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Transition from flat-band localization to Anderson localization: Realization and characterization
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The diffusion and localization of particles in lattice potentials are essential topics in the study of quantum
states of matter. As two distinct mechanisms, flat-band localization (FBL) caused by destructive interference
and Anderson localization (AL) by strong disorder can both prohibit particle transport and lead to an insulator
state. The realization and characterization of the two different insulating phases necessitate the ability to shape
the lattice potential and measure particle transport at the single-site level. By using spatial momentum as an
artificial dimension, ultracold quantum gas in a momentum lattice provides an ideal platform to achieve single-
site resolution. Here, we demonstrate that the transition from flat-band localization to Anderson localization can
be realized and quantitatively studied in a Bose-Einstein condensate in a one-dimensional momentum lattice. The
flat-band localization is realized in a one-dimensional Tasaki model, while the transition to Anderson localization
is achieved by imposing a strong enough disorder potential and is characterized by stark features of particle
transport from an initial state in an experimentally realistic finite-size system. Submitted in parallel with Zeng
et al., this article provides experimental details on the realization of an effective model and preparation of the
initial state as well as a theoretical study of the transition with experimental parameters.
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I. INTRODUCTION

The manipulation of the lattice potential and detection
of transport behavior at a single-site resolution have long
been pursued in the study of quantum states of matter.
In condensed matter physics, exciting progress in scanning
probe microscopy has played a vital role in the study of
the surface properties of superconductors, magnetic materials,
ferroelectric devices, and two-dimensional layered materials
[1]. However, the control of lattice potential at a single-site
level is quite challenging in solid-state samples. Ultracold
quantum gases of neutral atoms offer another possibility to
achieve these two demands. With the aid of technical advances
in atom assembly, atoms can be arranged in a wide range of
configurations in microtraps by optical tweezer arrays [2,3],
spatial light modulators [4], and digital micromirror devices
[5,6]. Detection of atoms with single-site resolution has also
been achieved via carefully designed imaging systems with
large numerical aperture [7,8].

The momentum lattice provides an ideal platform to si-
multaneously realize lattice shaping and particle detection
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at a single-site level, where different momenta are used to
represent synthetic sites. By driving multiple Bragg processes
between designated momentum states, we can easily tune
each site by adjusting the corresponding laser parameters,
including the frequency, intensity, and phase [9–11]. With
these advantages, momentum lattice has been used to study
topological properties [12–14], chiral dynamics [10,15], and
time boundary effects [16]. In particular, in the experimental
works by Li [17] and Zeng [18], a momentum lattice is used
to tailor decorated lattices with a perfectly flat band, where the
inverse Anderson transition and the transition from flat-band
localization (FBL) to Anderson localization (AL) are realized
and extensively studied. As two distinct mechanisms of local-
ization, the study of FBL and AL has attracted much attention.
The existence of strong disorder suppresses the propagation of
waves, resulting in traditional Anderson localization [19,20].
Meanwhile, in a flat-band system, the perfect destructive in-
terference of particle hopping can result in a different type
of localization known as flat-band localization [21–23]. The
localization properties are maintained under finite interaction
strength for both AL and FBL, known as many-body localiza-
tion [24,25]. However, the many-body localization states that
emerged from FBL and AL are distinct phases with different
physical properties due to the different mechanisms [26–28].
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In this paper, we present a detailed experimental procedure
and theoretical analysis of the realization and characterization
of the FBL-AL transition in a one-dimensional momentum
lattice. The FBL is prepared in a Tasaki lattice with tailored
hopping parameters. We demonstrate the localization effect
via particle diffusion from a given initial state. Compared
to previous works [17], we discuss in detail the procedure
and effect of experimental parameter calibration and initial
state preparation. We also present a theoretical analysis of the
FBL-AL transition, and investigate its detectable signatures
in experimentally realistic systems. The results are in good
agreement with experimental observations given in Ref. [18].

