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Acoustic horizon as a phase-slip surface
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A recent experiment has demonstrated the formation of a supersonic region in a convergent two-dimensional
flow of a condensate of cesium atoms. The theoretical description of this effect has made use of stationary
solutions to the Gross-Pitaevskii equation with a three-body dissipative term. Here we further develop that
description, focusing on a different stationary solution, linear stability analysis, and properties of the time-
dependent “resistive” state.
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I. INTRODUCTION

Loss of superfluidity at a critical current is a classic prob-
lem, the theoretical study of which goes back to Landau’s
work on a stability criterion [1]. That work emphasized
the dependence of the stability of the flow on the relation
between the speed of the flow and phase velocities of ex-
citations that can propagate in the fluid, such as the sound.
In a separate development, supersonic flows were proposed
[2] as a means of creating an acoustic horizon, analogous
to the event horizon of a black hole, with the purpose of
simulating Hawking radiation predicted [3] for the latter. By
now, significant experimental effort has been directed towards
realizing this physics in one-dimensional (1D) superflows
[4–6] and it seems there is a consensus that the instabil-
ity associated with the Landau criterion plays a role in this
case, at stages following the formation of an inner acoustic
horizon [6–8].

Recently, an experiment by Tamura et al. [9] obtained
a convergent 2D supersonic flow in a superfluid of cesium
atoms. This work observed self-induced oscillations in the
flow, which the analysis attributed to the complex nonlinear
dynamics associated with the emission of ring solitons from
the supersonic region (even though individual solitons could
not be identified in the experiment due to limits of the spa-
tial resolution). Parallels have been drawn to two phenomena
discussed in the earlier literature: continuous emission of
solitons by a superfluid flowing over an obstacle in one dimen-
sion [10–12] and the formation of a localized self-oscillating
state—a phase-slip center [13]—in a superconducting wire.
(For two-horizon states, the emission of soliton trains in one
dimension was studied numerically in Refs. [14,15].)

The two phenomena just mentioned are in a sense at the op-
posite ends of the inertia versus dissipation spectrum. Indeed,
the local dynamics described by the conservative 1D Gross-
Pitaevskii (GP) equation, on which calculations of soliton
emission [10,11,14,15] have been based, is purely inertial, the
only dissipative effect being radiation of solitons and sound to
infinity. In contrast, the dynamics at the phase-slip center of
Ref. [13] involves local dissipation, due to a diffusive normal
component. The convergent radial superflow engineered in
Ref. [9] has both types of dissipative mechanisms, with local

loss of particles provided by three-body recombination at the
center of the trap. For this reason, the system is of special
interest as a platform for studying the combined effect of
dissipation and nonlinearity.

Here, after a brief review (in Sec. II) of the theoretical
methods used in our previous work [9], we present two ad-
ditional results concerning the bifurcation that is a part of the
description proposed there. First, we observe that, even after
the superfluid ground state disappears through a saddle-node
bifurcation, there remains a second superfluid solution, which
can be viewed as a bound state of a ring soliton in the cen-
tral region. The domain of attraction of this second solution,
though, appears to be quite small, and a quench to a current
not far above the critical leads to the complex quasiperiodic
dynamics described in Ref. [9].

Second, we propose a numerical diagnostic of that complex
dynamics based on the rate of change of the phase of the order
parameter in the central region. While in a superfluid state the
phase is a constant or performs periodic oscillations, in the
quasiperiodic regime it grows without limit at a more or less
constant rate (with a quasiperiodic component superimposed).
This strengthens the analogy between the present system and
the resistive state of superconducting wires (where, by Joseph-
son’s relation, the rate of change of the phase is proportional
to the voltage). A further discussion of the results is given in
Sec. V.

II. GROUND STATE AND DROPLET

As in Ref. [9], our starting point is the 2D classical GP
equation with an additional three-body dissipative term

ih̄∂tψ = h̄2

2m
(−∇2 + 2gn − iγ3n2)ψ + [V (r) − μ]ψ, (1)

where n = ψ†ψ in the 2D atom density, r is the ra-
dial coordinate, and g and γ3 are real positive constants
describing the pairwise atomic interaction and three-body dis-
sipation, respectively. The dissipative coefficient γ3 is related
to the three-body recombination rate L3 in ṅ = −L3n3 by
γ3 = mL3/h̄ (with 2m/h̄ = 4.185 ms/µm2 for cesium). The
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TABLE I. Values of the parameters used for numerical
calculations.

g rs (µm) R (µm) nref (µm−2) L3 (µm4/ms)

0.42 6.5 26 9.9 4.3×10−5

addressing potential V (r) is taken in the Gaussian form as

V (r) = −V0 exp
(−2r2

/
r2

s

)
, (2)

with V0 > 0. This potential causes the particles to flow to-
wards the center of the trap, where as a consequence the
density becomes high, and the particles are efficiently re-
moved by three-body recombination.

