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Rabi oscillations and magnetization of a mobile spin-1/2 impurity in a Fermi sea
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We investigate the behavior of a mobile spin-1/2 impurity atom immersed in a Fermi gas, where the interacting
spin-↑ and noninteracting spin-↓ states of the impurity are Rabi coupled via an external field. This scenario
resembles the classic problem of a two-state system interacting with a dissipative environment, but with an
added dimension provided by the impurity momentum degree of freedom. In this case, the impurity can become
“dressed” by excitations of the Fermi sea to form a Fermi polaron quasiparticle. For the steady-state system,
where the impurity has thermalized with the medium, we derive exact thermodynamic relations that connect the
impurity magnetization with quasiparticle properties such as the number of fermions in the dressing cloud. We
show how the thermodynamic properties evolve with increasing Rabi coupling and we present exact analytical
results in the limits of weak and strong Rabi coupling. For the dynamics of the Rabi-driven Fermi polaron, we
formulate a theoretical approach based on correlation functions that respects conservation laws and allows the
efficient calculation of Rabi oscillations for a range of timescales and impurity momenta beyond what has been
achieved previously. Our results are in good agreement with recent experiments on the Rabi oscillations of the
attractive polaron, and they reveal how the Rabi oscillations are influenced by the interplay between the polaron
and its dressing cloud.
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I. INTRODUCTION

The problem of a quantum impurity interacting with a
Fermi medium has attracted much attention recently, owing to
its importance in a wide variety of systems ranging from cold
atomic gases [1–14] to doped semiconductors [15,16]. Most
notably, it connects to the deeper questions of how a quantum
system is affected by its environment, and how interacting
many-body systems can be described using quasiparticles—
particles that resemble the bare noninteracting particles but
with modified properties such as their charge or mass.

For the case of a mobile quantum impurity, the bare im-
purity can become dressed by excitations of the background
Fermi gas to form a so-called Fermi polaron quasiparticle
[17–19]. Such Fermi polarons have been probed extensively
in the context of cold atoms, where the coupling to an aux-
iliary internal spin state of the impurity atom has been used
to access the energy spectrum [1,3] as well as the coherent
dynamics of quasiparticle formation and decay [9]. A partic-
ularly straightforward and powerful experimental protocol is
to continuously couple the noninteracting auxiliary impurity
spin state with an impurity spin state that strongly interacts
with the Fermi gas, thus driving Rabi oscillations that are
sensitive to the polaron quasiparticle properties [3,9–11]. This
has allowed the precise determination of the quasiparticle
residue (the squared overlap with the noninteracting state) and
quasiparticle lifetime [3,10,11,20]. However, an interesting
and largely unexplored direction is the physics of the Rabi-
coupled system itself, including how the Fermi polaron is
changed by the Rabi coupling, as well as the magnetization in
the steady state. This has only very recently been achieved in
a homogeneous Fermi-gas experiment [21]. The Rabi-coupled

Fermi polaron is also related to the problem of a spin-1/2 sys-
tem in a dissipative environment [22,23], but with the added
dimension of an impurity momentum degree of freedom, thus
allowing the existence of quasiparticles with nonzero overlap
with the noninteracting state.

In this paper, we investigate theoretically both the dynam-
ics and the thermodynamics of the Rabi-coupled spin-1/2
impurity in a Fermi gas. We present exact thermodynamic
relations that capture the interplay between the impurity
magnetization and the impurity-medium interactions in the
thermalized steady-state system. In the limit of weak Rabi
coupling, we derive exact analytical results that connect the
magnetization to the polaron energy and residue, and these
are found to be remarkably robust with respect to increasing
Rabi coupling. On the other hand, once the Rabi coupling
far exceeds the Fermi energy of the medium, such that the
impurity spin flips are faster than the medium’s ability to
respond, we see the emergence of qualitatively different po-
laron quasiparticles with properties that can also be obtained
analytically.

For the quantum dynamics across a range of timescales, the
full description of the Rabi oscillations is a challenging many-
body problem, since it goes beyond standard theories based
on linear response. To tackle this, we formulate a theoretical
approach based on correlation functions that respects conser-
vation laws and can describe the dynamics of the impurity
and its polaronic dressing cloud. Our approach is equivalent
to previous variational methods [20,24] but is numerically
much more efficient, allowing us to investigate thermalization
as the system approaches the steady state, as well as the
finite-temperature lifetime of the attractive polaron observed
in experiment [10].
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The paper is organized as follows: In Sec. II we intro-
duce our model of the spin-1/2 impurity in a Fermi gas and
discuss the impurity Green’s function and spectral function
that form the basis of our theoretical approach. We introduce
the thermodynamic properties characterizing interactions and
magnetization in the Rabi coupled system in Sec. III, and we
obtain their perturbatively exact expressions in the limit of
weak and strong Rabi drives. Section IV contains our numeri-
cal results for the thermodynamic properties at intermediate
Rabi drive, as well as the impurity spectral function. Here
we use a many-body T -matrix approximation, which becomes
perturbatively exact in the limits of weak and strong Rabi
drive. Finally, Sec. V contains our calculations of the impurity
dynamics, which we obtain directly from the Green’s function
by introducing a two-body correlation function. In Sec. VI we
conclude. Additional technical details are in the Appendixes.

II. MODEL AND FORMALISM

We consider an impurity atom with two internal hyper-
fine states σ =↑,↓ that is immersed in a Fermi gas. The
total Hamiltonian consists of three terms, Ĥ = Ĥ0 + Ĥ� + V̂ ,
where

Ĥ0 =
∑

k

[εkĉ†
k↑ĉk↑ + (εk + �0)ĉ†

k↓ĉk↓ + ξk f̂ †
k f̂k ], (1a)

Ĥ� = �0

2

∑
k

(ĉ†
k↑ĉk↓ + ĉ†

k↓ĉk↑), (1b)

V̂ = g
∑
kk′q

ĉ†
k↑ĉk+q↑ f̂ †

k′ f̂k′−q. (1c)

Here, Ĥ0, Ĥ�, and V̂ describe, respectively the kinetic energies
of the particles, the Rabi drive, and the impurity-medium
interactions. The operator ĉ†

kσ
(ĉkσ ) creates (destroys) an

impurity with spin-σ , mass m, and momentum k, where
the corresponding kinetic energy is εk = |k|2/2m ≡ k2/2m.
We assume that only the spin-↑ impurity interacts with
the medium particles, where g denotes the bare interaction
strength, but it is straightforward to generalize our approach
to the case where both spins interact with the medium [20].
The interacting ↑ impurity is coupled to the noninteracting ↓
impurity via the Rabi coupling �0, where the Rabi drive is
detuned from the bare ↑ - ↓ transition by �0, and we have
applied the rotating wave approximation. We emphasize that
the behavior in the single-impurity limit also applies to a finite
impurity density as long as we are in a regime where we
can neglect correlations between impurities. At finite temper-
ature, this is always true at sufficiently low impurity density.
Throughout, we work in units where the reduced Planck con-
stant h̄, the Boltzmann constant kB, and the volume are all set
to one.

