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Characterizing Floquet topological phases by quench dynamics: A multiple-subsystem approach
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We investigate the dynamical characterization theory for periodically driven systems in which Floquet
topology can be fully detected by emergent topological patterns of quench dynamics in momentum subspaces
called band-inversion surfaces. We improve the results of a recent work [Zhang et al., Phys. Rev. Lett. 125,
183001 (2020)] and propose a more flexible scheme to characterize a generic class of d-dimensional Floquet
topological phases classified by Z-valued invariants by applying a quench along an arbitrary spin-polarization
axis. Our basic idea is that by disassembling the Floquet system into multiple static subsystems that are periodic
in quasienergy, a full characterization of Floquet topological phases reduces to identifying a series of bulk
topological invariants for time-independent Hamiltonians, which greatly enhances the convenience and flexibility
of the measurement. We illustrate the scheme by numerically analyzing two experimentally realizable models
in two and three dimensions, respectively, and adopting two different but equivalent viewpoints to examine the
dynamical characterization. Finally, considering the imperfection of experiment, we demonstrate that the present
scheme can also be applied to a general situation where the initial state is not completely polarized. This study
provides an immediately implementable approach for dynamically classifying Floquet topological phases in
ultracold atoms or other quantum simulators.
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I. INTRODUCTION

Topological quantum phases have attracted extensive ex-
ploration in the last decades [1–4]. Compared with solid
materials, ultracold atoms provide a clean platform with super
controllability and stability for simulating exotic topologi-
cal phases [5–7]. Recent significant experimental advances
include the realization of a one-dimensional (1D) Su-
Schrieffer-Heeger chain [8] and chiral topological phase [9],
two-dimensional (2D) Chern insulators [10–16], and three-
dimensional (3D) topological semimetals [17,18]. In parallel,
much theoretical progress has also been made [19–25].

Floquet engineering has been a versatile tool for tailoring
quantum phases [26–40]. With coherent temporal control, a
periodically driven system can be engineered not only to
simulate an effective static Hamiltonian such as the Hal-
dane model [12], but also to realize novel topological phases
without static counterparts [41]. A typical example is the
anomalous Floquet topological phase, whose boundary modes
exist in two quasienergy gaps and have no direct corre-
spondence to the bulk topology [30]. Such a d-dimensional
(dD) anomalous Floquet topological phase is conventionally
characterized by topological invariants defined in the full
(d + 1)D space-time dimension [30,42–49], which are, how-
ever, not convenient for experimental measurements. To
overcome this issue, a much simplified characterization theory
has been recently developed in which the complex evolution
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in the time domain need not be considered, and subdimen-
sional topology defined in particular (d − 1)D momentum
subspaces called band-inversion surfaces (BISs) is introduced
to fully characterize Floquet topological phases [50]. This
result indicates a precise and systematic route for quantum en-
gineering of unconventional Floquet topological phases [51]
and has enabled the experimental realization of highly tunable
anomalous Floquet topological bands [52].

An important advantage of the BIS characterization is
that the topology on lower-dimensional BISs can be di-
rectly detected by quench dynamics [53–62], particularly
since quantum quenches are easy to implement in ultracold
atoms [9,17,18,63–71]. For a static dD topological system, it
has been demonstrated that the BISs are marked by quench-
induced resonant spin oscillations, and the subdimensional
topological invariant that classifies the dD bulk topology
can be measured by dynamical topological patterns emerging
on all (d − 1)D BISs [53–55]. This renders the dynami-
cal bulk-surface correspondence in the momentum space,
which plays a similar role to that of the conventional bulk-
boundary correspondence for equilibrium topological phases
in the real space, and has brought much experimental progress
in the simulation and characterization of topological phases
using ultracold atoms [69,70] or other quantum simulators
[58,72–75]. In Ref. [50], built on a generalized dynamical
bulk-surface correspondence, a dynamical scheme is proposed
to realize the BIS characterization of generic dD Floquet sys-
tems. Very recently, identifying the Floquet topology through
dynamically detecting the BIS configuration has been applied
in cold-atom experiments [52]. Therefore a comprehensive
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FIG. 1. Dynamical characterization scheme. (a) Illustration of
the basic idea: A Floquet system can be disassembled into multiple
static subsystems. Here is a two-subsystem example, with each corre-
sponding to a BIS. (b) Illustration of BISs in the BZ, referring to the
lower-dimensional subspaces where bands are inverted. The colored
regions represent the regions of validity for the construction and
characterization of effective subsystem Hamiltonians. (c) Quench
protocol. A large Zeeman field is first added to prepare a fully
polarized state, and removed at t = 0, with a periodic drive being
simultaneously applied.

and detailed study of how to characterize Floquet topological
phases by quench dynamics is necessary and timely.

However, we find that the generalization of the dynamical
characterization scheme from static systems to periodically
driven systems is not fully straightforward. The key difference
is that due to the existence of two quasienergy gaps, one needs
to choose a proper spin-polarization axis to define the BISs
of the Floquet bands, such that the subdimensional topology
defined on BISs can completely characterize the topology of
both quasienergy gaps. In contrast, the BIS characterization
of a static topological phase does not have a special axis. This
difference means that the direct generalization of dynamical
characterization cannot be as flexible as that for static systems.
For example, the proposed dynamical scheme in Ref. [50]
works under the condition that the quenched spin-polarization
axis is exactly the one that defines the BIS, which may limit
implementation in real experiments.

In this paper, we improve the results in Ref. [50] and
propose a more flexible scheme that can fully characterize a
generic class of dD Z-invariant Floquet topological phases
by quenching an arbitrary spin-polarization axis. These Flo-
quet topological phases may fall into the Altland-Zirnbauer
(AZ) symmetry classes characterized by Z topological in-
variants [46,47] and can also be beyond the conventional
classification by global bulk topology [51]. Starting from an
initial static phase that is fully polarized in one direction, the
quench is realized by instantaneously decreasing the Zeeman
field in the polarized axis and, at the same time, turning on
the periodic driving [see Fig. 1(c)]. The main idea of the
present approach is that a Floquet system can be disassembled
into multiple static subsystems, so that its dynamical char-
acterization is turned into a characterization of one or more

time-independent bulk Hamiltonians. Here each subsystem
consists of the bands that are inverted on a BIS within ei-
ther quasienergy gap. In this way, the method of dynamically
classifying static topological phases can be applied, and it is
independent of the choice of the quench axis. We illustrate this
multiple-subsystem approach with 2D and 3D periodically
driven models. Both of the two models are experimentally
feasible with ultracold atoms [14–16,52] or solid-state spin
systems [73,74]. In the characterization of 2D anomalous
Floquet topological phases, we consider quantum quenches
along different spin-polarization axes and construct topologi-
cal invariants from two equivalent viewpoints: (i) the winding
of an emergent dynamical spin-texture field on dynamical
band-inversion surfaces (dBISs) and (ii) the total charges of
the dynamical field enclosed by dBISs. Here, the dBISs are the
momentum subspaces that are identified by quench dynamics
to define the subdimensional topology. It should be noted
that the dBIS is equal to a BIS of the Floquet bands only
when the quench axis is exactly the one defining the BIS, but
the dynamical topology emerging on dBISs is the same for
all quench ways. As an important supplement and extension,
we also discuss a more general situation where the quench
starts from an initial state that is not fully polarized (dubbed
a “shallow quench”). Such discussion of shallow quenches
improves the applicability of our dynamical scheme.