As far as solutions to the nonlinear problem (1) go, we
consider only those with perfect rotational symmetry, i.e.,
ψ (r, t ). On the other hand, when studying the linear stability
of a stationary solution so obtained, we allow for arbitrary
eigenmodes of the form χ (r)ei�φ , where φ is the azimuthal
angle and � an integer. This amounts to the replacement

∇2 = 1

r

∂

∂r
(r∂r ) − �2

r2
(3)

in the linearized version of the problem.
Equation (1) is supplemented by the standard regularity

condition ∂rψ = 0 at r = 0 and a boundary condition at an
outer radius r = R. We wish to choose the condition at r = R
so as to allow, at least in principle, for the existence of sta-
tionary solutions, in which the loss of particles at the center
is precisely compensated by inflow from the boundary. This
is an idealized version of the situation when there is a flow
of particles from large radii, resulting in a slowly changing
(albeit not precisely stationary) state. A convenient choice is
[9]

∂rR(r, t )|r=R = 0, I (r, t )|r=R = 0, (4)

where R and I are the real and imaginary parts of ψ , respec-
tively. Note the different boundary conditions for R and I.
The conditions (4) set the phase of ψ at r = R to zero and,
as can be seen by computation of the particle current, allow
for a nonzero particle inflow at the boundary. Alternatively,
one can observe that these conditions break the symmetry
ψ → eiαψ , where α is a real parameter; this is the symmetry
responsible, via Noether’s theorem, for conservation of the
particle number. Equation (4) however does not determine the
amount of the inflow, which is then found as a part of the
solution [9].

The depth V0 of the potential controls the speed of the flow
and is considered a variable. The other parameters are fixed
at values that are close to those in Ref. [9] and are listed in
Table I. Note that γ3 is specified in terms of L3 as described
above and the chemical potential μ in terms of a reference
density nref as μ = h̄2gnref/m.

We discretize the right-hand side of (1) on a uniform grid
of N points and separate its real and imaginary parts h̄FR and
h̄FI to write (1) as a system of 2N algebraic equations

∂tR j = FI j (ui ), (5)

∂tI j = −FR j (ui ), (6)
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FIG. 1. Profiles of the density and the phase of ψ (inset) for two
stationary solutions that exist when the potential depth V0 is below
critical.

where the 2N-dimensional vector ui is composed of R j and
I j as

u j = R j, u j+N = I j (7)

for j = 0, . . . , N − 1. The components FR j and FI j , on the
other hand, can be combined either into a vector Vi, as

Vj = FR j, Vj+N = FI j, (8)

or into a different vector Ṽi, as

Ṽj = FI j, Ṽj+N = −FR j . (9)

Two different vector fields defined above give rise to two
different Jacobians. One is

Jik = ∂Vi

∂uk
(10)

and is useful for studying stationary solutions, those for which
Vi = Ṽi = 0. Indeed, consider a stationary solution to the dis-
sipative problem (1), but look first at the Jacobian J computed
in the absence of dissipation, i.e., for γ3 = 0. That Jacobian
is a symmetric matrix and so has only real eigenvalues. If an
eigenvalue is simple, we may then expect it to remain real
when the dissipation is nonzero but not too strong. This is con-
venient if one wishes to study the merging of two stationary
solutions at a bifurcation point. The other Jacobian

J̃ik = ∂Ṽi

∂uk
(11)

is necessary for linear analysis of stability of solutions. Its
eigenvalues are either real or come in complex conjugate
pairs.

Examples of stationary solutions, obtained by applying
the multidimensional Newton-Raphson (NR) method to the
discretized problem with the parameters listed in Table I, are
shown in Fig. 1. Linear algebra required by that method, as
well as computation of the eigenvalues of J and J̃ , has been
done using the LAPACK library [16]. For finding stable ground
states, there is an alternative to the NR method—computing
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the end point of real-time evolution with a reasonable initial
condition; results from these different methods agree.