The fermionic operator f̂ †
k ( f̂k) creates (annihilates)

medium particles with momentum k and kinetic energy ξk =
εk − μ. Here we assume that the fermionic medium particles
have the same mass as the impurity, a scenario which is
routinely accessed in 6Li atomic gases [10], and we treat the
Fermi gas within the grand canonical ensemble, such that it is
described by a chemical potential μ and temperature T . We

can determine the density n of the Fermi medium using

n =
∑

q

nq = −
(

mT

2π

)3/2

Li3/2(−eβμ), (2)

where the Fermi-Dirac distribution nq = (1 + eβξq )−1, β ≡
1/T , and Li is the polylogarithm. We furthermore define
the Fermi momentum and energy: kF = (6π2n)1/3 and EF =
k2

F/2m, respectively, as well as the corresponding Fermi
temperature TF = EF and time τF = 1/EF. Throughout, we
assume that the impurity particle experiences a uniform
medium, as is the case for quantum gases in box traps [25,26]
or for a low density of impurities in the center of a harmoni-
cally trapped gas.

The properties of the driven impurity are encoded in the
retarded impurity Green’s function:

Gσ (p, t ) = −iθ (t )〈ĉpσ (t )ĉ†
pσ (0)〉, (3a)

Gσ σ̄ (p, t ) = −iθ (t )〈ĉpσ (t )ĉ†
pσ̄ (0)〉, (3b)

with the spin components σ �= σ̄ . Here, θ (t ) is the Heavi-
side function, and we have used the time-dependent operator
ĉpσ (t ) = eiĤt ĉpσ e−iĤt . We define 〈· · · 〉 ≡ Tr[e−βĤ · · · ]med/

Tr[e−βĤ ]med, where the trace is over medium-only states since
we are taking the single-impurity limit.

From the Fourier transform of the impurity Green’s
function, we can define the spin-resolved impurity spectral
functions

Aσ (p, ω) = − 1

π
Im Gσ (p, ω + i0). (4)

Here, and in the following, we assume that the frequency in
the Green’s function is shifted infinitesimally into the upper
half plane due to the unit step function in Eq. (3). The Green’s
functions can also be formally linked to the thermodynamic
properties in the long-time limit, as we discuss in Sec. III.

A. Noninteracting impurity Green’s function

In the absence of impurity-medium interactions and Rabi
coupling, i.e., for g = 0 and �0 = 0, the impurity Green’s
functions take the form

G(0)
↑ (p, ω) = 1

ω − εp
, G(0)

↓ (p, ω) = 1

ω − εp − �0
. (5)

Turning on Rabi coupling but keeping interactions off, the
corresponding Green’s function G� is then a matrix. In the
↑ - ↓ basis we have

G�(p, ω) =
[

G(�)
↑ G(�)

↑↓
G(�)

↓↑ G(�)
↓

]

=
[

[G(0)
↑ (p, ω)]−1 −�0/2

−�0/2 [G(0)
↓ (p, ω)]−1

]−1

. (6)

The diagonal and off-diagonal Green’s functions satisfy the
diagrammatic equations illustrated in Figs. 1(a) and 1(b).
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+

++

FIG. 1. (a), (b) Relationships between the diagonal and off-
diagonal Rabi-coupled Green’s functions for spin σ =↑, ↓ and σ̄ �=σ .
Thin solid lines represent the uncoupled Green’s function, dotted
lines the Rabi coupling between spin states, double lines the Rabi
dressed Green’s function. (c) Diagrammatic representation of the
T -matrix equation, where the circle represents the interaction g, the
thin blue line is the Green’s function of a particle from the medium,
and the double line is the Rabi-coupled Green’s function G(�)

↑ .

Inverting the matrix in Eq. (6), we arrive at

G(�)
↑ (p, ω) = v2

ω − E+
p

+ u2

ω − E−
p

, (7a)

G(�)
↑↓ (p, ω) = uv

ω − E+
p

− uv

ω − E−
p

, (7b)

G(�)
↓↑ (p, ω) = uv

ω − E+
p

− uv

ω − E−
p

, (7c)

G(�)
↓ (p, ω) = u2

ω − E+
p

+ v2

ω − E−
p

. (7d)

The poles of the Rabi-coupled Green’s functions yield the
Rabi-coupled single-particle energies

E±
p = εp + 1

2

(
�0 ±

√
�2

0 + �2
0

)
, (8)

i.e., we have two Rabi-split parallel dispersions. These corre-
spond to the stationary states in the absence of interactions.
Furthermore, we have defined the coefficients

u2 = 1

2

⎛
⎜⎝1 + �0√

�2
0 + �2

0

⎞
⎟⎠,

v2 = 1

2

⎛
⎜⎝1 − �0√

�2
0 + �2

0

⎞
⎟⎠,

uv = 1

2

�0√
�2

0 + �2
0

, (9)

with u2 + v2 = 1. Upon inspection of the diagonal elements
of the Rabi-coupled Green’s function in Eq. (7), we see that
u2 and v2 are the spin-↑ fractions of the lower and upper
branches, respectively (and vice versa for the spin-↓ frac-
tions).

The corresponding spectral functions are obtained from
Eq. (7) and take the form

A(�)
↑ (p, ω) = v2δ(ω − E+

p ) + u2δ(ω − E−
p ), (10a)

A(�)
↓ (p, ω) = u2δ(ω − E+

p ) + v2δ(ω − E−
p ). (10b)

Thus, in the absence of interactions we have two δ-function
peaks.

B. Two-body problem

We now turn to consider the interacting problem, focusing
first on the two-body problem of a spin-↑ impurity interacting
with a single medium particle. To model this, we consider a
short-range contact interaction as in V̂ in Eq. (1c), whose bare
interaction strength g satisfies the renormalization condition:

1

g
= m

4πas
−


∑
k

1

2εk
. (11)

Here, as is the scattering length while 
 is an ultraviolet (UV)
cutoff on the relative momentum in the scattering process. In
all results presented in this work, we have taken the UV cutoff
to infinity.

In the absence of Rabi coupling, the two-body problem
features a bound state for as > 0, with binding energy εB =
1/ma2

s . This shows up as an energy pole of the two-body T
matrix describing the scattering of a spin ↑ particle with a
particle from the medium [19]:

T −1
0 (ω) = 1

g
−


∑
k

G(0)
↑ (k, ω − εk )

= m

4πas
− m3/2

4π

√−ω. (12)

Here we have used Eq. (11) and taken the limit 
 → ∞ in the
second step.