This paper is organized as follows. In Sec. II, we review
the basic idea underlying the BIS characterization theory for
both static and Floquet systems. Several key concepts are
introduced. In Sec. III, we first propose a generic scheme and
examine two cases: The quench axis is equal to or not equal
to the one defining the BIS. We then illustrate the scheme
by numerically calculating two highly feasible models in two
and three dimensions, respectively. In Sec. IV, we adopt the
viewpoint of topological charges to demonstrate again the
dynamical characterization. The 2D driven model serves as an
illustrative example. In Sec. V, we discuss shallow quenches
and demonstrate that the dynamical scheme can work widely.
A brief discussion and summary are presented in Sec. VI.
More details are given in the Appendixes.

II. MODEL AND CONCEPTS

We consider a class of periodically driven systems de-
scribed by the Hamiltonian

H (k, t ) = Hs(k) + V (k, t ), Hs(k) =
d∑

i=0

hi(k)γi, (1)

where Hs(k) = h(k) · γ represents a dD gapped topological
phase (insulator or superconductor) characterized by integer
invariants in the AZ symmetry classes [76–79] (see Ap-
pendix A) and V (k, t ) is a periodic drive that can take a
general form V (k, t ) = Vl1 (k, t )γl1 + Vl2 (k, t )γl2 + · · · . Here,
li ∈ {0, 1, . . . , d} and Vli (t ) = Vli (t + T ) with T being the
driving period. The γ matrices obey the Clifford algebra
{γi, γ j} = 2δi j1 (i, j = 0, 1, . . . , d) and the (d + 1)D vector
h(k) depends on the momentum k in the first Brillouin zone
(BZ). We emphasize that the γ matrices are arranged in an

023303-2



CHARACTERIZING FLOQUET TOPOLOGICAL PHASES BY … PHYSICAL REVIEW A 109, 023303 (2024)

order that satisfies the trace property [53]

Tr

(
S

d∏
i=0

γi

)
= (−2i)n, (2)

where S = in
∏d

i=0 γi is the chiral matrix (or the identity
matrix 1) of dimension nd = 2n for odd d = 2n − 1 (even
d = 2n). For odd dimensions, the topological phase re-
quires chiral-symmetry protection, ensured by a restriction
V (tref + t ) = V (tref − t ) (0 � tref < T ) [50]. In one and two
dimensions, the γ matrices reduce to the Pauli matrices,
and the basic Hamiltonian Hs involves only two bands. Our
scheme can also be generalized to multiband systems (see
Appendix A for more details).

Here, we briefly review the main results of the topo-
logical classification theory based on the concept of BISs.
More details can be found in Refs. [50,53–55]. For a static
system Hs(k), we choose, without loss of generality, a com-
ponent h0(k) to describe the dispersion of nd decoupled
bands. The remaining components hi>0(k) depict the inter-
band coupling and compose a spin-orbit (SO) field hso(k) ≡
(h1, h2, . . . , hd ). If without the SO field, band crossing can
occur on (d − 1)D momentum hypersurfaces (or surfaces for
brevity):

BIS ≡ {k|h0(k) = 0}. (3)

The core content of the BIS-based classification is the
bulk-surface duality [53], which states that the dD bulk topol-
ogy can be characterized by a (d − 1)D topological invariant
defined on all BISs:

W =
∑

j

ν j, ν j = �(d/2)

2πd/2

1

(d − 1)!

∫
BIS j

ĥso(dĥso)d−1,

(4)

where ν j counts the winding of the SO field on the jth BIS.
Here, �(x) is the gamma function, ĥso = hso/|hso| is the unit
SO field, and ĥso(dĥso)d−1 = εi1i2···id ĥso,i1 ĥso,i2 ∧ · · · ∧ ĥso,id ,
with εi1i2···id being the fully antisymmetric tensor and i1,2,...,d ∈
{1, 2, . . . , d}. This result can also be interpreted from the
perspective of topological charges [54]. Topological charges
are located at the nodes of the SO field, i.e., k = kc where
hso(kc) = 0. The bulk topology is classified by the total
charges enclosed by BISs, namely,

W =
∑

n∈VBIS

Cn. (5)

Here, Cn characterizes the winding of the SO field around the
nth charge and VBIS denotes the region enclosed by BISs with
h0(k) < 0. In the typical case where hso is linear near kc, the
charge value is simplified as

Cn = sgn[Jhso (kc)], (6)

where Jhso (k) = det[(∂hso,i/∂k j )] is the Jacobian determinant.
Floquet topological phases can be characterized in a sim-

ilar way, while the major difference is that the applied
driving can lead to more BISs, all of which contribute to
the bulk topology [50]. A Floquet system can be described
by an effective Hamiltonian HF = i ln U (T )/T , where the

time-evolution operator U (T ) = T exp[−i
∫ t

0 H (τ )dτ ] with
T denoting the time ordering [26]. The eigenvalues of HF

form the Floquet bands with two inequivalent quasienergy
gaps [27]. For a driven system described by Eq. (1), the
Floquet Hamiltonian also takes a Dirac-type form:

HF (k) =
d∑

i=0

hF,i(k)γi. (7)

Hence one can introduce BISs for Floquet systems, deter-
mined by hF,0(k) = 0, and accordingly define the SO field
hF,so(k) ≡ (hF,1, hF,2, . . . , hF,d ) with which to characterize
topological charges. Unlike static systems, band crossings of
the Floquet bands can appear at both the quasienergy gaps.
We refer to the gap around the quasienergy 0 (π/T ) as the 0
gap (π gap) and the BIS living in this gap as the 0 BIS (π
BIS). The topology of the Floquet bands below the 0 gap is
contributed by all 0 and π BISs but with opposite signs [50]:

W = W0 − Wπ , Wq =
∑

j

ν
(q)
j . (8)

Here, ν
(q)
j represents the topological invariant associated with

the jth q BIS (q = 0, π ), and W0 (Wπ ) characterizes the
number of boundary modes inside the 0 gap (π gap). This
result indicates that BISs play a more fundamental role in
classifying topological phases. Recent work further reveals
that beyond identifying the global bulk topology, the local
topology on each BIS can also have a unique connection to
the gapless modes on the boundary [51].

It is important to note that unlike the classification of
static systems, where h0 can denote the component in any
spin-polarization axis, topological characterization in Eq. (8)
requires carefully choosing with which component as hF,0 to
define the BIS; the chosen component should be one of those
dominating the dispersion of Floquet band structure such that
all the driving-induced band crossings can be fully reflected
in hF,0(k). However, this constraint does not decrease the
flexibility of the characterization by quench dynamics, which
we will show below.

III. TOPOLOGICAL CHARACTERIZATION
BY QUENCH DYNAMICS

In this section, we propose a generic dynamical scheme
for the characterization of Floquet topological phases and
exemplify it with both 2D and 3D models. For simplicity, we
restrict our discussion to the case that only one component
(denoted as h0) dominates the band dispersion.

