, which grow ex-
ponentially in time, indicating the dynamical instability. On
the other hand, the ground state for the dynamically stable
Ĥ is not a necessity because the system may have negative
spectrum, which is called the Landau instability [41]. In the
presence of Landau instability, the system can lower its energy
by exciting a negative-eigenvalue mode.

Finally, we remark that the two notions of thermody-
namic and dynamical stability are independent of each other,
although the system can be both thermodynamically and
dynamically stable, for example, H (k) � 0 and Hτ (k) is

diagonalizable. They can be distinguished by Jordan blocks
and negative eigenvalues of the dynamical matrix in the di-
agonalization. In addition, the bosonic system always has a
ground state in the thermodynamic-stability regime, which is
in sharp contrast to the dynamical-stability regime.

APPENDIX B: DETAILS OF TIME-REVERSAL,
PARTICLE-HOLE AND CHIRAL SYMMETRIES

In this Appendix we shall show more details of time-
reversal, particle-hole, and chiral symmetries on the many-
and single-particle spaces for both of free-fermion and boson
systems.

Let us define time-reversal, particle-hole, and chiral sym-
metries implemented in free-fermion systems [3], and then
these notions can be naturally inherited for free-boson sys-
tems. First, let {ψ̂ki, ψ̂

†
ki}Ñ

i=1 be a set of fermionic annihilation
and creation operators with crystal momentum k. Here i
denotes the nonspatial degree of freedom, e.g., Pauli-spin
quantum number (i = ±1/2). These annihilation and creation
operators satisfy the fermionic anticommutation relation,
{ψ̂ki, ψ̂

†
k′ j} = δkk′δi j . We consider a fermionic BdG Hamilto-

nian in momentum space,

Ĥf =
∑
k,i j

[
ψ̂

†
kiKi j (k)ψ̂k j + 1

2
(i j (k)ψ̂†

kiψ̂
†
−k j + H.c.)

]
,

(B1)

where K (k) = K†(k) and (k) = −T (−k) describes
the pairing field in the free-fermion system. Writing
into the Nambu representation, the Hamiltonian reads
Ĥf = 1

2

∑
k[�̂†

kHf (k)�̂k + TrK (k)], where �̂k =
(ψ̂k1, . . . , ψ̂kÑ , ψ̂

†
−k1, . . . , ψ̂

†
−kÑ

)T is the fermionic Nambu
spinor and

Hf (k) =
(

K (k) (k)
−∗(−k) −KT (−k)

)

is the BdG Hamiltonian on the single-particle (or particle-
hole) space.

Time-reversal operator T̂ , which is antiunitary, acts on the
fermionic operator, by definition, as

T̂ ψ̂kiT̂
−1 =

∑
j

(UT )i jψ̂−k j, T̂ iT̂ −1 = −i, (B2)

where UT is a unitary matrix. A system is time-reversal in-
variant if T̂ preserves the fermionic anticommutation relation,
i.e., T̂ {ψ̂ki, ψ̂

†
k j}T̂ −1 = δi j , and if the Hamiltonian satisfies

T̂ Ĥ f T̂ −1 = Ĥf . It readily leads to the condition for the BdG
Hamiltonian on the single-particle space

T̂ : T H∗
f (−k)T −1 = Hf (k), (B3)

where the unitary matrix T = U †
T corresponds to the time-

reversal operator on the single-particle space.
Particle-hole operator Ĉ is unitary and mixes the annihila-

tion and creation operators,

Ĉψ̂kiĈ
−1 =

∑
j

(U ∗
C )i jψ̂

†
−k j, (B4)
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where UC is a unitary matrix. One can readily check that the
anticommutation relation is preserved under the particle-hole
transformation, Ĉ{ψ̂ki, ψ̂

†
k j}Ĉ−1 = δi j . The system is invariant

under particle-hole transformation if ĈĤ f Ĉ−1 = Ĥf , which
leads to

Ĉ : CHT
f (−k)C−1 = −Hf (k), (B5)

where C = U †
C corresponds to the particle-hole operator on

the single-particle space. Due to the Hermiticity of the BdG
Hamiltonian H∗

f = HT
f , we obtain the more familiar expres-

sion

CH∗
f (−k)C−1 = −Hf (k). (B6)

Intrinsically, the BdG Hamiltonian considered here has the
particle-hole symmetry with C = τ1.