The remainder of the paper is organized as follows. In
Sec. II, we give a detailed introduction to the experimental
setup. Starting from the full time-dependent Hamiltonian with
two-photon and four-photon Bragg transitions, we derive an
effective Hamiltonian in the form of a Tasaki lattice. The
experimental parameters are calibrated by the time evolu-
tion of particles. The transport property is investigated by
the diffusion of particles from a designated initial state. The
initialization of such a state is explained in Sec. III. Before
the conclusion, we present in Sec. IV the theoretical analysis
of the FBL-AL transition and its detectable features with
experimental parameters.

II. EXPERIMENTAL SETUP
AND TIME-DEPENDENT HAMILTONIAN

In our experiment, we realize the Hamiltonian of a one-
dimensional Tasaki lattice,

HTasaki =
∑

i

(u ĉ†
i,Aci,B + u ĉ†

i,Aĉi+1,B + H.c.)

+
∑

i

(v ĉ†
i,Bĉi+1,B + H.c.) +

∑
i,s

Wi,sĉ
†
i,sĉi,s, (1)

in a momentum-space lattice, where atoms with different lin-
ear momenta are considered as designated lattice sites. Here,
ĉ†

i,s and ĉi,s are the creation and annihilation operators for
particles on the s = A, B site of the ith unit cell, Wi,s is the
on-site energy offset describing a disorder potential, and H.c.
stands for the Hermitian conjugate. In the absence of disorder
Wi,s = 0, the single-particle dispersion presents two bands,

E± = |v|cosk ±
√

|v|2cos2k + 2|u|2(1 + cosk). (2)

To this aim, we use an optically trapped Bose-Einstein
condensate (BEC) of ∼6 × 104 87Rb atoms with global trap-
ping frequencies (ωx, ωy, ωy) = 2π × (40, 100, 100) Hz. The
BEC is driven by a pair of counterpropagating lasers with
wavelength λ = 1064 nm. One of the two lasers has a single
frequency component, and the other beam is engineered to
contain multiple discrete frequency components, which are
chosen to match different two-photon and four-photon Bragg
resonance conditions. The laser with a constant wavelength
works with each single frequency component of the other
beam to resonantly couple a set of momentum states and drive
coherent transfer, thus forming a one-dimensional synthetic
lattice [9,10] with discrete values of momentum pn = 2nh̄k,
where k = 2π/λ is the wave vector of the laser and n is the site
index. In such a momentum-space lattice, the site-dependent

tunneling strength, tunneling phase, and on-site energy can
be independently controlled by modulating the parameters
of lasers via a pair of acousto-optic modulators, and various
one-dimensional lattice models can be simulated successfully.

Under the rotating wave approximation, the experimental
system can be effectively described by the following time-
dependent Hamiltonian:

H (t ) =
∑

n

[K (t )ĉ†
n+1ĉn + K∗(t )ĉ†

nĉn+1 + Enĉ†
nĉn], (3)

where ĉn and ĉ†
n are the annihilation and creation operators of

particles on the nth site, respectively, and En = 4n2Er is the
energy of the nth momentum state according to the free par-
ticle energy-momentum dispersion. The hopping coefficient
can be written as

K (t ) = h̄
∑

j

(
� jue−iω jut + � jv1 e−iω jv1 t + � jv2 e−iω jv2 t

)
, (4)

where the summation over j includes all nearest-neighbor
terms (with subscript u) and next-nearest-neighbor terms
(v1 and v2). The frequency ω ju = Ej+1 − Ej denotes the
frequency difference between the two laser beams driving
the two-photon Bragg transition between nearest-neighboring
momentum states. The frequencies ω jv1 and ω jv2 represent
the frequency difference between the two laser beams driving
the first and second two-photon Bragg transitions of the four-
photon Bragg transition between the next-nearest neighbors,
respectively, which satisfy ω jv1 = (Ej+2 − Ej )/2 + δ j and
ω jv2 = (Ej+2 − Ej )/2 − δ j , with δ j being the next-nearest-
neighbor detuning configuration parameter.