In the presence of Rabi coupling, the two-body T matrix
between a spin ↑ particle and a particle from the medium is
modified to

T −1
� (ω) = 1

g
−


∑
k

G(�)
↑ (k, ω − εk )

= m

4πas
− m3/2

4π

(
u2
√

E−
0 − ω + v2

√
E+

0 − ω
)
,

(13)

as illustrated in Fig. 1(c). Importantly, all intermediate free
propagation involves the Rabi-coupled spin-↑ Green’s func-
tion in Eq. (7a). We see that the continuum instead starts at
E−

0 , and that there is only a two-body bound state (corre-
sponding to a stationary state of the two-body problem) when
1/as > 1/ac with

1/ac ≡ v2
√

m(E+
0 − E−

0 ) � 0. (14)

For this range of scattering lengths, the T matrix has a pole at

ω = − 1

ma2
s

[
1 + �2

0

4�2
0

(√
1 + ma2

s �0 − 1
)2
]
. (15)

This is always below −1/ma2
s ; however, note that the actual

binding energy is reduced compared with the ↑ impurity in
the absence of a Rabi drive.

Figure 2 demonstrates the shift of the continuum and the
associated shift of the critical scattering length at which the
two particles can bind. We see that the energy of the bound
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FIG. 2. Energy of the two-body bound state (black, solid line) for
detuning (a) �0 = 0, and (b) �0 = 0.5�0. We also plot the energy in
the absence of Rabi coupling (blue dotted). The continuum is shown
as a purple-shaded region.

state is only strongly modified in the vicinity of the critical
scattering length, while it is insensitive to the Rabi drive when
the binding energy becomes large compared with the drive
parameters.

To round off our discussion of two-body physics, we note
that we can also calculate the scattering lengths corresponding
to scattering of one of the Rabi-coupled single-particle states
with a medium particle. In either case, the scattering length in-
volves the fraction of spin-↑ particle in the Rabi-coupled state,
and the T matrix should be evaluated at the appropriately
shifted collision energy. For instance, the scattering length for
the lower Rabi-coupled state is

a− = u2 m

4π
T�(E−

0 )

= u2 1

a−1
s − a−1

c

. (16)

We see that this diverges at the critical scattering length
for bound-state formation, ac, as one would expect. Equa-
tion (16) makes it clear that our scenario is qualitatively
distinct from earlier proposals to modify the two-body physics
via an oscillating magnetic field [27,28], since in that case the
scattering length always contains an imaginary part. Similarly
to Eq. (16), we can define the scattering length for the upper
Rabi-coupled state, a+ = v2(m/4π )T�(E+

0 ). This is complex
since the upper Rabi-coupled state is not the single-particle
ground state. Similarly, there is not a true bound state of the
upper Rabi-coupled state and a medium particle [correspond-
ing to a pole of T�(ω) for real ω], only a quasibound state (a
pole off the real axis) as expected when Rabi-coupling to a
continuum of scattering states [29].

++

FIG. 3. Dressed interacting Green’s function (solid line) for spin
states σ =↑, ↓. Double lines represent the Rabi dressed Green’s
function. The self-energy is shown as a circle, and it only cou-
ples spin-↑ particles, since we assume that the spin-↓ state is
noninteracting.

C. Interacting Green’s function

The presence of impurity-medium interactions leads to a
modified impurity Green’s function. This can be captured by
introducing the interaction-induced self-energy �. The result-
ing Dyson equation is shown in Fig. 3, which can be written
as follows [30]:

G(p, ω) = [G−1
� (p, ω) − �(p, ω)

]−1
. (17)

Since we assume that there are only interactions between the
↑ impurity and the medium, we have

�(p, ω) =
[
�(p, ω) 0

0 0

]
. (18)

This can straightforwardly be modified to include interactions
between the spin-↓ impurity and the medium [20,31]. Im-
portantly, the self-energy depends itself on the Rabi drive,
since the impurity can change its spin inside the diagrams
contributing to the self-energy.

The diagonal parts of the impurity Green’s function, G↑ ≡
G11 and G↓ ≡ G22, are now given by

G↑(p, ω) = 1

ω − εp − �(p, ω) − (�0
2

)2 1
ω−εp−�0

, (19a)

G↓(p, ω) = 1

ω − εp − �0 − (�0
2

)2 1
ω−εp−�(p,ω)

. (19b)

From the Green’s functions, we can obtain the quasiparticle
energies using the usual relation Re[G−1

σ (0, Eσ )] = 0, which
yields

E↑ = Re[�(0, E↑)] +
(

�0

2

)2 1

E↑ − �0
, (20a)

E↓ = �0 +
(

�0

2

)2

Re

[
1

E↓ − �(0, E↓)

]
. (20b)

These quasiparticle energies are in general different, being
identical only in the case of the polaron ground state at T = 0
where the self-energy is purely real at the quasiparticle pole.
Note that, with increasing temperature, the polaron quasipar-
ticle may cease to be well defined in the sense that one or both
expressions in Eq. (20) have no solution.

Calculating the impurity self-energy is in general a compli-
cated many-body problem. In Sec. IV we discuss how this can
be obtained within a many-body T -matrix approximation that
is equivalent to a variational approach [24,32]. However, as
we now discuss in Sec. III, we can make several observations
about the impurity thermodynamics that are independent of
the precise form of the self-energy.
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III. EXACT THERMODYNAMIC PROPERTIES

We can investigate the thermodynamic properties of the
Rabi-coupled impurity in the long-time limit, where the in-
teracting impurity has fully thermalized with the medium. In
this case, we can define an impurity free energy F = F − F0,
where F and F0 correspond, respectively, to the free energies
of the Rabi-coupled interacting system and of the noninteract-
ing system without Rabi coupling. We define it in this way in
order to remove the extensive properties of the medium and to
isolate the nontrivial behavior of the Rabi-driven impurity.

Within the grand canonical ensemble for the medium, the
free energy F depends on the medium chemical potential μ,
the temperature T and the medium-impurity scattering length
as, as well as the Rabi-drive parameters �0 and �0. By taking
derivatives with respect to these quantities, we obtain key
observables that characterize the impurity thermodynamics.
In particular, the magnetization is

Sz ≡ N↑ − N↓ = 1 − 2
∂F
∂�0

, (21)

where Nσ =∑k Tr[ρ̂ĉ†
kσ ĉkσ ] and we have used the fact that

we are considering a single impurity: N↑ + N↓ = 1. The trace
is over all states containing the medium and the single im-
purity (note the difference from the angle brackets defined
previously), and we define the corresponding density matrix
ρ̂ ≡ e−βĤ/Tr[e−βĤ ]. Similarly to Sz, we have the in-plane
magnetization along the x direction:

Sx ≡
∑

k

Tr[ρ̂(ĉ†
k↑ĉk↓ + ĉ†

k↓ĉk↑)] = 2
∂F
∂�0

. (22)

There are also additional quantities that directly capture the
correlations due to interactions with the medium. Specifically,
we have the Tan contact [33]

C = 4πm
∂F

∂ (−1/as )
, (23)

and the number of medium atoms in the dressing cloud of the
impurity [34]

N = −∂F
∂μ

. (24)

In the absence of impurity-medium interactions, the free
energy takes the simple form for a spin-1/2 system

F = �0

2
− 1

β
ln

[
2 cosh

(
β

2

√
�2

0 + �2
0

)]
, (25)

which yields the magnetizations

Sz = �0√
�2

0 + �2
0

tanh

(
β

2

√
�2

0 + �2
0

)
, (26a)

Sx = − �0√
�2

0 + �2
0

tanh

(
β

2

√
�2

0 + �2
0

)
. (26b)

In the zero-temperature limit, we recover the ground-
state energy F = E−

0 from Eq. (8) with corresponding
magnetizations Sz = �0/(�2

0 + �2
0)1/2 = u2 − v2 and Sx =

−�0/(�2
0 + �2

0)1/2 = −2uv in terms of the coefficients de-
fined in Eq. (9).