A. Generic scheme

We first show that topological characterization of a Floquet
system can be turned into a characterization of multiple static
subsystems. To this end, we adopt the quasienergy operator
Q(t ) = H (t ) − i∂t to describe the system, whose eigenval-
ues ε form the Floquet quasienergy bands [30,50,80]. Under
the bases einωt (n is an integer) with ω = 2π/T being the
driving frequency, a driving field can be written as V (t ) =∑

n �=0 V (n)einωt , and the operator Q(t ) for the Hamiltonian (1)
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takes the form

[Q]nn′ = δnn′ (Hs + nω1) + V (n−n′ ). (9)

Here, each block [Q]nn′ has the same dimension as Hs. The
diagonal blocks Hs + nω1 are copies of the static Hamilto-
nian, and the nondiagonal ones V (n−n′ ) couple the nth and
n′th copies. The block-matrix form in Eq. (9) indicates that
through exchanging energy with the system, the periodic driv-
ing shifts the copies of the static h0 bands in steps of ω and
results in new band crossings (i.e., driving-induced BISs).
Finite driving strength and SO coupling then open gaps on
these BISs, rendering the Floquet bands [50]. Based on the
above analysis, the Floquet system can be treated as a family
of subsystems that are periodic in quasienergy, with each con-
sisting of nd bands that are inverted on the corresponding BIS
[see Fig. 1(a)]. Since driving-induced BISs are determined by
h0(k) = mω/2 (m = ±1,±2, . . .) with SO couplings thereon
reflecting higher-order effects [51], we will hereinafter refer to
the BIS (and also the subsystem) corresponding to a nonzero
m as the one of order m. Due to the bulk-surface duality,
the topology on the jth BIS must be consistent with the bulk
topology of the corresponding subsystem of the same order:

ν j = w(m). (10)

Here, the superscript indicates the jth BIS is of order m, and
w(m) is the bulk topological invariant of the corresponding
subsystem [81]. Together with Eq. (8), one can fully char-
acterize Floquet topological phases once the topology of all
subsystems is identified.

It should be noted that from the above picture, only the in-
formation in the immediate regions adjacent to and along BISs
is reliable for defining effective Hamiltonians for subsystems
[see the colored regions in Fig. 1(b)]. For example, when the
driving takes a special form V (k, t ) = V0(k, t )γ0, the effective
Hamiltonian for the subsystem of order m > 0 can be obtained
by analytic continuation of an effective Hamiltonian defined
only on the corresponding BIS [51], which reads

H (m)
eff =

(
h0 − mω

2

)
γ0 + (−1)mJm

∑
i>1

hiγi, (11)

where Jm ≡ ∑∑p
j=1 n j=m

∏p
j=1 Jnj (

4V ( j)

jω ), with Jn(z) being the
Bessel function and n1, n2, . . . , np ∈ {0, 1, 2, . . . , m}. As a
natural result, the characterization should also only use the
data measured in the “regions of validity” to identify bulk
topological invariants w(m), which serves as one of the basic
principles of our dynamical scheme.

We now present how to detect the bulk topology of sub-
systems by quench dynamics. We consider a quench along the
γ� axis and write h�(k) = m� + u�(k). Here, u�(k) denotes the
momentum-dependent part, and m� represents a constant mag-
netization. The dynamics is induced by suddenly quenching a
fully polarized trivial phase with m� → ∞ to the target Flo-
quet topological regime at t = 0 [see Fig. 1(c)]. We employ
stroboscopic time-averaged spin textures for characterization:

〈γi(k)〉� = lim
N→∞

1

N

N∑
n=0

〈γi(k, t = nT )〉�, (12)

where 〈γi(k, t )〉� = Tr[ρ�(k)U †(k, t )γiU (k, t )], with the sub-
script � outside the angle brackets denoting the quench
axis. Here, ρ� is the density matrix of the initial state,
which satisfies γ�ρ� = −ρ�. Since U (nT ) = cos(nEF T ) −
i sin(nEF T )HF /EF with EF =

√∑d
i=0 h 2

F,i, we have

〈γi(k)〉� = −hF,i(k)hF,�(k)/E2
F (k), (13)

which indicates that the characterization 〈γi(k)〉� = 0 can de-
termine two different kinds of surfaces, i.e., those momenta
where hF,i(k) = 0 and hF,�(k) = 0, respectively. In particu-
lar, the surfaces where hF,�(k) = 0 should appear in all the
stroboscopic time-averaged spin textures, independent of the
measurement axis γi. Based on this result, we introduce the
concept of dynamical band-inversion surfaces,

dBIS ≡ {k|〈γi(k)〉� = 0,∀i}, (14)

which identify the surface hF,�(k) = 0 in the deep-quench
limit. Besides dBISs, one can also find other subspaces where
stroboscopic time averages vanish. We denote

Lj ≡ {k|〈γ j (k)〉
�
= 0, 〈γi �= j (k)〉

�
�= 0} (15)

to characterize the surfaces hF, j �=�(k) = 0.
Up to now, there are two special spin-polarization axes that

have been mentioned: One is γ0, which defines the BIS, and
the other is the quench axis γ�. Thus the consideration of dy-
namical characterization should be divided into the following
two cases: (i) The chosen quench axis is precisely the γ0 axis,
i.e., γ� = γ0; and (ii) they are not the same, namely, γ� �= γ0.

Case (i). In this case, the measured dBISs correspond ex-
actly to the BISs of the Floquet bands. According to the band
structure or by observing how dBISs emerge one by one with
the driving frequency [52], one can determine which category
each dBIS falls into, such as 0 or π type and the order m.
Then, a dynamical spin-texture field g(k) = (g1, g2, . . . , gd )
can be defined to characterize the SO field, with

gi(k) = − 1

Nk
∂k⊥〈γi(k)〉�. (16)

Here, k⊥ is the momentum perpendicular to dBISs and point-
ing from the region hF,�(k) < 0 to hF,�(k) > 0, and Nk is a
normalization factor. It can be checked that gi = hF,i/|hF,i|
on dBISs. The subsystem topology can be characterized by
the winding of the dynamical field g(k) on the corresponding
dBISs:

w(m) = �(d/2)

2πd/2

1

(d − 1)!

∫
dBIS(m)

g(k)[dg(k)]d−1, (17)

where dBIS(m) denotes the dBISs that characterize the BISs of
order m.

Cases (ii). One needs first to rearrange the γ matrices
into a new sequence {γ�, γi1 , γi2 , . . . , γid } which should also
satisfy the trace property (2). Suppose γis = γ0 (1 � s � d).
The surfaces Lis defined by Eq. (15) (rather than the dBISs)
are factually the BISs of the Floquet bands and can be di-
vided into categories associated with different m, denoted as
L(m)

is
. To characterize the subsystem topology correctly, one

then needs to construct a spin texture 〈γ (m)
is

(k)〉 for each

subsystem from the measured result 〈γis (k)〉�. For a given m,
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the construction of the spin texture 〈γ (m)
is

(k)〉 is as follows:

The surfaces L(m)
is

together with the dBISs cut the BZ into
patches; the spin polarization of each whole patch (〈γis〉 > 0
or 〈γis〉 < 0) is determined by the measured value of 〈γis〉�
in the adjacent region of L(m)

is
located in this patch [i.e., the

region of validity as sketched in Fig. 1(b)]. A dynamical field
g(m)(k) = (gi1 , gi2 , . . . , g(m)

is
, . . . , gid ) can then be defined for

each subsystem, with the components given by Eq. (16) except
that

g(m)
is

(k) = (−1)m+1 1

Nk
∂k⊥

〈
γ

(m)
is

(k)
〉
. (18)

The bulk topology of each subsystem is then characterized by
the winding of the corresponding field g(m)(k) on all dBISs:

w(m) = �(d/2)

2πd/2

1

(d − 1)!