We can rewrite this time-dependent Hamiltonian in the
interaction picture, leading to

Hint (t ) =
∑
n, j

h̄
[
� jue−i(ω ju−ωnu )t + � jv1 e−i(ω jv1 −ωnu )t

+ � jv2 e−i(ω jv2 −ωnu )t
]
ĉ†

n+1ĉn + H.c.. (5)

By neglecting the higher-order off-resonant terms [29] and
carefully tuning the configuration of δ j , we can derive an
effective Hamiltonian through the second-order perturbative
approximation as follows:

H̃eff =
∑

n

tu
n ĉ†

n+1ĉn +
∑

n=odd

tv
n ĉ†

n+2ĉn + H.c.. (6)

This Hamiltonian corresponds to a zigzag lattice, which con-
tains both nearest- and next-nearest-neighbor hopping terms,
and the additional on-site energy can be corrected in numeri-
cal simulations and experimental processes. It can be reduced
to a Tasaki lattice by turning off the next-nearest-neighbor
hopping between sites with even indices.

By carefully tuning the Bragg lasers to make u = t u
n and

v = tv
n , and denoting the momentum states with even (odd) in-

dices as A-sublattice (B-sublattice) sites, this effective model
can be finally written as

HTasaki =
∑

i

(u ĉ†
i,Aci,B + u ĉ†

i,Aĉi+1,B + H.c.)

+
∑

i

(v ĉ†
i,Bĉi+1,B + H.c.), (7)
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FIG. 1. Simulated time evolution of the efficiency F measuring
the distance between the evolved state and a given initial state, under
a time-dependent Hamiltonian with different next-nearest tunneling
coefficients |v| and interatomic interactions U (blue lines), and an
effective Hamiltonian of a Tasaki lattice (red line). The total number
of lattice sites is 25, as used in our experiment. The final parameters
used in the experiment are |v| ≈ 2π h̄ × 0.2 kHz, U = 0.226Er , and
the optimal u.

which is identical to Eq. (1) with zero disorder strength
Wi,s = 0. A finite disorder potential can be realized by tuning
the frequency difference between individual sites.

Since the derivation outlined above is based on a pertur-
bation treatment of intersite tunneling, the resulting effective
Hamiltonian should be valid when the tunneling integral is
small. However, a small tunneling coefficient also leads to
a long characteristic time, which may surpass the coher-
ence time of the system. Thus, one needs to find a suitable
parameter range that can validate the effective model and
simultaneously allow a short enough time for the system to
present characteristic dynamics before losing coherence.

For this purpose, we analyze the dynamical evolution of
the system from an initial state, and compare the numerical
results of the original time-dependent Hamiltonian Eq. (3)
and the effective Tasaki Hamiltonian Eq. (7). When evolving
the time-dependent Hamiltonian, we also take into account
the interatomic interaction, which is not explicitly included
in Eq. (3). We consider an initial state |φ0〉 = (− 1

2 | − 1〉 +√
2

2 |0〉 − 1
2 | + 1〉), which is an eigenstate of the flat band of

the Tasaki lattice, and calculate the “efficiency” F defined
based on the normalized number of atoms Pn(t ) detected at
each lattice site n and evolving time t [30],

F =
(∑

n

√
P0

n Pn(t )

)2

. (8)

Here, P0
n ≡ Pn(t = 0) is the particle distribution of the initial

state. The efficiency parameter characterizes the distance be-
tween the evolved state from its origin, and should remain
unity if the effective Tasaki model is achieved perfectly.

In Fig. 1, we demonstrate the results of the numerical
evolution of Eq. (3) for different choices of the next-nearest

Expt.