In the general case, using dimensional analysis [35,36],
we can write the free energy in terms of an arbi-
trary length scale λ as follows: F (T, μ, as,�0,�0) =
λ−2F (T λ2, μλ2, as/λ,�0λ

2,�0λ
2). Taking dF/dλ = 0 and

then setting λ = 1, we obtain

F =
(

T ∂T + μ∂μ + 1

2as
∂1/as + �0∂�0 + �0∂�0

)
F ,

which gives us a relationship between all the thermodynamic
properties of the impurity,

F = −T S − μN − C
8πmas

+ �0

2
(1 − Sz ) + �0

2
Sx, (27)

where the impurity entropy S = −∂TF . In particular, for a
unitary Fermi gas in the zero-temperature limit, the impurity
free energy is solely related to the number of atoms in the
dressing cloud and the magnetizations:

F1/a=0,T =0 = −EFN + �0

2
(1 − Sz ) + �0

2
Sx. (28)

In practice, we can derive the free energy from the full
spectrum contained in the Green’s function (17). Following
the arguments in Refs. [37,38] (see Appendix A for details),
the impurity free energy satisfies the relation

e−βF =
∫

dω
∑

p e−βω[A↑(p, ω) + A↓(p, ω)]∑
p e−βεp

(29)

in terms of the spin-resolved impurity spectral functions.
Using the spectral functions in the absence of interactions,
Eq. (10), it is straightforward to show that we recover the
simple spin-1/2 case in Eq. (25) when the Green’s function
is noninteracting.

The impurity free energy becomes particularly simple
when there is a well-defined polaron quasiparticle in the lim-
its T � EF and T � �0, such that we can assume that the
imaginary part of the impurity self-energy is negligible at the
quasiparticle pole. The quasiparticle energies then coincide,
E↑ = E↓ ≡ E , where

E =
(

�0

2

)2 1

E − �0
+ �(0, E ). (30)

This simplification allows us to gain analytic insights in the
weak and strong Rabi-drive limits, as we now discuss.

A. Weak Rabi drive

It is instructive to first consider the case of a small Rabi
coupling, �0 � EF, where the steady-state properties are only
weakly perturbed by the rf drive. From Eq. (30), the lowest or-
der term where �0 = 0 yields the attractive ↑ polaron energy
in the absence of Rabi coupling:

E0 = �(0, E0)|�0=0 ≡ �0(E0). (31)

Now we wish to perform an expansion in small �0/EF for the
energy E and self-energy,

E = E0 + δE (1) + · · · (32)

�(0, E ) = �0(E0) + δ�(1)(E0) + ∂�0

∂E

∣∣∣∣
E0

δE (1) + · · · (33)
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The linear-order contribution δ�(1)(E0) = 0 since, on physi-
cal grounds, the self-energy must be an even function of the
Rabi coupling �0. Moreover, the self-energy is expected to be
analytic around �0 = 0 provided we are away from the bare
resonance �0 = 0. Therefore, keeping only linear terms and
using Eq. (31), Eq. (30) becomes(

1 − ∂�0

∂E

∣∣∣∣
E0

)
︸ ︷︷ ︸

Z−1
0

δE (1) 

(

�0

2

)2 1

δE (1) − δ
, (34)

where Z0 is the residue of the attractive ↑ polaron in the
absence of Rabi coupling, and we have defined the detun-
ing from the ↑ polaron energy: δ = �0 − E0. Note that the
right-hand side of Eq. (34) is also effectively linear in |�0| if
|δ| < |�0| � EF.

Solving for δE (1) then yields the ground and excited po-
laron energies of the Rabi coupled system:

E± = E0 + 1
2 (δ ±

√
δ2 + �2). (35)

Notice how this resembles Eq. (8), the spin-1/2 case in the
absence of a medium, where � ≡ √

Z0�0 is the effective
Rabi frequency for the polaron quasiparticle, consistent with
previous work [3,20].

Since we have assumed that T � EF, the temperature is
sufficiently low that we can use these quasiparticle energies to
derive a free energy in a similar manner to the spin-1/2 case
in the absence of a medium. Using Eq. (29), we obtain

F = E0 + δ

2
− 1

β
ln

[
2 cosh

(
β

2

√
�2 + δ2

)]
. (36)

From Eqs. (21) and (22), this gives the corresponding magne-
tizations

Sz = δ√
δ2 + �2

tanh

(
β

2

√
δ2 + �2

)
, (37a)

Sx = −
√

Z0�√
δ2 + �2

tanh

(
β

2

√
δ2 + �2

)
, (37b)

which, in the zero-temperature limit, reduce to

Sz = δ√
δ2 + �2

, (38a)

Sx = −
√

Z0�√
δ2 + �2

. (38b)

From Eqs. (37a) and (38a), we find that we always have
Sz = 0 when the Rabi drive is resonant with the ↑ polaron
energy, �0 = E0, a result which only depends on temperature
via E0 [39]. However, the total magnetization is sensitive to
both temperature and �, as we can see from the slope around
the resonance

∂Sz

∂�0

∣∣∣∣
�0=E0

= tanh (β�/2)

�
. (39)

Furthermore, close to the zero crossing of Sz, Eq. (38b) yields
Sx = −√

Z0 rather than −1, thus illustrating how interactions
modify the impurity spin.

B. Strong Rabi drive

In the opposite limit of a strong Rabi drive relative to all
other parameters, the impurity approaches a freely driven two-
level system since the timescale of many-body excitations,
1/EF, greatly exceeds the period of the drive. We can then
calculate the leading-order many-body corrections as follows.