Similarly, the chiral operator, which is the combination of
time-reversal and particle-hole operators, 	̂ = T̂ Ĉ, is antiuni-
tary and also mixes the annihilation and creation operators,

	̂ψ̂ki	̂
−1 =

∑
j

(U ∗
	 )i jψ̂

†
k j, (B7)

where U	 = U ∗
CUT . As a combination of time reversal and

particle hole, this transformation also preserves the anticom-
mutator. And the chiral symmetry 	̂Ĥf 	̂

−1 = Ĥf yields the
condition

	̂ : 	Hf (k)	−1 = −Hf (k), (B8)

where 	 = U †
	 . On the single-particle space, chiral operator 	̂

corresponds to the unitary matrix 	.
Inherited from the notions of these symmetries for free

fermions, one can define the bosonic version of time rever-
sal T̂ , particle hole Ĉ, and chiral 	̂. Note that the involved
notations are also inherited for the free-boson case. These
operators acting on the bosonic Nambu spinor �̂k are defined
by, respectively [60],

T̂ �̂kiT̂
−1 =

∑
j

(UT )i j�̂−k j, (B9)

Ĉ�̂kiĈ
−1 =

∑
j

(U ∗
C )i j�̂

†
−k j, (B10)

	̂�̂ki	̂
−1 =

∑
j

(U ∗
	 )i j�̂

†
k j, (B11)

where UT , UC and U	 = U ∗
CUT are unitary. Time-reversal and

chiral operators are antiunitary (T̂ iT̂ −1 = −i and 	̂i	̂−1 =
−i), while the particle-hole operator is unitary. To preserve
the bosonic commutation relation (5) under these transforma-
tions, i.e., Ô[�̂ki, �̂

†
k j]Ô

−1 = (τ3)i j , where Ô = T̂ , Ĉ, 	̂, the
unitary matrices UT , UC , and U	 should satisfy the following
relations:

[UT , τ3] = 0, {UC, τ3} = 0, {U	, τ3} = 0. (B12)

The three associated symmetries are then defined, ÔĤÔ−1 =
Ĥ , which leads to [Eqs. (17)–(19)]

T H∗
τ (−k)T −1 = Hτ (k), (B13)

CH∗
τ (−k)C−1 = −Hτ (k), (B14)

	Hτ (k)	−1 = −Hτ (k), (B15)

where T = U †
T , C = UC

† and 	 = U †
	 . For the free-boson sys-

tem considered here, the particle-hole operator exchanges the
annihilation and creation operators, Ĉ : �̂k → τ1(�̂†

−k )T =
�̂k, and the bosonic BdG Hamiltonian inherently has the
particle-hole symmetry with the operator C = τ1 on the Krein
space.

APPENDIX C: PROOF OF LEMMA 1

Now let us prove Lemma 1. Suppose the bosonic BdG
Hamiltonian is dynamically stable. The dynamical matrix
Hτ (k) is thus diagonalizable and its eigenvalues are real,

Hτ (k)V (k) = V (k)�(k), (C1)

where �(k) = E (k) ⊕ −E (−k) and V (k)τ3V †(k) = τ3, and
k denotes the crystal momentum. We depict E (k) (−E (−k))
as the particle-(hole-)like spectrum of the free-boson system,
due to the particle-hole symmetry. The columns of

V (k) = (|φ1(k)〉, . . . , |φÑ (k)〉, |φ′
1(k)〉, . . . , |φ′

Ñ (k)〉)

[|φ′
i (k)〉 = τ1|φ∗

i (−k)〉 for 1 � i � Ñ] are the eigenvectors
of the dynamical matrix. They can span the indefinite Krein
space J : the former and latter Ñ eigenvectors have the positive
and negative square norms, respectively,

‖|φi(k)〉‖2 = 〈φi(k)|τ3|φi(k)〉 > 0,

‖|φ′
i (k)〉‖2 = 〈φ∗

i (−k)|τ1τ3τ1|φ∗
i (−k)〉 < 0.