FIG. 2. (a) The initial state preparation process. The BEC is first
prepared in the zero momentum state (top), and partially transferred
to the | ± 1〉 states with a proper phase via Bragg processes (middle).
The resulting state is then verified by the evolution of particle occu-
pation (bottom). (b) The population of the zero momentum state as
a function of phase θ . The best choice of θ can be optimized by this
process.

tunneling coefficient |v| and interatomic interaction U (blue
lines), in comparison to the case of a perfect Tasaki lattice (red
line). The interaction is caused by atomic collisions in syn-
thetic lattices of atomic momentum states [31], and takes the
form U = gρ = (4π h̄2a/M )ρ with a as the s-wave scattering
length (∼ 100a0 for 87Rb) and ρ as the real-space atomic den-
sity. Based on these results, we determine the parameters used
in the experiment as |v| ≈ 2π h̄ × 0.2 kHz and U ≈ 0.226 Er ,
which lead to fast enough dynamics within the system coher-
ence time and tolerable deviation from the perfect scenario.

III. INITIAL STATE PREPARATION

To demonstrate the localization effect, we need to initialize
the system at an eigenstate of the flat band of the Tasaki lattice
and monitor the time evolution. For a one-dimensional (1D)
Tasaki lattice with r = |u|/|v| = √

2, the eigenstate localized
at the ith unit cell reads

|φi〉 =
(

−1

2
ĉ†

i−1,A +
√

2

2
ĉ†

i,B − 1

2
ĉ†

i,A

)
|vac〉, (9)

where |vac〉 is the vacuum state. This state spreads over one B
site and two adjacent A sites with equal populations, and can
be realized by controlling the strength and phase of nearest-
neighbor tunneling in our system [32]. We start from a BEC
in the zero momentum state |0〉, as shown in step (1) of
Fig. 2(a). In step (2), a pair of Bragg lasers are applied to drive
tunneling between states |0〉 and | ± 1〉, such that particles
can be populated to the | ± 1〉 states upon evolving. The final
state is determined by the strength α, the phase θ , and the
duration time t of the Bragg process. In our experiment, we
choose α ≈ 2π h̄ × 0.5 kHz and t ≈ √

2/8 ms for the initial
state preparation. It can be easily checked both numerically
and experimentally that such choices of α and t can lead to a
state with the desired particle population of 1:2:1.

For the tunneling phase θ , a theoretical calculation con-
sidering only nearest-neighbor hopping predicts θ should be
set at ±0.5π . However, this theoretical suggestion cannot be
verified by simply measuring the state population. In fact, the
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FIG. 3. The population of zero momentum sites as a function
of evolution time t1 under zero-phase Bragg beams. By comparing
different values of θ , we notice that the results of θ = −0.4π remain
closest to 0.5 for all times, with the smallest variance, as shown in
the inset.

particle fractions will be the same for all different choices of
θ . To determine the correct tunneling phase, we first prepare
a state with some specific value of θ , then drive another
Bragg process with α1 ≈ 2π h̄ × 0.5 kHz and θ = 0 on the
prepared state and measure the particle occupation on dif-
ferent sites after an evolving time t1. This process is shown
as step (3) in Fig. 2(a). If the state is prepared perfectly
as |φ0〉, one can easily show that the particle fractions on
| − 1〉, |0〉, and | + 1〉 should be fixed at 1:2:1 during the
whole evolution process. Specifically, the atomic probability
of the |0〉 momentum state should be a constant of P0 = 0.5
owing to the completely destructive interference of hopping
to the two neighboring sites. However, if the state is pre-
pared with some error, P0 will deviate from 0.5 and vary
over time.

In Fig. 2(b), we present the results of P0(t1) after an evolu-
tion of t1 ≈ √

2/8 ms after the zero-phase Bragg process for
several choices of θ . The experimental data (red solid dots)
agree well with the numerical simulation (gray solid lines),
showing that P0 ≈ 0.5 when θ ≈ −0.4π and 0.6π . This ob-
servation is slightly different from the theoretical prediction
±0.5π . The deviation can be attributed to the presence of
interatomic interactions as well as nonidealities. We then fine-
tune θ around −0.4π and measure P0(t1) for t1 �

√
2/4 ms ≈

0.35 ms. As shown in Fig. 3, the results for θ ≈ −0.4π are
always close to the expected value of P0 ≈ 0.5, with the small-
est variance as depicted in the inset.