To expose the behavior at large Rabi coupling, we assume
that �0 greatly exceeds |�0| and EF, and furthermore, if
as > 0, that �0 � εB. This ensures that the polaron energy
in the driven system is dominated by the single-particle en-
ergy ≈ − �0/2 and not by many-body effects of O(EF) or
effects related to the two-body bound state. To leading order
in EF/�0 we can therefore approximate E 
 E−

0 in the self-
energy in Eq. (30) (note that a similar approximation was used
in Ref. [40]). Furthermore, in the large-drive limit, multiple
excitations of the medium become suppressed, and we can
consider the interaction of the impurity with only a single
excitation of the medium. Thus, we can approximate the self-
energy as arising due to the vacuum T matrix in Eq. (13):

�(0, E ) 
 nT�(E−
0 ) = 4πn

m

(
1

as
− 1

ac

)−1

, (40)

with ac the critical scattering length for forming a two-body
bound state, as defined in Eq. (14). The polaron energy then
takes the form

E = 1
2

[
�0 + �(0, E−

0 ) −
√

[�0 − �(0, E−
0 )]2 + �2

0

]
. (41)

In the strongly driven system, all other states with significant
spectral weight are far detuned from the polaron energy, and
hence we identify this with the impurity free energy. The
various thermodynamic variables can then be obtained using
Eqs. (21)–(24).

In the special case of 1/as = 0, we find the many-body
corrections to the thermodynamic variables

E = −�0

2
+ �0

2
− 4πn

m3/2
√

�0
, (42a)

Sz = �0

�0
+ 16πn

(m�0)3/2 , (42b)

Sx = −1 + 4πn

(m�0)3/2 +

(
�0 + 16πn

m3/2�
1/2
0

)2

2�2
0

, (42c)

C = 32π2n

m�0

(
1 + 3

�0

�0

)
, (42d)

N =
√

8EF

π2�0

(
1 + 2

�0

�0

)
, (42e)

where we implicitly take �0 > 0. Here we have assumed
that we are close to the regime of zero magnetization along
the z axis, which is achieved when �0 = −16πn/(m3/2�

1/2
0 ).

In fact, these expressions are also valid away from unitarity,
provided the Rabi coupling is sufficiently large such that the
scattering length can be ignored in Eq. (40).

IV. ENERGY SPECTRA AND THERMODYNAMICS

We now turn to the scenario of a Rabi drive of inter-
mediate strength. In this case, we do not have any small

023302-6



RABI OSCILLATIONS AND MAGNETIZATION OF A … PHYSICAL REVIEW A 109, 023302 (2024)

FIG. 4. The self-energy within the ladder approximation, with
symbols defined as in Figs. 1 and 3.

parameters, and hence we must approximate the driven many-
body problem. In this work, we utilize a many-body T -matrix
approximation, which has been successfully applied to the
Fermi polaron problem in the absence of Rabi coupling
[41–44]. Our approach is equivalent to the result of the varia-
tional approach to Rabi dynamics introduced in Refs. [20,24],
extended to finite temperature and impurity momentum us-
ing the formalism of Ref. [32]. Here, one truncates the time
evolution of the impurity at the level of one excitation of the
medium, and hence the self-energy can be approximated as a
sum of ladder diagrams, shown in Fig. 4:

�(p, ω) =
∑

q

nqT (q + p, ω + εq), (43)

where nq is the Fermi-Dirac distribution for the medium. The
in-medium T matrix is obtained by taking Pauli blocking into
account in all intermediate states, yielding

T −1(q, ω) = 1

g
−


∑
k

(1 − nk )G(�)
↑ (q − k, ω − εk )

= T −1
�

(
ω − εq

2

)

−
∑

k

nk

(
u2

εk + E−
q−k − ω

+ v2

εk + E+
q−k − ω

)
,

(44)

which depends on the Rabi coupling, similarly to the vacuum
T matrix in Eq. (13).

Using the approximate self-energy in Eq. (43), we can cal-
culate the impurity Green’s functions in Eq. (19) and hence the
impurity spectral functions in Eq. (4). The resulting spectral
function A↓(0, ω) at T = 0 is shown in Figs. 5 and 6. To be
concrete, here and in the rest of this section we have taken
the ↑ impurity-medium interactions to be unitarity limited,
1/kFas = 0. This means that, within the T -matrix formalism
and in the absence of a Rabi drive, the attractive polaron has
energy E0 
 −0.61EF [45], while the repulsive branch is a
broad peak around the energy 1.5EF [46,47]. Figure 5 inves-
tigates the effect of varying the detuning at fixed Rabi drive.
We see that when the Rabi drive �0 < EF, the peaks in the
spectrum closely follow the quasiparticle energies obtained
from solving the weak-drive expression in Eq. (35), where
the attractive polaron residue is Z0 
 0.78. On the other hand,
for a larger Rabi drive where �0 > EF, we are clearly able to
distinguish the broad continuum related to the coupling to the
repulsive polaron, which leads to an effective avoided crossing
between the repulsive branch and the upper energy in Eq. (35).
These features are reflected in Fig. 6, where we instead fix the
detuning and vary �0. In particular, we see that the additional
features arising from the repulsive branch in the Rabi-coupled

−3
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0

1

2

ω
/
E

F

(a) Ω0 = 0.5EF

-2 -1 0 1 2

Δ0/EF

−3

−2

−1

0

1

2

ω
/
E

F

(b) Ω0 = 2EF

A↓(p = 0, ω)

0 0.5 1

FIG. 5. Color plot of the zero-momentum impurity spectral func-
tion A↓(p = 0, ω) as a function of the detuning �0/EF for Rabi
coupling (a) �0 = 0.5EF and (b) �0 = 2.0EF. We take 1/kFas = 0,
T = 0, and for all spectra, a broadening of 0.005EF has been added
to enhance visibility. The dotted white lines are the polaron energies
obtained from Eq. (35).

↓ spectral function require both a positive detuning and a large
Rabi drive ≈EF.

The impurity spectral functions in turn enable us to cal-
culate the impurity free energy via Eq. (29), from which the
thermodynamic variables in Eqs. (21)–(24) are obtained by
taking the appropriate derivatives. The results are shown in
Fig. 7 for zero temperature as a function of detuning and
for the same Rabi couplings as for the spectra in Fig. 5. At
zero temperature, the thermodynamic properties are entirely
determined by the properties of the ground state. According
to Eq. (38a), this is mostly spin ↓ when �0 � −0.61EF,
becoming increasingly dominated by the interacting spin ↑
component with increasing detuning. Indeed, we see that this
expression provides a near perfect agreement for the behavior
of the magnetization Sz, even for �0 = 2EF. We also observe
that the position of the zero crossing of Sz remains relatively
constant as the Rabi drive is increased, with the corresponding
critical detuning �

(c)
0 being close to −0.61EF for both values

of �0 shown. Thus, the weak-Rabi-drive result in Eq. (38a)
appears to be remarkably robust. Likewise, Eq. (38b) provides
an excellent approximation of Sx, which is maximal close to
the zero crossing of Sz.