The Krein space can be decomposed to two subspaces, i.e.,
J = J+ ⊕ J−, where J± denote the subspaces of J equipped
with positive and negative inner products, respectively. The
former (latter) Ñ eigenvectors form a complete orthogonal
normalized basis and can span a Hilbert space H with dimen-
sion Ñ [99], corresponding to the particle (hole) space.

1. Symmetry with unitary transformation

Suppose the free-boson system have a symmetry,
OHτ (k)O−1 = ηOHτ (k), where the unitary matrix
O obeys Oτ3 = ηOτ3O and ηO = ±. Let Vj (k) =
(|φ j1 (k)〉, |φ j2 (k)〉, . . . , |φ jr (k)〉) be the r-fold eigenvectors
of Hτ (k) with particle-like eigenvalue Ej (k) ∈ R,

Hτ (k)Vj (k) = Ej (k)Vj (k). (C2)

It is worth noting that we have neglected the eigenvectors
belonging to J− with the same eigenvalue Ej (k) in Eq. (C2),
as the eigenvectors Vj (k) in J+ are fully capable of spanning
the eigenspace HEj ⊂ H. Applying the unitary symmetry, we
arrive at

Hτ (k)OVj (k) = ηOEj (k)OVj (k). (C3)

(i) For ηO = +, the columns of OVj (k) are still eigenvec-
tors corresponding to the particle-like eigenvalue Ej (k) and
are complete for the eigenspace. It implies the linear combi-
nation

OVj (k) = Vj (k)Lj (k), (C4)
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where Lj (k) is a r-dimensional matrix. Taking advantage of
V †

j (k)τ3Vj (k) = Ir×r , we obtain

Ir×r = V †
j (k)O†τ3OVj (k)

= L†
jV

†
j (k)τ3Vj (k)Lj (k)

= L†
j (k)Lj (k). (C5)

That is, Lj (k) is unitary. Similarly, we have

OV ′
j (k) = V ′

j (k)L′
j (k), (C6)

where V ′
j (k) = τ1V ∗

j (−k) denote the eigenvectors with hole-
like eigenvalue −Ej (−k), and L′

j (k) is also unitary. Therefore,
we have OV (k) = V (k)L(k), where L(k) is unitary and takes
the form

L(k) = L1(k) ⊕ L2(k) ⊕ · · · ⊕ L′
1(k) ⊕ L′

2(k) ⊕ · · · . (C7)

It gives us

OV (k)V †(k)O† =V (k)L(k)L†(k)V †(k)

=V (k)V †(k). (C8)

Due to e2W (k) = V (k)V †(k), it finally arrives at

OW (k)O−1 = W (k). (C9)

(ii) For ηO = −, O exchanges the particle and hole
mutually. OVj (k) corresponds to the hole-like eigenvalue
−Ej (k) = −Ej′ (−k) with the r′-fold eigenvectors V ′∗

j′ (−k).
We then have the linear combination

OVj (k) = V ′∗
j′ (k)Rj′ (k), (C10)

−Ir×r = V †
j (k)O†τ3OVj (k)

= (
R†

j′ (k)V ′T
j′ (k)

)
τ3(V ′∗

j′ (k)Rj′ (k))

= −R†
j′ (k)Rj′ (k), (C11)

where Rj′ (k) is a r′ × r rectangular matrix and r′ � r. Simi-
larly, we can have

OV ′∗
j′ (k) =Vj (k)R′

j (k), (C12)

Ir′×r′ =V ′T
j′ (k)O†τ3OV ′∗

j′ (k)

= R′†
j (k)V †

j (k)τ3Vj (k)R′
j (k)