∫
dBIS

g(m)(k)[dg(m)(k)]d−1. (19)

For both cases, the winding numbers that characterize the
topology of quasienergy gaps are obtained by

W0 =
∑

n

w(2n), Wπ =
∑

n

w(2n+1), (20)

where n is an integer.
Before proceeding, we would like to emphasize several

points on dBISs: (i) Why do we define dBISs as Eq. (14)?
The reason is that if we pick up any other axis but γ� to define
dBISs, we cannot construct a d-component dynamical field to
characterize the topology. From Eq. (13), we see 〈γi(k)〉� ∝
−hF,i(k)hF,�(k) for i �= �, which indicates that one can use the
measurement 〈γi(k)〉� to characterize the corresponding com-
ponent hF,i(k). However, when i = �, it becomes 〈γ�(k)〉� ∝
−h2

F,�(k), which means the full information of hF,�(k) can-

not be derived from 〈γ�(k)〉�. Thus, to realize the dynamical
characterization, the only choice is to use 〈γ�(k)〉� to define
dBISs and use other measurements to construct the dynam-
ical field on dBISs. (ii) The fact that dBISs appear in all
the spin textures 〈γi(k)〉� can be understood as follows: The
quench-induced spin oscillation at each k corresponds to a
spin precession, in which the momentum-linked spin rotates
about the postquench vector field hF (k). The dBISs actually
refer to the momenta where the spin state is perpendicular to
its rotation axis. This naturally leads to the conclusion that
on a dBIS, the time-averaged spin polarization is zero in any
direction. (iii) dBISs are not the same as BISs, although they
may refer to the same momentum subspace in case (i). While
BISs are defined with respect to the (Floquet) band structure
[see Eq. (3)], dBISs are defined with respect to dynamical
measurements and used for the dynamical characterization by
time-averaged spin textures [Eq. (14)]. For a Floquet system,
the spin-polarization axis γ0 used to define BISs needs to be
a special one that dominates the band dispersion. In compari-
son, the quench axis γ� that determines dBISs can be any one
in the present dynamical characterization scheme.

B. 2D model

Now we use an experimentally feasible model to illustrate
the scheme. We consider the 2D driven model taking the form

of Eq. (1) with

Hs(k) = h(k) · σ, V (t ) = 2V0 cos(ωt )σz, (21)

where σx,y,z are the Pauli matrices and h(k) = (hx, hy, hz ) =
(mx + 2tso sin kx, my + 2tso sin ky, mz − 2t0 cos kx −
2t0 cos ky) depicts the 2D quantum anomalous Hall model that
has been realized in optical Raman lattices [14–16]. Here,
t0 (tso) represents the spin-conserved (spin-flipped) hopping
coefficient, and mx,y,z denote the constant magnetization.
The periodic drive can be achieved by modulating the bias
magnetic field or the laser frequency [52]. For the static
Hamiltonian Hs, the bulk topology is simply determined by
the Zeeman term mz (mx,y = 0): the Chern number C = 0 for
|mz| � 4t0 and C = −sgn(mz ) for 0 < |mz| < 4t0. The applied
drive can, however, largely modify the band structure, leading
to a much richer Floquet topological phase diagram [52].
Figure 2(a) displays the quasienergy spectra of a phase with
C = 2 at mz = 6t0, where both the BISs (R1,2) are induced by
the driving and correspond to hz(k) = mω/2 with m = 1 (R1)
and m = 2 (R2), respectively [see Fig. 2(b)]. The result in
Eq. (11) gives an expression of H (1)

eff (H (2)
eff ), which describes

subsystem 1 (2) corresponding to the driving-induced π

BIS R1 (0 BIS R2). Note that in Fig. 2, the setting mz = 6t0
is comparable to the driving frequency ω, indicating that
BISs should be defined with respect to the σz axis, for only
hF,z(k) = 0 can reflect all the band crossings in both the 0 gap
and the π gap. Otherwise, the topology of the π gap cannot
be characterized if we use hF,x/y(k) = 0 to define BISs.

As described in Sec. III A, the flexibility of the present
characterization scheme allows us to consider different
methods of quenching, which can benefit experimental mea-
surements. Here we consider both of the aforementioned
quench cases: (i) The quench axis is precisely the σz axis for
this 2D driven model, and (ii) the quench is along another axis.
For case (i), the quench is performed by suddenly varying
mz from mz � t0 to mz = 6t0 at time t = 0, while setting
mx,y = 0. The periodic driving begins from t = 0 as well
[Fig. 1(c)]. We investigate the quench-induced spin dynam-
ics and derive the stroboscopic time-averaged spin textures
〈σi(k)〉z (i = x, y, z) based on Eq. (12). The results are shown
in Figs. 2(b)–2(d). One can see that two ring-shaped structures
[i.e., two dBISs as defined in Eq. (14)] emerge in all the spin
textures, of which one (R1) corresponds to a π BIS and the
other (R2) identifies a 0 BIS. According to Eq. (16), a dynam-
ical spin-texture field g(k) = (gy, gx ) is further constructed
and is depicted with green arrows in Figs. 2(e) and 2(f).
One can find that the dynamical field g(k) exhibits nonzero
but opposite windings on the two rings [82], giving Wπ =
w(1) = −1 and W0 = w(2) = 1. The Chern number of the
Floquet bands is C = W0 − Wπ = 2.

For case (ii), we quench the σx axis by changing mx from
mx � t0 to mx = 0, while setting my = 0 and mz = 6t0. The
other steps are the same as in case (i). The stroboscopic
time-averaged spin textures 〈σi(k)〉x (i = x, y, z) are shown
in Fig. 3(a). One sees that two line-shaped structures appear
in all the spin textures, corresponding to two open dBISs at
kx = 0 and kx = −π , respectively. Other curves with van-
ishing spin polarization that only appear in 〈σz〉x (〈σy〉x) are
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FIG. 2. Characterizing the 2D model (21) by quenching hz(k).
(a) Quasienergy spectrum of the postquench Hamiltonian in the first
BZ with periodic boundary conditions. [(b)–(d)] Stroboscopic time-
averaged spin textures 〈σi(k)〉z (i = x, y, z). Two ring-shaped dBISs
emerge in all the spin textures: The one labeled as R1 (purple) corre-
sponds to a π BIS, and the other, labeled as R2 (orange), corresponds
to a 0 BIS according to the band structure in (a). The symbol “+”
(“−”) denotes the region where hF,z(k) > 0 (<0). The two dashed
lines in 〈σy〉z (〈σx〉z) with vanishing polarization are denoted as Ly

(Lx). (e) and (f) The dynamical spin-texture field g(k) (green arrows)
is constructed to characterize the topology. The postquench Floquet
system is disassembled into two subsystems, whose bulk topology
is characterized by the winding of g(k) on their respective dBISs.
Here the postquench parameters are mx = my = 0, mz = 6t0, tso = t0,
ω = 8t0, and V0 = 4t0.

denoted as L(1,2)
z (Ly). Note that the curve L(1)

z (L(2)
z ) is in fact

the π BIS (0 BIS). To characterize the subsystem topology, we
need to construct a spin texture 〈σ (m)

z (k)〉x for each subsystem.
The results are shown in Figs. 3(b) and 3(c). For each m,
the curves L(m)

z and dBISs cut the BZ into four patches; each
patch is painted red or blue according to the spin polariza-
tion in the region of validity adjacent to L(m)

z [cf. Fig. 1(b)].
Based on Eqs. (16) and (18), dynamical spin-texture fields
g(1,2)(k) = (gz, gy) can be constructed on the dBISs to char-
acterize the two subsystems. One can see that despite a trivial
pattern along the line kx = −π (kx = 0), the winding of the