The changing spin composition of the ground state is
reflected in the thermodynamic variables associated with in-
teractions, namely, the contact and the number of particles
in the dressing cloud. We find that both of these increase
from zero to their values at unitarity in the absence of Rabi
coupling: C0/kF = 4.28 [43] and N0 = −E0/EF = 0.61 [48].
For the number of particles in the dressing cloud, we can un-
derstand this by considering the expression for the free energy
at unitarity and T = 0 in Eq. (28), which links the number
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(a) Δ0 = −0.61EF
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Ω0/EF

(b) Δ0 = 0
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Ω0/EF

(c) Δ0 = EF

A↓(p = 0, ω)

0 1 2

FIG. 6. Color plot of the zero-momentum impurity spectral functions A↓(p = 0, ω) as a function of the Rabi coupling �0/EF for detunings
(a) �0 = Eatt = −0.61EF (the attractive polaron energy in the absence of Rabi drive), (b) �0 = 0, and (c) �0 = EF. We take 1/kFas = 0,
T = 0, and for all spectra a broadening of 0.005EF has been added to enhance visibility. The dashed white lines are the polaron energies
obtained from Eq. (35).

of particles in the dressing cloud to Sz and Sx. By using the
expressions for the magnetization parameters at weak Rabi
drive in Eq. (38), we find

N = 1

2

(
1 + δ√

�2 + δ2

)
N0. (45)

This is seen to closely match our numerical results in Fig. 7(d).
Intuitively, this expression can be understood as being the
product of the spin ↑ fraction in the ground state (i.e., the
interacting part of the impurity) and the number of particles
in the dressing cloud in the absence of Rabi coupling. In
particular, at δ = 0 where the impurity is half ↑ and half ↓
we expect the number of particles in the dressing cloud to be
halved due to the Rabi coupling.

The contact is less constrained than the number of particles
in the dressing cloud, since it is not present in the free energy

at unitarity—see Eq. (28). However, it is reasonable to assume
that we have the following approximate form:

C 
 1

2

(
1 + δ√

�2 + δ2

)
C0, (46)

which corresponds to the ↑ contact in the absence of Rabi
coupling multiplied by the spin-↑ fraction (since the non-
interacting ↓ state has zero contact). Indeed, this yields an
excellent agreement at weak Rabi drive [see Fig. 7(c)], but
it overestimates the contact when �0 � EF. We note that the
contact can be calculated from Eqs. (36) and (23); however,
even at weak Rabi coupling we do not obtain a simple analytic
form.

Figure 8 illustrates the effect of temperature on these re-
sults. A nonzero temperature allows excited states to be popu-
lated which tends to reduce both the Sz and Sx magnetizations
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0.8

N

(d)

Ω0 = 0.5EF

Ω0 = 2EF

FIG. 7. The (a) magnetization Sz, (b) in-plane magnetization Sx , (c) contact, and (d) number of atoms in the dressing cloud are plotted
as a function of detuning �0/EF at zero temperature, T = 0, interaction 1/kFas = 0, and for Rabi couplings �0 = 0.5EF (blue solid) and
�0 = 2.0EF (black dashed). The dotted lines correspond to the weak Rabi drive in Eqs. (38), (45), and (46), respectively, and the green lines
indicate the corresponding results in the absence of Rabi coupling.
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FIG. 8. The (a) magnetization Sz, (b) in-plane magnetization Sx , (c) contact, and (d) number of atoms in the dressing cloud are plotted
as a function of detuning �0/EF for interaction 1/kFas = 0, Rabi coupling �0 = 0.5EF, and temperatures T/TF = 0 (blue solid), T/TF = 0.2
(black dashed), and T/TF = 0.6 (red dot-dashed). The dotted lines for the magnetizations correspond to Eq. (37) where for each temperature
we have calculated the polaron energy and quasiparticle residue in the absence of Rabi coupling [39].

towards zero. This behavior is well captured by the analytic
expressions in Eq. (37). Furthermore, in the absence of Rabi
coupling, it has been experimentally demonstrated that the
contact parameter can be enhanced with increasing tempera-
ture [49], a behavior which has been reproduced theoretically
[38]. We see a similar effect in the Rabi-coupled case for
all detunings considered. On the other hand, the number of
particles in the dressing cloud decreases with temperature
when �0 � −0.61EF, while increasing for detunings below
the attractive polaron, which is again linked to thermally pop-
ulating excited states.

The success of the relatively simple analytic weak-Rabi-
drive expressions in describing the interplay of Rabi coupling
and strong interactions likely arises from the fact that the ↑
impurity at unitarity features a “dark continuum” above its
T = 0 ground state [50], with strongly suppressed spectral
weight. This implies that there are no nearby states that can
strongly influence the impurity thermodynamics. In this sense,
the experimental verification of our results would provide fur-
ther strong evidence of the existence of a dark continuum. We
also note that close to the polaron-molecule transition [43,51],
we expect significant spectral weight at energies comparable
to the polaron, and hence we would expect stronger deviations
from the weak-drive expressions.

Finally, Fig. 9 shows how the critical detuning �
(c)
0 at

which the magnetization Sz = 0 changes as a function of
Rabi drive and temperature. As �0 → 0 and T � EF, the
critical detuning is to a high degree of accuracy given by
the polaron energy, calculated according to Eq. (20a). The
polaron is known to initially shift to lower energies with in-
creasing temperature, before eventually moving closer to zero
energy [52–54], as has been observed experimentally [12].
This is consistent with our findings, where we additionally
observe the critical detuning to remain relatively constant until

�0 ∼ EF before eventually moving towards zero. At very
large Rabi drive, our results are consistent with the strong-
drive results in Sec. III B.

V. DYNAMICS OF THE DRIVEN SYSTEM

We now turn to the dynamics of the Rabi-driven Fermi
polaron. This is typically probed by measuring the magne-
tization as a function of time, as done previously in several
Fermi-polaron experiments [3,10,11]. The dynamics of the
Rabi-driven Fermi polaron has been theoretically described
using a variational truncated basis method, both at T = 0
[24] and at finite temperature [20,55], and this has been suc-
cessfully used to model experiments [10,11] focused on the

0.1 1 10

Ω0/EF

0.0

0.2

0.4

0.6

0.8

1.0

−Δ
(c

)
0

/
E

F

T = 0

T = 0.2TF

T = 0.6TF

FIG. 9. The critical detuning �
(c)
0 where Sz = 0 at unitarity

1/kFas = 0, as a function of the Rabi coupling �0/EF, for temper-
atures T = 0 (blue solid), T = 0.2TF (black dashed), and T = 0.6TF

(red dot-dashed). The dotted purple line is the analytical result ob-
tained from the strong Rabi-coupled limit, Eq. (42b), and the solid
green line is the zero-temperature polaron energy E0 
 −0.61EF in
the absence of a Rabi drive.
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repulsive branch [20]. More recently, the problem has also
been investigated using an approximate version of a many-
body T -matrix approach [31], and a kinetic equation approach
[56].