= R′†
j (k)R′

j (k), (C13)

where R′
j (k) is a r × r′ matrix, and r � r′. Thus, we obtain

r = r′, and Rj′ (k) and R′
j (k) are unitary. Hence, we obtain

OV (k) = V (k)Z (k), where Z (k) is unitary and takes the form

Z (k) =
(

R(k)
R′(k)

)
,

R(k) = R1′ (k) ⊕ R2′ (k) ⊕ · · · ,

R′(k) = R′
1(k) ⊕ R′

2(k) ⊕ · · · . (C14)

It, therefore, gives us

OW (k)O−1 = W (k). (C15)

Hence, the mapping eW (k) preserves unitary symmetries which
commute or anticommute with τ3.

2. Symmetry with antiunitary transformation

Now let us consider a symmetry with antiunitary transfor-
mation OH∗

τ (−k)O−1 = ηOHτ (k), where the unitary matrix
O obeys Oτ3 = ηOτ3O. For the particle-like eigenvalue Ej (k)
with the r-fold eigenvectors Vj (k), we have

Hτ (k)OV ∗
j (−k) = ηOEj (−k)OV ∗

j (−k). (C16)

(i) ηO = +. OV ∗
j (−k) corresponds to particle-like eigen-

value El (k) = Ej (−k), with the eigenvectors Vl (k). We have
the linear combination

OV ∗
j (−k) = Vl (k)Ll (k). (C17)

Based on the above analysis, it turns out Ll (k) is a r-
dimensional unitary matrix. Similarly, we have

OV ′∗
j (−k) = V ′

l (k)L′
l (k), (C18)

where L′
l (k) is a r-dimensional unitary matrix. Thus, we have

OV ∗(−k) = V (k)L(k), where

L(k) =L1(k) ⊕ L2(k) ⊕ · · · ⊕ L′
1(k) ⊕ L′

2(k) ⊕ · · · .

(C19)

Thus, it also gives us

OW ∗(−k)O−1 = W (k). (C20)

(ii) For the case ηO = −, OV ∗
j (−k) corresponds to the

hole-like eigenvalue −Ej (−k), with the eigenvectors V ′
j (k).

Similarly, we still have the linear combinations

OV ∗
j (−k) = V ′

j (k)R j (k), (C21)

OV ′∗
j (−k) = Vj (k)R′

j (k), (C22)

and R(k) and R′(k) are r-dimensional unitary matrices.
Equivalently, we have OV ∗(−k) = V (k)Z (k), where

Z (k) =
(

R(k)
R′(k)

)
,

R(k) = R1(k) ⊕ R2(k) ⊕ · · · ,

R′(k) = R′
1(k) ⊕ R′

2(k) ⊕ · · · . (C23)

Thus, we have

OW ∗(−k)O−1 = W (k). (C24)

In a summary, we have proved that the mapping eW (k)

preserves those nonunitary symmetries that commute or an-
ticommute with τ3, if the bosonic BdG Hamiltonian is
dynamically stable.

APPENDIX D: TOPOLOGICAL TRIVIALITY
AT ZERO ENERGY

Here we show that there is no nontrivial topology for
the thermodynamically stable free-boson system. Concretely,
we consider the case where the Bogoliubov bands of the
system are gapped at zero energy. By performing the
block-diagonalization (14) with eW (k), we obtain the trans-
formed dynamical matrix H ′

τ (k) = K̃ (k) ⊕ −K̃T (−k) in the
quasiparticle basis. Let Ej (k) > 0 and |u j (k)〉 with j =
1, . . . , Ñ be the eigenvalues and eigenstates of the single-
particle Hamiltonian matrix K̃ (k), respectively. Thus, based
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on Eq. (12), we have

H ′
τ (k)|φ′

j (k)〉 = Ej (k)|φ′
j (k)〉,

H ′
τ (k)τ1|φ′∗

j (−k)〉 = − Ej (−k)τ1|φ′∗
j (−k)〉, (D1)

where |φ′
j (k)〉 = (|u j (k)〉T , 0)T . Equation (D1) can be ex-

pressed in a tight form, H̃τ (k)Ũ (k) = Ũ (k)�(k), with
�(k) = E (k) ⊕ −E (−k) and