FIG. 3. Characterizing the 2D model (21) by quenching hx (k).
(a) Stroboscopic time-averaged spin textures 〈σi(k)〉x (i = x, y, z).
The two lines at kx = −π, 0 (black) emerge in all the textures and
exhibit no polarization, and they are identified as the dBISs. In
addition, the two rings L(1,2)

z with vanishing polarization only appear
in 〈σz(k)〉x , and the two lines Ly (green) only appear in 〈σy(k)〉x .
Here, L(1)

z (L(2)
z ) corresponds to the BIS with m = 1 (m = 2). (b) and

(c) Spin textures 〈σ (1,2)
z (k)〉x are drawn from the measured result

〈σz(k)〉x in (a). In each texture 〈σ (m)
z (k)〉x (m = 1, 2), the whole BZ is

divided into patches by dBISs and L(m)
z . The spin polarization in each

patch is set to have the same sign. (d) and (e) The dynamical spin-
texture fields g(1,2)(k) are constructed from 〈σ (1,2)

z (k)〉x and 〈σy(k)〉x
for the two subsystems. The nonzero winding of g(1)(k) [g(2)(k)]
along kx = 0 (kx = −π ) characterizes the bulk topology. Here, the
dashed blue line marks the first BZ, and the sign “+” (“−”) denotes
the region where hF,x (k) > 0 (<0). The parameters are the same as
in Fig. 2.

dynamical field g(1)(k) [g(2)(k)] on the other dBIS at kx = 0
(kx = −π ) characterizes the topological invariant w(1) = −1
(w(2) = 1). The results are the same as in case (i), which
confirms that the present dynamical characterization scheme
is independent of the quench axis.

Despite the fact that only one anomalous topological phase
is studied here, the dynamical characterization scheme can
certainly be applied to other 2D Floquet topological phases.
In Appendix B, we show a dynamical characterization of an
unconventional topological phase called the anomalous Flo-
quet valley-Hall phase [51,52].
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z

(a) Subsystem 1

z

(b) Subsystem 2

FIG. 4. Characterizing the 3D driven model (22). The whole
system is disassembled into two subsystems: One corresponds to the
static 0 BIS (a), and the other corresponds to the driving-induced
π BIS (b). The dynamical spin-texture field g(k) is constructed and
plotted as green arrows. Here, we set tso = t0, m0 = 5t0, ω = 18t0,
and V0 = 2t0. More details are given in Appendix C and Fig. 8
therein.

C. 3D model

We further apply our scheme to characterize a 3D driven
model of the form in Eq. (1) with

h0(k) = m0 − 2t0

3∑
i=1

cos kri ,

hi>0(k) = 2tso sin kri , V (t ) = 2V0 cos(ωt )γ0. (22)

Here, we denote (r1, r2, r3) ≡ (x, y, z) and take γ0 = σz ⊗ τx,
γ1 = σx ⊗ 1, γ2 = σy ⊗ 1, and γ3 = σz ⊗ τz, where σi and
τi are both Pauli matrices. The static Hamiltonian Hs(k) =∑3

i=0 hi(k)γi, having been simulated using solid-state spin
systems [73,74], respects the chiral symmetry S = i2γ0γ1γ2γ3

and describes 3D chiral topological phases including three
regions: Region I, 2t0 < m0 < 6t0 with winding number
W = 1; region II, −2t0 < m0 < 2t0 with W = −2; and re-
gion III, −6t0 < m0 < −2t0 with W = 1. In the presence of
the driving V (t ), it can be checked that the corresponding Flo-
quet Hamiltonian takes the form of Eq. (7), which maintains
the same chiral symmetry S and hosts anomalous chiral topo-
logical phases that can be identified by BIS characterization
theory [51].

The dynamical characterization of the 3D driven model
can be achieved by quenching m0 [belonging to case (i)]. For
postquench parameters m0 = 5t0 and ω = 18t0, the Floquet
topology of the 3D anomalous chiral topological phase is
contributed from two static effective subsystems, one corre-
sponding to the static 0 BIS with m = 0 [Fig. 4(a)] and the
other to a driving-induced π BIS with m = 1 [Fig. 4(b)].
The dynamical spin-texture field g(k) on each surface can
be derived from stroboscopic time-averaged spin textures
(see Appendix C for details), the winding of which yields
w(0) = w(1) = 1. We then have W0 = Wπ = 1, which reveals
the nontrivial topology within the two gaps, but W = W0 −
Wπ = 0 indicates that the Floquet bands are topologically
trivial.

The numerical results above demonstrate the feasibility
of the present dynamical characterization scheme. Although

only 2D and 3D models are examined, the characterization
can easily be generalized to higher dimensions.

IV. THE VIEWPOINT OF TOPOLOGICAL CHARGES

In this section, we adopt an alternative viewpoint to ex-
amine the dynamical characterization scheme. As in static
systems [54,70], the dynamical characterization of Floquet
topological phases can also be achieved from the viewpoint
of topological charges. Our starting point is still Eqs. (14)
and (15) following the same quench protocol described in
Sec. III A. Also, two cases need to be considered.

For case (i) with γ� = γ0, the dBISs defined in Eq. (14)
characterize the BISs of the Floquet bands. We introduce
dynamical charges that are located at the intersection points
k = kdc of all surfaces Lj with j �= 0:

{kdc} =
⋂d

j=1
Lj . (23)

Obviously, in this case, the dynamical charges are exactly
the topological charges located at the nodes of the SO
field hF,so(k). Since 〈γi(k)〉�|k→kdc � −hF,i(k)/hF,�(kdc) [see
Eq. (13)], we define a dynamical spin-texture field �(k) =
(�1,�2, . . . , �d ), with its components given by

�i(k) = − sgn[hF,�(k)]

Nk
〈γi(k)〉�. (24)

The charge value of the nth dynamical charge is obtained by

Cn = sgn[J�(kdc)]. (25)

The characterization of a subsystem of order m reduces to the
total dynamical charges enclosed by the corresponding dBISs:

w(m) =
∑

n∈V (m)
dBIS

Cn, (26)

where V (m)
dBIS denotes the region surrounded by the correspond-

ing dBISs with h(m)
0 (k) < 0 [83]. Here, h(m)

0 (k) denotes the γ0

component of the effective Hamiltonian for the subsystem of
order m.