A. Dynamics in the time domain

To investigate the Rabi-driven dynamics, we imagine that
the impurity is initially in the noninteracting spin-↓ state at
time t = 0. Then we quantify the magnetization Sz at times
t � 0 via the spin-↓ fraction

N↓(t ) =
∑

p e−βεp Np↓(t )∑
p e−βεp

. (47)

The Boltzmann average arises since we consider a single
impurity (or, equivalently, a Boltzmann gas of uncorrelated
impurities). The spin-↓ fraction for an impurity initially at
momentum p is given by

Np↓(t ) = 〈ĉp↓(t )n̂↓ĉ†
p↓(t )〉, (48)

where the expectation value is with respect to the states of the
medium as in Eq. (3). We have also used the time-dependent
operator ĉp↓(t ) = eiĤt ĉp↓e−iĤt and we have defined n̂σ =∑

p ĉ†
pσ ĉpσ .

We now introduce a new method to calculate the Rabi
dynamics which involves expanding the expectation value in
Eq. (48) in terms of excitations of the Fermi sea. This is equiv-
alent to previous truncated basis calculations by some of the
present authors [20,24], but the advantage of expanding the
expectation value directly is that we can relate it to correlation
functions, which in turn allows us to accurately describe the
dynamics for much longer evolution times. We perform such
an expansion by inserting a complete set of medium-only
states between the impurity creation and annihilation opera-
tors in n̂↓ and restricting our attention to one excitation of the
medium. This gives

Np↓(t ) = 〈ĉp↓(t )ĉ†
p↓〉〈ĉp↓ĉ†

p↓(t )〉

+
∑
k �=q

〈ĉp↓(t )ĉ†
p+q−k↓ f̂ †

k f̂q〉〈 f̂ †
q f̂kĉp+q−k↓ĉ†

p↓(t )〉
〈 f̂ †

q f̂k f̂ †
k f̂q〉

+ · · · , (49)

where we have applied Wick’s theorem along with momentum
conservation. The denominator in the last term ensures proper
normalization of the inserted intermediate state.

The first-order term of Eq. (49) is directly related to the
spin-↓ time-dependent interacting Green’s function:

N (1)
p↓ (t ) = |G↓(p, t )|2, (50)

which can in principle be determined from the Fourier trans-
form of Eq. (19b). However, in practice, we only require the
spectral function A↓(p, ω), corresponding to the imaginary
part of the Green’s function, which we obtain by extending the
time domain to t < 0 and invoking time-reversal symmetry.
Thus, we can equivalently write Eq. (50) as [20]

N (1)
p↓ (t ) =

∫
dωdω′A↓(p, ω)A↓(p, ω′)e−i(ω−ω′ )t . (51)

This can be viewed as the “bare” impurity’s contribution to the
Rabi oscillations, as discussed in Ref. [20]. However, at finite
temperature, the impurity Green’s function always decays to
zero in the long-time limit [20]; therefore, this contribution
alone is insufficient to describe the steady state of the Rabi-
driven impurity.

To capture the full dynamics, we need to include the con-
tribution from the polaron dressing cloud, which is contained
in the second-order term in Eq. (49):

N (2)
p↓ (t ) =

∑
k �=q

|χ↓(k, q; p, t )|2
nq(1 − nk )

. (52)

Here we have used 〈 f̂ †
q f̂k f̂ †

k f̂q〉 = nq(1 − nk ) and we have
defined the spin-resolved two-body correlator

χσ (k, q; p, t ) = −iθ (t )〈ĉpσ (t )ĉ†
p+q−kσ f̂ †

k f̂q〉. (53)

Its Fourier transform χσ (k, q; p, ω) can be related to the im-
purity Green’s function as follows (see Appendix B for details
of the derivation):

χ↑(k, q; p, ω) = G(�)
↑ (p + q − k, ω + εq − εk )

× �(q; p, ω)(1 − nk ), (54)

where G(�)
↑ (p, ω) is the noninteracting Green’s function given

in Eq. (7), and we have the interaction term

�(q; p, ω) = g
∑

k

χ↑(k, q; p, ω)

= T (p + q, ω + εq)G↑(p, ω)nq, (55)

with T (p, ω) the medium T matrix defined in Eq. (44). The
above expressions assume that there is at most one excitation
of the medium, consistent with the expansion in Eq. (49).
Finally, we obtain the ↓ two-body correlator relevant for
Eq. (52) using the exact relation between the ↑ and ↓ cor-
relators:

χ↓(k, q; p, ω + �0) =
(
�2

0/4
)
χ↑(k, q; p, ω + �0)

(ω − εp )(ω − εk − εp+q−k + εq)
.

(56)

Figure 10 displays the numerically calculated Rabi os-
cillations obtained within the one-excitation approximation.
We fix the detuning to be resonant with the ↑ attractive
polaron such that Sz is close to zero in the steady state at
unitarity (see Fig. 9), corresponding to the long-time limit
N↓(t → ∞) ≈ 0.5. We find that the initial time dependence
during the first few oscillations is dominated by the first-order
term N (1)

↓ (t ), with the gross features of the oscillations be-
ing dictated by the impurity spectral function, i.e., we find
the Rabi frequency � = √

Z0�0, in agreement with previous
work [3,20]. However, at longer times, the behavior becomes
completely determined by the second-order “dressing cloud”
term N (2)

↓ (t ) and, most notably, the spin-↓ fraction tends to
something nonzero in the limit t → ∞. The steady-state value
is slightly shifted from the expected magnetization obtained
from the free energy, indicating that higher-order correlations
are required to describe thermalization. However, our approx-
imation is at least conserving since our numerical results
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FIG. 10. Rabi oscillations at unitarity 1/kFas = 0 for different
Rabi couplings (a) �0 = 0.5EF, (b) �0 = EF, and (c) �0 = 2EF

and at temperatures T = 0.03TF (black solid), T = 0.1TF (red dot-
dashed), and T = 0.2TF (blue dashed). For each temperature, we set
the detuning equal to the attractive polaron energy in the absence of
Rabi coupling [39].

satisfy the sum rule N↓(t ) + N↑(t ) = 1 (see Appendix C),
which is not the case when only N (1)

↓ (t ) is considered [31].
We also observe a damping of the oscillations that typically

increases with temperature for the low temperatures in Fig. 10
and is larger than the finite-temperature damping rate �0 of
the attractive polaron [39]. Thus, the impurity momentum
appears to play an important role in the damping of Rabi
oscillations at finite temperature and its inclusion is necessary
to capture the damping observed in experiments on 6Li [10],
as shown in Fig. 11. This is in contrast with the case where
the Rabi drive is resonant with the repulsive polaron, in which
case the experiments could be successfully modeled with
a zero-momentum variational approach [20]. The difference
between attractive and repulsive polarons is likely due to the
processes that underlie their decoherence: in the former, mo-
mentum relaxation is expected to dominate [57], while in the
latter, there is “many-body dephasing” [20] which is present
at zero momentum and temperature. Indeed, our results in
Fig. 11 qualitatively match those of Ref. [56], which describes
momentum relaxation within a quantum kinetic framework.
Finally, note that the experiment [10] is carried out in a har-
monic trap, features a finite density of impurities, and there are

0 5 10 15 20 25

t/τF

0

0.2

0.4

0.6

0.8

1

N
↓(

t)

1/kFas = 0.07

FIG. 11. Comparison between our numerical results (solid black)
and the experimental data for Rabi-driven 6Li near unitarity from
Ref. [10] (blue dots). The parameters are �0 = 0.7EF, T 
 0.14TF,
and 1/kFas = 0.07. We set the detuning equal to the attractive po-
laron energy in the absence of Rabi drive, i.e., �0 
 −0.683EF.
The black dashed and shaded regions indicate the 20% confidence
interval for the experimental temperature.

weak interactions between the ↓ impurities and the medium.
All of these effects are neglected in our theory, which could
account for some of the discrepancies between theory and
experiment in Fig. 11.