The two solutions shown in Fig. 1 correspond to the same
value of the potential depth V0. For the solution with a dip
in the density profile, the Jacobian J has a single negative
eigenvalue for each of several values of the orbital number
�, including � = 0. Using terminology already in place for
resistive transitions in superconducting wires [17,18], we refer
to this solution as the droplet. For the other, smoother solution,
J has no negative eigenvalues and we refer to it as the ground
state.

As we increase V0, the solutions merge and disappear via
a bifurcation at a critical V0 = Vc1 (here Vc1 ≈ 87.8 nK). The
critical solution has a small supersonic region, with an inner
horizon at r ≈ 9 µm and an outer horizon at r ≈ 10 µm. For
this reason, the loss of the superfluid ground state at the bifur-
cation point has been interpreted in Ref. [9] as an expression
of the Landau criterion.

The results in this section and the next, with the exception
of Fig. 3 (inset), are from a grid of size N = 200, which is
smaller than the N = 500 used in Ref. [9]. Where a com-
parison has been made, however, the results from N = 200
and N = 500 are quite similar. For example, increasing the
grid size to N = 500 shifts the critical potential depth Vc1 by
a fraction of a percent, to Vc1 ≈ 88.0 nK, while changes in
the profiles of the ground state and droplet for V0 = 80 nK,
relative to those in Fig. 1, are almost imperceptible by eye.
The inset of Fig. 3 in the next section presents a comparison
of results from two grid sizes for another type of solution,
whose radial dependence is particularly sharp.

Linear stability analysis, based on eigenvalues of the Jaco-
bian J̃ , shows that the droplet always has an unstable mode
with � = 0. Away from the critical point, it also has unstable
modes with nonzero � but those disappear as V0 gets closer to
Vc1. At the critical point, the (real) eigenvalue corresponding
to the unstable mode approaches zero, confirming that the
bifurcation is of the saddle-node type.

III. SECOND SUPERFLUID SOLUTION

It is instructive to follow the nonlinear rotationally sym-
metric evolution, as described by Eq. (1), starting with the
field displaced from the droplet along the unstable mode.
We find different dynamics depending on the direction of
the displacement. For one of the directions, the field relaxes
to the ground-state solution, but for the other it approaches
a different superfluid state, which is either a new stationary
solution or a small limit cycle near such. For V0 = 80 nK (the
same value used for Fig. 1), the second option is realized, so
the relevant orbits in the rotationally symmetric problem look
schematically as shown in Fig. 2.

The stationary solution itself is shown in Fig. 3. Note that
the dip in the density is much larger than that for the droplet
and occurs at a smaller radius. One may observe the similarity
of the density profile to that of the ring dark soliton of the
conservative GP equation [19]. We interpret our solution as a
bound state of a ring soliton in the central region. The limit
cycle into which it decays if perturbed corresponds to small
radial oscillations of the soliton, accompanied by radiation of
waves to infinity.

2nd SF solution

droplet ground state

FIG. 2. Schematic diagram illustrating decay of the droplet to the
ground state or to another superfluid (SF) state, depending on the
direction of the initial displacement. In this example, the second SF
state corresponds to a limit cycle near an unstable stationary solution.

A comparison of the results from two grid sizes in the inset
of Fig. 3 shows that the dip, sharp as it is, is well resolved
in our numerical computation. The grid points for N = 500
happen to fall almost symmetrically about the minimum of
n(r), which allows us to estimate the density at the minimum
as nmin = 0.37 µm−2. This estimate is confirmed by computa-
tion on an even finer grid (N = 1000).

Using the NR method, we have found stationary solutions
of this kind for a wide range of potential depths: from V0

as low as 19.6 nK to as high as V0 = Vc2 ≈ 94.6 nK. Note
that this range includes the critical depth Vc1 of the preceding
section. The way the new solution disappears at V0 = Vc2 is
similar to how the ground state disappears at V0 = Vc1: In both
cases, a small supersonic region forms near r = 10 µm.

In addition to having an � = 0 unstable mode for certain
ranges of V0, the second stationary solution always (as far
as we can tell) has several unstable modes with � � 2, with
the most unstable one for V0 close to Vc2 corresponding to
� = 9. We interpret these as evidence of a transverse (snaking)
instability of the type discussed previously [19,20] for ring
dark solitons in the conservative system without flow.