For case (ii) with γ� �= γ0, the γ matrices need to be
rearranged. We also suppose γis = γ0 (1 � s � d) in the
rearranged sequence and denote by L(m)

is
the surface that cor-

responds to the BIS of order m. We identify the dynamical
charges located at the intersection points k = k(m)

dc :{
k(m)

dc

} = Li1 ∩ Li2 ∩ · · · ∩ L(m)
is

∩ · · · ∩ Lid . (27)

Accordingly, we introduce the dynamical spin-texture field
�(m)(k) = (�i1 ,�i2 , . . . , �

(m)
is

, . . . , �id ), where

�
(m)
is

(k) = (−1)m+1 sgn[hF,�(k)]

Nk
〈γis (k)〉� (28)

and other components are given by Eq. (24). In this case,
the dynamical charges do not correspond to the topological
charges of the SO field. The topology of each subsystem
is characterized by the corresponding dynamical charges en-
closed by dBISs:

w(m) =
∑

n∈VdBIS

C (m)
n , (29)
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FIG. 5. Characterizing the 2D driven model (21) from the
viewpoint of topological charges. (a) and (b) Characterization by
quenching hz. The stroboscopic time-averaged spin textures are
shown in Figs. 2(b)–2(d). Both subsystems have four dynamical
charges. Their locations are determined by the intersections of Lx,y.
The constructed dynamical field �(k) is plotted as arrows, which
characterizes the charge value. The corresponding dBIS enclosing
only one charge at � (a) or three charges (b) exhibits different
bulk topology. (c) and (d) Characterization by quenching hx . The
stroboscopic time-averaged spin textures are shown in Fig. 3(a). The
two subsystems have different dynamical charges, identified by the
intersections of Ly with L(1)

z (subsystem 1) and with L(2)
z (subsystem

2), respectively. Their constructed dynamical fields �(1,2)(k) have
opposite z components [cf. Eq. (28)]. The same two open dBISs en-
closing the charge C (1)

1 or C (2)
1 characterizes different bulk topology.

Here, the dashed blue line marks the first BZ, and the red (blue) dots
label dynamical charges with a value +1 (−1). The parameters are
the same as in Fig. 2.

where VdBIS denotes the region surrounded by dBISs with
h�(k) < 0 [83] and the charge value is given by

C (m)
n = sgn

[
J�(m)

(
k(m)

dc

)]
. (30)

Here, we take the 2D driven model (21) as an example
to illustrate the dynamical characterization via topological
charges. The quench process, the chosen parameters, and the
calculated stroboscopic time-averaged spin textures are all the
same as those in Sec. III B. We also consider the two quench
cases. In case (i) with hz being quenched, the lines Lx,y in
Fig. 2(b) intersect at four points, identifying four distinct dy-
namical charges for both subsystems [see Figs. 5(a) and 5(b)].
The dynamical field �(k) = (�y,�x ) is constructed from the
spin textures according to Eq. (24) and determines the charge
values. For subsystem 1 of order m = 1, only a single charge
with C = −1 at the � point is enclosed by the π BIS R1

[Fig. 5(a)], giving the bulk topological invariant w(1) = −1.

For subsystem 2 of order m = 2, three dynamical charges, one
with C = −1 at � and two with C = +1 at X1,2, are enclosed
by the 0 BIS R2 [Fig. 5(b)]. The total charge value gives
w(2) = +1. In case (ii), the two subsystems have different
dynamical charges [Figs. 5(c) and 5(d)]. Based on the spin
textures in Fig. 3(a), two dynamical fields �(1,2)(k) can be
constructed, each of which characterizes the charges for the
corresponding subsystem. We find that for subsystem 1 (2),
the curves L(1)

z (L(2)
z ) and Ly have two intersections marking

two dynamical charges, and only the charge with C(1)
1 = −1

(C(2)
1 = +1) is enclosed by the two open dBISs, which yields

w(1) = −1 (w(2) = +1). One can see that in both cases, we
have W0 = w(2) = 1 and Wπ = w(1) = −1, consistent with
the characterization in Sec. III B.

V. SHALLOW QUENCHES

Our results above have shown that by quenching a fully
polarized initial state, the induced quantum dynamics can
characterize the topology of postquench Floquet Hamiltonian
HF . However, in systems such as ultracold atoms, only fi-
nite magnetization can be generated [70], so that one needs
to consider the case of a shallow quench, i.e., the quench
starts from an initial state that is incompletely polarized. It
has been demonstrated for static systems that the dynami-
cal bulk-surface correspondence (and thereby the dynamical
characterization) is still valid for a shallow quench, since an
incompletely polarized initial state can always be transformed
into a fully polarized one by a local rotation [55]. Similar
reasoning can be applied here. We shall show that the present
dynamical characterization scheme for Floquet systems also
works in the incompletely polarized case. Some details are
given in Appendix D.

We assume a local rotation R(k) under which the ro-
tated initial state ρ ′

�(k) = R(k)ρ�(k)R†(k) becomes fully
polarized. In the rotated frame, the Floquet Hamiltonian
is now H ′

F (k) = R(k)HF (k)R†(k). Note that 〈γ ′
i (nT )〉� =

Tr[ρ ′
�eiH

′
F nT γ ′

i e−iH ′
F nT ] = 〈γi(nT )〉�, where γ ′

i = RγiR†. After
the rotation, the dynamical characterization becomes the one
to characterize the topology of H ′

F (k) by a deep quench,
and obviously it works. Since R(k) is local unitary, which
is ensured by the fact that ρ�(k) and ρ ′

�(k) are in the same
trivial regime, the two Hamiltonians H ′

F (k) and HF (k) must
be topologically equivalent. This concludes our proof.

For illustration, we still consider the model described by
Eq. (21). Here the quench process is realized by changing mz

from a finite value mi in the trivial regime to the targeted value
m f = 6t0. We investigate the postquench spin dynamics under
the setting mi = 5t0, with the stroboscopic time-averaged spin
textures 〈σi(k)〉z (i = x, y, z) being shown in Figs. 6(a)–6(c).
One can see that two ring-shaped dBISs emerge in all the
spin textures. The dBISs vary with the initial magnetiza-
tion mi: When mi → ∞, they coincide with the BISs where
hF,z(k) = 0; when mi → 4t0, the two dBISs deviate from the
locations of BISs and move gradually towards each other.
We see that as long as mi > 4t0, each BIS must have its
dynamical counterpart, and the emergent topology on dBISs
yields a valid characterization of the postquench Floquet topo-
logical phase. As shown in Fig. 6(d), the winding of the
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FIG. 6. Characterizing the 2D driven model (21) by a shallow
quench. [(a)–(c)] Stroboscopic time-averaged spin textures 〈σi(k)〉z

(i = x, y, z). Unlike the deep-quench case in Fig. 2, the dBISs do
not coincide with the BISs where hF,z(k) = 0. (d) Dynamical char-
acterization by the spin textures in [(a)–(c)]. The winding of the
constructed dynamical field g(k) (green arrows) on dBISs and the
total dynamical charges (red and blue dots) enclosed by dBISs yield
the same results as the characterization using deep quenches. Here
the postquench parameters are the same as in Fig. 2.

dynamical field g(k) on dBISs and the total enclosed charges
give the same Floquet topological invariants W0 = w(2) = 1
and Wπ = w(1) = −1 as the deep-quench cases discussed in
former sections.

VI. DISCUSSION AND CONCLUSIONS

We have presented a general and feasible dynamical char-
acterization scheme for a class of generic periodically driven
systems classified by Z-valued topological invariants. The
scope of application of our proposed dynamical scheme is
detailed in Appendix A. The present scheme is based on
the BIS characterization theory, which reduces the charac-
terization of the bulk topology to a sum of contributions of
lower-dimensional topology in local momentum subspaces
called BISs. Such a theory has two major advantages: (i) The
local topology on BISs can be directly and precisely measured
by quench dynamics, which has been experimentally demon-
strated in several artificial quantum simulators [52,70,72–75].
(ii) The classification by local topological structures enables
the realization and detection of novel Floquet topological
phases beyond the conventional characterization [51,52]. It
has been shown that a particular local topological structure
formed in each BIS can uniquely correspond to a gapless
edge mode, rendering the BIS-boundary correspondence [51].
Hence a dynamical scheme based on the BIS characterization
potentially has wider applicability. An example is given in

Appendix B to showcase an unconventional topological phase
and its dynamical characterization.