V ′ = (|φ1〉, . . . , |φ′
Ñ 〉, τ1|φ′∗

1 〉, . . . , τ1|φ′∗
Ñ 〉). (D2)

Here we temporarily omit (k) for brevity. Note that the unitary
matrix (D2) is formed of two blocks which correspond to the
bands upper and lower than zero energy, respectively. Then
the Bogoliubov bands can be continuously deformed to ±1
without closing zero energy. Thus, the flattened Hamiltonian
is given by

Hτflatten(k) =V ′(k)

(
I 0
0 −I

)
V ′†(k)

=
(

I 0
0 −I

)
= τ3. (D3)

The second equality always holds due to the completeness
of the set of {|u j (k)〉}Ñ

j=1. This flattened Hamiltonian implies
that, in terms of the zero-energy gap, the system is always
topologically trivial in any symmetry classes and any dimen-
sions [57,61].

For a free-boson system where the spectrum �(k) of the
dynamical matrix Hτ (k) is gapless at zero energy, we can ob-
tain a corollary in light of the no-go theorem. That is, adding
an infinitesimal perturbation I ( → 0+) to H (k) does not
influence the topology of the system since the approach does
not result in the effect of the band inversion anyway even
though a gap is open by the perturbation at zero energy. In
other words, circumventing the possible exceptional point by
the added energy I does not affect the topology of the system
at zero energy. Therefore, it is safe to study the topological
excitation of the perturbed Hamiltonian H (k) + I instead
of H (k).

APPENDIX E: SUBLATTICE SYMMETRY
ON THE MANY-PARTICLE SPACE

In general, it is sufficient to consider the sublattice sym-
metry at the single-particle level as the AZ classification is
motivated to classify the properties of Bloch Hamiltonians in
terms of nonunitary symmetries [7]. But it would be better to
help us understand the sublattice symmetry by lifting it on the
many-particle space.

The sublattice operator acts on the bosonic Nambu spinor
as

Ŝ�̂kiŜ
−1 =

∑
j

Si j�̂k j, (E1)

where S = S† = S−1. One can readily check that the
bosonic commutation relation (5) is preserved under the
sublattice transformation, Ŝ[�̂ki, �̂

†
k j]Ŝ

−1 = (τ3)i j . In the
squeezed-state representation with vacuum |GS〉, the associ-
ated transformation becomes Ŝ : β̃k → S̃β̃k. As the mapping
eW (k) preserves the sublattice symmetry proposed here, thus,
the sublattice transformation also preserves the bosonic com-
mutation relation, Ŝ[β̃ki, β̃

†
k j]Ŝ

−1 = δi j .
We focus on the quadratic-bosonic Hamiltonian in the

squeezed-state representation, which is given by Ĥ =∑
k β̃

†
kK̃ (k)β̃k. As discussed in the main text, the sublattice

symmetry requires the excitation spectrum being symmetric
with respect to the nonzero energy ε, and only the traceless
part of the Hamiltonian matters for the band topology. We
switch into the interaction picture with Ĥ0 = ε

∑
k β̃

†
kβ̃k, and

obtain the desired Hamiltonian as ĥ = ∑
k β̃

†
kh(k)β̃k. Thus,

the sublattice symmetry reads

ŜĥŜ−1 = −ĥ. (E2)

It can be seen that this symmetry is not unitary on the
many-particle space, which is different from the time-reversal,
particle-hole, and chiral symmetries.