We further observe the whole evolution process for states
prepared with different θ in the Tasaki flat-band system. In
Figs. 4(a) and 4(b), we present the experimental data and
numerical simulations of θ = −0.4π and 0.6π . The results
show an obvious localization effect for θ = −0.4π , where the
major population is kept within the center three-momentum
states during the evolution. We calculate the time-averaged

Expt.

Expt.

u
n
it

s 
o
f

units of

u
n
it

s 
o
f

units of

FIG. 4. (a) The particle populations (false color) of different
sites upon time evolution are measured for cases of θ = 0.6π and
−0.4π . (b) The same results obtained from numerical simulation of
the time-dependent Hamiltonian Eq. (3). Both panels are taken with
|v| ≈ 2π h̄ × 0.2 kHz and |u| ≈ 2π h̄ × 0.34 kHz in a Tasaki lattice
of 25 sites. (c) The time-averaged efficiency 〈F 〉T as a function of the
tunneling phase θ . Experimental data (red solid dots with error bars
smaller than the size of dots) are averaged over time from 0.75 h̄/v

to 1.5 h̄/v in steps of 0.0625 h̄/v. The solid gray curve represents a
numerical simulation of the time-dependent Hamiltonian with real-
istic experimental parameters. The maxima of both the experimental
and simulation results are approximately θ ≈ −0.4π .

efficiency 〈F 〉T based on the definition below [30]:

Fm =
(∑

n

√
Pm,Tasaki

n Pm,expt
n

)2

, (10)

where the results for a Tasaki lattice Pm,Tasaki
n and for the

experimental system Pm,expt
n are both used. As shown in

Fig. 4(c), the experimental data for θ ≈ −0.4π are mostly lo-
calized and in good agreement with the numerical simulation
of the time-dependent Hamiltonian. With all these results, we
set θ ≈ −0.4π to prepare the initial state |φ0〉.
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IV. LEVEL SPACING ANALYSIS
AND EXPERIMENTAL SIGNATURES

A system containing nondispersive bands features local-
ized eigenstates referred to as compact localized states. If
the flat band is separated from other dispersive bands by a
gap, the localized states are robust against weak disorder, and
lead to a nonconductive phase usually referred to as flat-band
localization (FBL). When disorder is sufficiently strong, it
can suppress the propagation of waves and induce Anderson
localization (AL). Thus, for a flat-band system, such as the
Tasaki lattice, a transition from FBL to AL is expected with
increasing disorder. In this section, we analyze the properties
of eigenvalues and single-particle wave functions to study
the competition between two kinds of localizations. In the
calculation below, we use W to represent the dimensionless
disorder strength in units of |v| with Wi,s = mi,sW |v|, where
mi,s is a random number uniformly distributed within [−1, 1].

The level-spacing ratio and level-spacing distribution can
be obtained from the single-particle energy spectrum of the
disordered Hamiltonian. The level-spacing ratio r is defined
as [24,27]

r = 1

N − 1

N−1∑
j=1

min[s j, s j+1]

max[s j, s j+1]
, (11)

where the energy level spacing s j = Ej+1 − Ej , and Ej is the
single-particle energy of the jth eigenstate in ascending order.
We consider only the lower half of the eigenenergies to cal-
culate the level-spacing ratio, which is kept close to 0.386 as
shown in Fig. 5(a). Figure 5(b) depicts the level-spacing dis-
tribution for an intermediate disorder strength W = 2, which
has a Poisson form with P(s) = e−s. In fact, the level-spacing
distribution takes a Poisson structure across the entire range
of disorder strength. The results of the level-spacing ratio and
distribution both indicate that the system stays in a localized
phase for the entire disorder strength range.