Compared with the previous work in Ref. [50], the present
dynamical scheme is more flexible in performing quenches.
The previous work directly employs the dynamical patterns
emerging on BISs to characterize the bulk topology, which
depends on how we define the BISs and thus restricts the
quench axis. In comparison, the present scheme introduces
effective static Hamiltonians to replace the role of BISs; these
Hamiltonians have the bulk topology in one-to-one corre-
spondence to the subdimensional topology defined on BISs.
Characterizing a static bulk Hamiltonian can be achieved by a
quench along an arbitrary spin-polarization axis [53].

The present scheme also works under nonideal conditions.
Two aspects are discussed here: (i) Although stroboscopic
time-averaged spin textures in Eq. (12) are defined over an
infinite interval, quench dynamics up to only several oscilla-
tion periods 2π/�, where � denotes the local energy gap of
the Floquet bands, can usually provide sufficient information
for topological characterization [52,70]. This indicates that
the dynamical measurement is, to a certain extent, robust
against thermal effects. (ii) As already discussed in Sec. V,
the proposed dynamical scheme can also employ shallow
quenches, which loosens the restriction on the preparation
of the initial state and has practical benefits for experimen-
tal realization. We have proved that as long as the initial
state is in the same trivial regime as the fully polarized
state, the present scheme always yields a valid dynamical
characterization.

Our dynamical characterization theory can also employ a
set of quenches with respect to all spin-quantization axes.
The result in Eq. (13) shows an important duality that
measuring the ith spin component after quenching the �th
spin-quantization axis is precisely equal to measuring the
�th spin component after quenching the ith axis. Hence one
can easily check that all the stroboscopic time-averaged spin
textures that are required for characterization can alternatively
be obtained by measuring a single component after a set of
quenches along all spin-quantization axes [54,55]. However,
it should also be noted that whether or not the scheme using
a set of shallow quenches can yield a valid characterization of
Floquet topological phases is not a straightforward question
and deserves further investigation.

In summary, our work provides a multiple-subsystem
approach for characterizing Z Floquet topological phases
by quantum quenches. The present scheme has high flex-
ibility and feasibility in practical applications and can be
immediately applied in ultracold atoms or other quantum
simulators.

Note added. Recently, we noted that a dynamical character-
ization theory has been developed for Z2 Floquet topological
phases based on the concept of higher-order BISs [84].
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APPENDIX A: THE SCOPE OF APPLICATION OF OUR
DYNAMICAL CHARACTERIZATION SCHEME

In this Appendix, we specify what kinds of Floquet topo-
logical phases our dynamic characterization scheme can apply
to. As shown in Eq. (1), we consider a class of periodically
driven systems realized by applying a periodic drive V (k, t )
on top of a d-dimensional (dD) time-independent band struc-
ture. For the latter, we focus on generic gapped topological
phases classified by integers in the AZ symmetry classes
[76–79]. We shall elaborate on this as follows.

First, the basic Hamiltonian for the static system takes the
form

Hs(k) = h(k) · γ =
d∑

i=0

hi(k)γi, (A1)

where the γ matrices obey the anticommutation relations and
are of dimensionality nd = 2d/2 (or 2(d+1)/2) if d is even (or
odd), involving the minimal bands to open a topological gap.
The γ matrices can generally be constructed as the tensor
product of the Pauli matrices, e.g., in the 3D Hamiltonian
(22). In one and two dimensions, the Clifford matrices simply
reduce to the Pauli matrices [cf. Eq. (21)]. Generally, these Z
topological phases can be topological insulators or supercon-
ductors characterized by the winding number (Chern number)
in odd (even) dimensions, including classes AIII, BDI, and
CII in one dimension, classes A, D, and C in two dimensions,
classes AIII, DIII, and CI in three dimensions, and so on. In
odd dimensions, these Z topological phases require the pro-
tection of the chiral symmetry S = i(d+1)/2 ∏d

i=0 γi. Here, the
winding or Chern number characterizes the wrapping number
of the map n(k) = h(k)/|h(k)| from a dD torus T d to the
dD spherical surface Sd . For such dD Z topological phases
described by Eq. (A1), the bulk topology can be characterized
by a (d − 1)D invariant defined on BISs, rendering the bulk-
surface duality [53–55].

Second, for the total Hamiltonian, we consider the topol-
ogy of the Floquet Hamiltonian HF = i ln U (T )/T . Due to
the classification of the static Hamiltonian, the resulting Flo-
quet topological phases can also be classified by Z-valued
invariants in the ten symmetry classes, as long as the to-
tal Hamiltonian respects the required nonspatial symmetries
[46,47]. Besides, they can also be unconventional topo-
logical phases beyond the ten-way classification [51] (see
Appendix B for an example). When the periodic driving takes
the form V (k, t ) = Vl1 (k, t )γl1 + Vl2 (k, t )γl2 + · · · with li ∈
{0, 1, . . . , d}, the effective Hamiltonian also takes the basic
Dirac-type form shown in Eq. (7). Hence there exist two
inequivalent Floquet gaps, named the 0 gap and the π gap,
respectively, and each gap is characterized by a Z invariant.
A generalized bulk-surface duality has been established [50]:
The gap topology can be characterized by a (d − 1)D invari-
ant defined on the BISs associated with the corresponding gap.

Third, our characterization theory can be generalized to
generic multiband systems, for which we assume that each
(quasi) energy gap is opened through a group of nd bands
(the minimal requirement). At each k, the multiband Hamil-
tonian can be transformed into a block-diagonal form H (k) =
H1(k) ⊕ H2(k) ⊕ · · · [53]. One can see that only those blocks

involving nd crossing bands have nontrivial contribution to the
topology. The topology of the bulk bands can then be reduced
to topological invariants defined on the corresponding BISs
of each block. The contribution of a BIS is effectively deter-
mined by a basic Hamiltonian taking the form in Eq. (A1). For
example, in a 2D three-band system, any two bands that have a
band crossing can be locally described by a two-band effective
Hamiltonian. A topological invariant can then be defined on
each BIS, which characterizes the bulk topology of the effec-
tive Hamiltonian and has a contribution to the Chern numbers
of the two involved bands. Such a generalization applies to
both static and Floquet systems. The only difference is that
for a Floquet system, one also needs to consider the band
crossings resulting from the periodicity of the quasienergy.

APPENDIX B: DYNAMICAL CHARACTERIZATION OF
THE ANOMALOUS FLOQUET VALLEY-HALL PHASE

In this Appendix, we apply the present dynamical char-
acterization scheme to more “unconventional” topological
phases. As demonstrated in Ref. [51], the concept of BIS pro-
vides a systematic way to realize various topological phases
by Floquet-engineering local topological structures. In partic-
ular, when two BISs with opposite topology emerge in the
same quasienergy gap, the system may exhibit a topological
phase that cannot be classified by conventional topological
invariants, e.g., the winding numbers W0,π and the Chern
number, defined for the global topology of the bulk. A typical
example is the anomalous Floquet valley-Hall phase [51,52].