To become operational, a transverse instability requires
preexisting fluctuations with � �= 0, such as those due to ther-
mal or quantum noise. The smaller these initial fluctuations
are, the longer it will take for the instability to develop.
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FIG. 3. Profiles of the density (solid line) and the phase of ψ

(dashed line) for the new stationary solution. The inset shows details
of the density profile near the minimum, allowing for an estimate of
the minimum density (see the text for details) and a comparison of
results from two different grid sizes.
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This means that the results of numerical evolution of a ro-
tationally symmetric problem can remain applicable for quite
some time, provided initial fluctuations with � �= 0 are small
enough. Indeed, for the system without flow, extended in-
tervals preceding transverse fragmentation of ring solitons
have been observed both in fully 2D simulations of the GP
equation with a realistic amount of noise and in the experi-
ment [20].

IV. RESISTIVE STATES

The results of the preceding section may suggest that a
quench of the potential to a depth above Vc1 but below Vc2

will lead directly to the new superfluid state. As we will
now see, that is indeed observed in numerical evolution for
weak quenches.1 A stronger quench, however, leads instead
to complex quasiperiodic dynamics of the type described in
Ref. [9].

To further characterize that dynamics, we compute the
change over time of the phase θ = arg ψ at some radius r in
the active region (where the flow speed reaches large values).
This is done by computing the time derivative of θ at radius r
from the equation

h̄θ̇ = h̄2

2m

(
Re

∇2ψ

ψ
− 2gn

)
− V (r) + μ (12)

and integrating it over time to obtain


θ (t ) =
∫ t

0
θ̇ (t ′)dt ′. (13)

The results shown in Fig. 4 are for 
θ (t ) at r = 4.94 µm
for two instantaneous quenches, both from the ground state
at V0 = 87 nK, but one to V0 = 88 nK, which is just above
Vc1, and the other to a larger V0 = 90 nK. We see that for the
weaker quench, after three well-defined phase slips at t < 100
ms, the phase settles to a nearly constant value. Eventually,
it approaches a limit cycle of the type discussed in Sec. III.
On the other hand, for the stronger quench, phase growth
continues unabated, at a more or less constant rate but with
a noticeable quasiperiodic component.

By analogy with Josephson’s relation for superconductors,
we can think of θ̇ or, more precisely, its average over a long
period of time as a “voltage”, whose zero (nonzero) values
correspond to superfluid (resistive) states. For the superfluid
ground state, θ̇ = 0. We extend the definition of superfluidity
to states, like the limit cycle developing for V0 = 88 nK in
Fig. 4, for which θ̇ is nonzero but averages to zero over an
asymptotically long time. States with a nonzero and approxi-

1An oscillating soliton of the type described in Sec. III has been
observed also in simulations of the time-dependent equation (1)
in which the potential is ramped gradually from zero, rather than
quenched [21].
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FIG. 4. Change of the phase of the order parameter (in units of
2π ) as a function of time at a given radius for two instantaneous
quenches of the potential to supercritical values, with the system
initially in a superfluid ground state.

mately constant time average of θ̇ , on the other hand, can be
described in this terminology as resistive.

V. DISCUSSION

Repeated phase slips, accompanying the emission of soli-
tons, occur also in the conservative 1D GP equation [10]. A
peculiarity of the present (dissipative 2D) case is the com-
plex quasiperiodic nature of the process at its later stages
(cf. Fig. 4). We note that this peculiarity may in fact be
related to another attribute of the present case that we have
highlighted here: The second superfluid solution that exists
even after the first one (the ground state) has disappeared.

Indeed, imagine that instead of the phase portrait sketched
in Fig. 2 we had one where the system relaxed to the ground
state for either direction of the initial displacement. Then, at
the critical V0 = Vc1, at which the ground state and the droplet
merge, there would be an orbit that starts and ends at the same
point (a homoclinic orbit in the terminology of dynamical
systems theory). By a theorem of Shilnikov [22,23], for V0

just above Vc1, there would then be a stable limit cycle in
the vicinity of that orbit. The existence of the second super-
fluid solution, however, obviates this argument: The second
solution represents a different limit cycle, which lies far from
the original ground state or droplet locus. As it turns out, the
domain of attraction of this solution is quite small, allowing
more complex dynamics to readily emerge.
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