For the eigenstate properties, we consider the inverse par-
ticipation ratio (IPR) of the jth normalized single-particle
eigenstate |ψ j〉 defined as [24,27]

I j =
N∑

i=1

|ψ j (i)|4, (12)

where ψ j (i) is the wave function at site i. Apparently, I j is
unity for a single-site localized state, while for a perfectly
delocalized state it scales as 1/N . In the presence of disorder,
we can further define an average IPR Ĩ over all eigenstates of
the system, and show the result with varying disorder W . As
depicted in Fig. 5(c), the average IPR shows distinct behaviors
in the FBL phase with weak disorder and the AL phase with
strong disorder. The transition takes place around W ≈ 2,
which corresponds to the energy gap between the flat and
neighboring dispersive bands of the Tasaki lattice.

The von Neumann entropy can provide further evidence
for the FBL-AL transition. The definition of von Neumann
entropy of site i in the jth eigenstate reads [24]

S i
j = − |ψ j (i)|2 log2(|ψ j (i)|2)

− (1 − |ψ j (i)|2) log2(1 − |ψ j (i)|2). (13)

FIG. 5. (a) The level-spacing ratio of the lower half of single-
particle eigenenergies versus disorder. (b) The lower half level-
spacing (LS) distribution with disorder strength W = 2. (c) The
average IPR of all single-particle eigenstates. (d) The von Neumann
entropy averaged over all eigenstates. The results are obtained for a
system of size N = 1001 and averaged over 100 configurations of
disorder.

It is very clear that for a single-site localized state, S i
j = 0,

while in a delocalized state with |ψ j (i)|2 = 1/N , S i
j ≈

(1/N ) log2 N + 1/N . By averaging over all eigenstates and all
sites of the system, the average von Neumann entropy

S̃ =
∑N

j=1

(∑
i Si

j

)
N

(14)

remains zero if all eigenstates are localized within a single
site, and approaches S̃ ≈ (log2 N + 1) if all eigenstates are
delocalized. In Fig. 5(d), we show the numerical result of S̃
for a system with size N = 1001. Notice that the average von
Neumann entropy is always less than the delocalized limit for
all disorder strengths, and shows distinct behaviors in FBL
and AL phases.

We further investigate the localization length ξ , which is
defined from the asymptotic exponential decay of a localized
state wave function [20–23],

ψn,α
j ∝ exp(−n/ξ ). (15)

which correlates to the subsite α = A, B in the nth unit
cell. To calculate the localization length, we start from the
Schrödinger equation of the Tasaki lattice,

iḃn + Wn,bbn = −|v|(bn−1 + bn+1) − |u|(an + an−1),

iȧn + Wn,aan = −|u|(bn + bn+1), (16)

where an and bn denote coefficients of the wave function
at the A and B sites within the nth cell, respectively. As-
suming {an(t ), bn(t )} = {an, bn}eiEt with E the eigenenergy,
the solution of the Schrödinger equation can be formally
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FIG. 6. Localization length for the eigenstate of E = −2|v| in
a system of size N = 25, 51, 201, 1001 (from top to bottom). The
average time of disorder configurations |Wi,s| < W is at least 100,
where we apply more disorder configurations for smaller sizes. The
power-law exponent γ changes from 0 in the FBL limit to −0.5 in
the AL limit for all system sizes.

written as

an = |u|(bn + bn+1)

E − Wn,a
,

εnbn = Cnbn+1 + Cn−1bn−1, (17)

with parameters

εn = E − Wn,b − |u|2
(

1

E − Wn,a
+ 1

E − Wn−1,a

)
,

Cn = |v| + |u|2 1

E − Wn,a
. (18)

By solving the equations above numerically, we can extract
the localization length via

ξ−1(E ) = lim
N→∞

1

(N − 1)/2

〈
(N−1)/2∑

n=1

ln

∣∣∣∣bn+1

bn

∣∣∣∣
〉
, (19)

where (N − 1)/2 is the number of unit cells. The result of the
localization length shown in Fig. 6 also suggests that there is a
transition between FBL and AL. The transition point is almost
the same for different system sizes ranging from N = 25 to
1001. Specifically, two different power-law behaviors ξ (W ) ∼
W γ can be observed in the weak and strong disorder regions.
In the weak disorder limit, ξ is nearly a constant with γ = 0. In
the strongly disordered region, the exponent γ ≈ −0.5. Based
on these results, we find that the FBL-AL transition occurs
when the disorder strength approaches the band gap W ≈ 2
[23].