For the 2D driven model described by Eq. (21), the anoma-
lous Floquet valley-Hall phase is marked by four ring-shaped
BISs in the first BZ [see Fig. 7(a)]: Two correspond to π BISs
(R1,3), and two are 0 BISs (R2,4); they are all induced by peri-
odic driving for the chosen parameters. Here, for clarity of the
results, we set an initial driving phase φ in the driving so that
V (t ) = 2V0 cos(ωt − φ)σz, which does not alter the Floquet
topology [50]. The two types of BISs (two 0 BISs or two π

BISs) exhibit the same configuration: One BIS (e.g., R1) sur-
rounds the � point, and the other (e.g., R3) surrounds M. The
dynamical characterization shows that such a configuration
results in two opposite contributions to the topological invari-
ant W0/π . According to the stroboscopic time-averaged spin
textures 〈σi(k)〉z (i = x, y, z) in Figs. 7(a)–7(c), the dynamical
field g(k) can be constructed [Fig. 7(d)], the winding of which
on each dBIS gives w(1) = w(2) = −1 (for R1,2) and w(3) =
w(4) = +1 (for R3,4). Hence we have W0 = w(2) + w(4) = 0,
Wπ = w(1) + w(3) = 0, and the Chern number of the Floquet
bands C = W0 − Wπ = 0. These topological invariants de-
fined to characterize the global bulk topology are all equal to
zero. However, it has been proved that this phase features sta-
ble counterpropagating edge states in both quasienergy gaps
and thus transcends the conventional classification [51].

The characterization can also be performed by quenching
the σx axis. By following the same procedure as in Fig. 3,
we construct four spin textures 〈σ (m)

z (k)〉x from the measure-
ment 〈σz(k)〉x [Fig. 7(e)], each obtained by extending the data
measured in the adjacent region of the corresponding BIS
(labeled by L(m)

z ). Accordingly, the dynamical fields g(m)(k)
are depicted on the two open dBISs [Fig. 7(f)], whose winding
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FIG. 7. Characterizing the anomalous Floquet valley-Hall phase of the 2D driven model (21). [(a)–(d)] Characterization by quenching hz.
Stroboscopic time-averaged spin textures 〈σi(k)〉z (i = x, y, z) are shown in [(a)–(c)]. Four ring-shaped dBISs emerge (dashed curves) in all
the textures: Two correspond to the π BISs (R1,3), and two correspond to 0 BISs (R2,4). The dynamical field g(k) is constructed on the dBISs,
which characterizes the topology of subsystems (d). Here, “+” (“−”) denotes the region where hF,z(k) > 0 (<0). (e) and (f) Characterization
by quenching hx . Spin textures 〈σ (m)

z (k)〉x are derived from 〈σz(k)〉x (e), with which the dynamical fields g(m)(k) are constructed (f). The
postquench parameters are tso = t0, mx = my = 0, mz = 5t0, ω = 4t0, V0 = 3t0, and the initial driving phase φ = π .

characterizes the subsystem topology. One can easily check
that the characterization yields the same results as above:
w(1) = w(2) = −1 and w(3) = w(4) = +1.

APPENDIX C: DYNAMICAL CHARACTERIZATION
OF 3D TOPOLOGICAL PHASES

In this Appendix, we present the details of numerical cal-
culations of the 3D model in Sec. III C. Here we perform a
quench in the γ0 axis, while the characterization can also be
achieved by other quenches. As described in the main text,
the static Hamiltonian has three topological phase regions
distinguished by m0. The phase displayed in Fig. 4 is realized
by applying a periodic drive to the phase in region I.

Similar to the 2D driven model, we detect the 3D Floquet
topological phases by quenching an initial fully polarized

state and deriving stroboscopic time-averaged spin textures
〈γi〉0 (i = 0, 1, 2, 3) from the quench dynamics. For the cho-
sen postquench parameters, two dBISs can be identified by
〈γi〉0 = 0 for all i (see Fig. 8). Since the quench axis γ0 is
the one that defines the BIS with h0(k) = mω/2, the two
spherical-like surfaces in Figs. 8(a) and 8(c) are in fact the
BISs of the Floquet bands: One is a 0 BIS with m = 0
[Fig. 8(a)], and the other is a π BIS with m = 1 [Fig. 8(b)].
Accordingly, the whole Floquet system is disassembled into
two static subsystems, each corresponding to one BIS.

According to Eq. (16), the dynamical spin-texture field
g(k) is defined by the gradient of 〈γi>0〉0 perpendicular to
the dBISs. Here we show the calculated spin textures on the
closed surfaces slightly inside and outside the BISs, respec-
tively [Figs. 8(b) and 8(d)]. The direction of the dynamical
field g(k) on each BIS can be determined by the subtraction
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FIG. 8. Numerical results of the 3D driven model (22). The observed stroboscopic time-averaged spin textures 〈γi〉0 = 0 (i = 0, 1, 2, 3)
identify a 0 BIS where h0(k) = 0 (a) and a π BIS where h0(k) = ω/2 (c). The dynamical field g(k) (green arrows) is determined by the
subtraction of the spin textures on two equal-energy surfaces close to the BIS. For the 0 BIS, the two equal-energy surfaces are h0(k) = 0.1t0

and h0(k) = −0.1t0 (b). For the π BIS, they are h0(k) − ω/2 = 0.1t0 and h0(k) − ω/2 = −0.1t0 (d). Here the parameters are the same as
in Fig. 4.

of 〈γi〉0 on the neighboring equal-energy surfaces. From the
winding of g(k), one can obtain the bulk topological invariants
for subsystems w(0) = w(1) = 1, which gives W0 = Wπ = 1,
and the winding number of the Floquet bands W = W0 −
Wπ = 0.

APPENDIX D: SOME DETAILS ON SHALLOW QUENCHES

Here we give more details on the proof of the shallow-
quench method. Since U (nT ) = exp ( − iHF · nT ) =
cos(EF · nT ) − i sin(EF · nT )HF /EF , with EF =

√∑d
i=0 h 2

F,i,

we have

〈γi(k)〉� = lim
N→∞

1

N

N∑
n=0

Tr[ρ�U
†(nT )γiU (nT )]

= hF,iTr[ρ�HF ]

E2
F

, (D1)

which yields 〈γi〉� = −hF,ihF,�/E2
F in a deep-quench case

where γ�ρ� = −ρ�. When γ� = γ0, dBISs defined by Eq. (14)
are exactly the BISs. However, for a shallow quench, they are
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in general not equal [see Fig. 6(a)]. The definition in Eq. (14)
in fact gives

dBIS = {k|Tr[ρ�(k)HF (k)] = 0}. (D2)

Now we examine the dynamical characterization. For
shallow quenches, the direction k⊥ is defined to be perpendic-
ular to the contours of the dBISs, i.e., Tr[ρ�(k)HF (k)] = 0.
Suppose that the spin textures are all linear in k⊥ when ap-
proaching the dBISs. The directional derivative on dBISs then

reads

∂k⊥〈γi〉� � − lim
k⊥→0

1

2k⊥

hF,i + O(k⊥)

E2
F + O(k⊥)

· 2k⊥ = −hF,i

E2
F

. (D3)

We then have gi = −∂k⊥〈γi〉�/Nk = hF,i/|hF,i|. As argued in
Sec. V, as long as the incompletely polarized initial state can
be connected to the fully polarized one via a local unitary
rotation, the topological patterns on dBISs should remain the
same. This leads to the conclusion that the dynamical charac-
terization by shallow quenches yields the same result as in the
deep-quench case.
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