APPENDIX F: PROOF ON THE QUANTIZATION
OF THE SYMPLECTIC POLARIZATION

Suppose that a 1D free-boson model with the Bloch BdG
Hamiltonian matrix H (k) respects the sublattice symmetry
(S) with respect to the band gap ε. Let Ej (k) � 0 and
|φ j (k)〉 = eW (k)(|u j (k)〉T , 0)T be the eigenvalues and right
eigenstates of the dynamical matrix Hτ (k) below the band
gap ε, where j = 1, . . . , Ñ/2. Due to the sublattice symmetry,
we can obtain the eigenvalues 2ε − Ej (k) above the gap. The
associated right eigenstates |φ̃ j (k)〉 are given by

|φ̃ j (k)〉 = eW (k)

(|Su j (k)〉
0

)
, (F1)

which obey Hτ (k)|φ̃ j (k)〉 = (2ε − Ej (k))|φ̃ j (k)〉. Subse-
quently, the symplectic polarization for the whole eigenstates
can be calculated as

Pwhole = i

2π

N/2∑
j=1

∫
BZ

(〈φ j (k)|τ3| dφ j (k)〉 + 〈φ̃ j (k)|τ3| dφ̃ j (k)〉)

= i

2π

N/2∑
j=1

∫
BZ

[
(〈u j (k)|, 0)eW (k)τ3 deW (k)

(|u j (k)〉
0

)
+ (〈Su j (k)|, 0)eW (k)τ3 deW (k)

(|Su j (k)〉
0

)]

= i

2π

N/2∑
j=1

∫
BZ

[
(〈u j (k)|, 0)e−W (k) deW (k)

(|u j (k)〉
0

)
+ (〈Su j (k)|, 0)e−W (k) deW (k)

(|Su j (k)〉
0

)]
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= i

2π

N/2∑
j=1

∫
BZ

[〈u j (k)| du j (k)〉 + 〈Su j (k)| dSu j (k)〉]

= i

2π

∫
BZ

d ln[det U (k)], (F2)

where

U (k) = (|u1(k)〉, . . . , |uÑ/2(k)〉,S|u1(k)〉, . . . ,S|uÑ/2(k)〉)

is unitary. In the fourth equality, we have used the identity

(〈u j (k)|, 0)(e−W (k)∂keW (k) )

(|u j (k)〉
0

)
= 0.

Therefore, Pwhole is an integer m ∈ Z given by the wind-
ing number of the phase − arg[det U (k)] around the origin.

Finally, the symplectic polarization of the states below energy
ε is given by

P = i

2π

N/2∑
j=1

∫
BZ

〈u j (k)| du j (k)〉 = Pwhole

2
= m

2
. (F3)

Note that 〈Suj (k)|dSu j (k)〉 = 〈u j (k)| du j (k)〉. It can be seen
that the symplectic polarization P is quantized in units of 1/2.

[1] M. Z. Hasan and C. L. Kane, Colloquium: Topological insula-
tors, Rev. Mod. Phys. 82, 3045 (2010).

[2] X.-L. Qi and S.-C. Zhang, Topological insulators and supercon-
ductors, Rev. Mod. Phys. 83, 1057 (2011).

[3] C.-K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu, Classifica-
tion of topological quantum matter with symmetries, Rev. Mod.
Phys. 88, 035005 (2016).

[4] X.-G. Wen, Colloquium: Zoo of quantum-topological phases of
matter, Rev. Mod. Phys. 89, 041004 (2017).

[5] A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig,
Classification of topological insulators and superconductors in
three spatial dimensions, Phys. Rev. B 78, 195125 (2008).

[6] A. Kitaev, Periodic table for topological insulators and super-
conductors, AIP Conf. Proc. 1134, 22 (2009).

[7] S. Ryu, A. P. Schnyder, A. Furusaki, and A. W. W. Ludwig,
Topological insulators and superconductors: Tenfold way and
dimensional hierarchy, New J. Phys. 12, 065010 (2010).

[8] F. D. M. Haldane and S. Raghu, Possible realization of di-
rectional optical waveguides in photonic crystals with broken
time-reversal symmetry, Phys. Rev. Lett. 100, 013904 (2008).

[9] Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljačić,
Reflection-free one-way edge modes in a gyromagnetic pho-
tonic crystal, Phys. Rev. Lett. 100, 013905 (2008).

[10] Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljačić, Ob-
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