We display in Fig. 7(a) a false-colored plot of 〈F 〉 obtained
by simulation with varying r and W , where the FBL phase
(i) is separated from the AL phase (iii) by a transition re-
gion (ii). The result also shows that the best u/v is

√
2 for

the Tasaki flat-band lattice. In Figs. 7(b)–7(d), we present
the disorder-averaged efficiency F , IPR, and von Neumann
entropy for a single state after time evolution simulated with
the effective Hamiltonian Eq. (1), where we can observe

FIG. 7. (a) False-colored plot of the disorder averaged effi-
ciency 〈F 〉 obtained from numerical simulation of Eq. (1) for t =
2.125h̄/|v|. By varying the disorder strength W and the hopping ratio
r, two localized regions (red) labeled by (i) and (iii) can be identified
and are separated by a crossover region labeled by (ii). (Color online)
Simulation of the efficiency (b), IPR (c), and von Neumann entropy
(d) of a single state after evolving upon the effective Tasaki lattice
model. Different lines denote results for different sizes N = 25 (red),
105 (blue), and 1005 (green). The initial state is chosen as an eigen-
state of the flat band in the Tasaki lattice. All simulations are taken
with |v| = 2π h̄ × 0.2 kHz and |u| = 2π h̄ × 0.282 kHz.

clear signatures (dip or peak) across the FBL-AL transi-
tion. Since the initial state is an eigenstate of the flat-band
model, the final state is still close to the initial state owing
to the destructive interference of flat-band hopping when dis-
order is small, and the physical observables almost remain
at their FBL limits. As disorder approaches the band gap,
i.e., W ≈ 2, the destructive interference is strongly destroyed,
such that the final state is significantly changed to leave some
signatures in observables. As disorder is further enhanced,
intersite hopping is almost forbidden and the system is again
kept at its initial state. We assume that the signatures found
around W ≈ 2 denote a switch of localization mechanism,
i.e., an FBL-AL transition, whose position is determined by
the size of the energy gap and independent of the system
size.

V. CONCLUSION

In this work, we present a comprehensive experimental
realization of a Tasaki lattice in a momentum lattice platform.
The momentum lattice is constructed by an optically trapped
BEC comprising approximately 6 × 104 87Rb atoms, sub-
jected to the influence of a pair of counterpropagating lasers.
Through precise adjustments to the frequency and phase of
the lasers, ensuring resonance conditions for two-photon and
four-photon Bragg processes, we achieve coherent transfer
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between the nearest- and next-nearest-neighbor momentum
states. We also show the method for preparing the flat-band
eigenstate of the Tasaki lattice. Ultimately, we offer a theo-
retical analysis of this system. The behavior of the IPR and
von Neumann entropy, averaged over all eigenstates, man-
ifests distinct patterns in weak and strong disorder limits,
indicating the presence of two different localization mecha-
nisms. Notably, the transition from FBL to AL states is clearly
discernible through the scaling behavior of the localization
length. Additionally, theoretical simulations of single state
properties reveal that the FBL-AL transition remains indepen-
dent of the system size. One of the most powerful advantages
of the momentum lattice platform lies in its capability for
precise control of tunneling between different sites as well
as the on-site energy of individual sites. In the future, we
firmly believe that our method holds significant promise for
successfully observing exotic topological [33,34] and trans-
port properties [17,35] in diverse lattice structures. This opens
the door to a broader range of study options, broadening our

understanding of quantum systems and paving the way for
innovative investigations in related fields.
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