B. Dynamics in the frequency domain

Further insight into the dynamics can be gained from the
Fourier transform R(�) = ∫ dtN↓(t )ei�t , where we assume
time-reversal symmetry of N↓(t ). The result is depicted as
a color map in Fig. 12 and reveals the different frequencies
present in the Rabi oscillations. At low Rabi drive �0 � EF,
the Rabi spectrum at low temperatures is dominated by the
expected Rabi frequency for the attractive polaron, which is
� = √

Z0�0 at the resonance condition �0 = E0 [Fig. 12(a)].
Moreover, we see that it continues to dominate even away
from resonance in Figs. 12(b) and 12(c), where the polaron
Rabi frequency generalizes to � = [(�0 − E0)2 + Z0�

2
0]1/2

(red dotted line). However, once the detuning lies within the
continuum of the repulsive branch, as in Fig. 12(c), the oscil-
lations are strongly damped and there is an overall decay of
the spin-↓ fraction.

With increasing Rabi drive in Fig. 12, an additional sharp
peak appears at the Rabi frequency for the bare driven impu-
rity, i.e., � = (�2

0 + �2
0)1/2 (white dashed line). This arises

from the noninteracting Green’s function in Eq. (54) and can
be viewed as the oscillations of the high-momentum impurity
states that make up the dressing cloud. This bare contribution
is also apparent in Fig. 10(c), where it manifests as small
persistent oscillations at long times. In a real system, we ex-
pect such oscillations to be damped by higher-order medium
excitations, beyond what is included in our theory. However,
it remains an interesting and open question whether one could
observe a driven polaron evolving into a driven bare impurity
with time, especially since our numerics suggest that the bare
oscillations can be enhanced at higher temperatures.

At strong Rabi drive �0 � EF, the Rabi frequency for the
attractive polaron becomes strongly modified and approaches
the Rabi drive frequency �0 as �0 → ∞. We can better
visualize this behavior by plotting the position of the main
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0.2 1 2 3 4

Ω0/EF

(b) Δ0 = 0
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R(Ω)
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0 0.5

FIG. 12. Color plot of the Rabi spectral function R(�), corresponding to the Fourier transform of the Rabi oscillations, at interaction
1/kFas = 0, temperature T = 0.03TF, and detunings (a) �0 = E0 = −0.61EF, (b) �0 = 0, and (c) �0 = EF. The white dashed line is the Rabi
frequency for a bare driven impurity, i.e., � = (�2

0 + �2
0)1/2, while the red dotted line shows the expected Rabi frequency for the attractive

polaron, � = [(�0 − E0)2 + Z0�
2
0]1/2.

peak in Fig. 12(a), as shown in Fig. 13. We see that the peak
evolves in a rather nonmonotonic manner with increasing
�0 and it appears to jump from frequencies around

√
Z0�0

to frequencies above �0. We can understand the latter be-
havior by considering the impurity quasiparticles that exist
in the large-Rabi-drive limit. Specifically, if we identify the
energies of the two Rabi-split quasiparticles, then the oscilla-
tion frequency is given by their energy difference. We have
already obtained the energy of the lowest quasiparticle in
Eq. (42a); the energy of the excited quasiparticle is even sim-
pler since the self-energy is purely imaginary at lowest order
and hence the interaction shift vanishes in the limit �0 → ∞,
thus reducing the quasiparticle energy to the single-particle
energy: E+

0 
 �0/2 + �0/2. Therefore, the Rabi frequency
is � = �0 + 4πn/(m3/2

√
�0), which agrees with the strong-

Rabi-drive limit in Fig. 13. This result is insensitive to the
precise detuning �0 and indeed we see that this extends
across the full range of �0 since the detunings �0 = E0 and
�

(c)
0 give essentially indistinguishable results for the Rabi

frequency.

1 10

Ω0/EF

0.8
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/
Ω

0

FIG. 13. Position of the peak in the Rabi spectrum at 1/kFas = 0
and temperature T = 0.03TF, for a detuning fixed to the attractive
polaron energy, i.e., �0 = −0.61EF (red solid), and for the crit-
ical detuning �

(c)
0 at zero magnetization in Fig. 9 (blue dotted).

The black dashed line is the strong-Rabi-drive limit � = �0 +
4πn/(m3/2

√
�0 ).

VI. CONCLUDING REMARKS

To conclude, we have investigated the thermodynamic
and dynamic properties of a mobile spin-1/2 impurity im-
mersed in a Fermi gas. For the thermodynamic properties
that characterize both the interactions and the magnetization,
we have provided exact results in the limits of weak and
strong Rabi drive compared with the Fermi energy. For a
weak drive, these expressions depend on the properties of the
addressed quasiparticle, which can be accurately determined
either from experiment or using a wealth of approximation
methods [17,18]. Our approach is based on calculating the
impurity free energy [37,38], which we obtain in the regime of
an intermediate Rabi drive through the means of a many-body
T -matrix approach. We find that our weak-Rabi-drive expres-
sions are remarkably robust and extend up to intermediate
Rabi drive, which might be due to the existence of a “dark
continuum” in the impurity spectrum [50].

To extend our results to dynamics, we have developed
a Green’s function method, which is formally equivalent to
previous variational methods [20,24], but which has the ad-
vantage that it is numerically less involved, allowing us to
accurately model the dynamics to much longer times. Here
we have found that the inclusion of finite temperature and
finite impurity momentum can lead to a significant damping
of the attractive polaron Rabi oscillations, in agreement with
experiment [3,10].

In the future, it will be interesting to investigate how a
strong Rabi drive could affect the ground-state transition from
a polaron quasiparticle to a state where the impurity binds
a fermion to form a dressed molecule [43,51]. Since Rabi
oscillations go beyond linear response and probe both the
spectral function and higher-order correlations in the dressing
cloud, they appear to be ideally suited to investigate the inter-
play between this single-particle transition and its associated
many-body phase transition. In the absence of a Rabi drive,
the polaron-molecule transition has been predicted to exist for
the Fermi polaron at 1/kFas 
 0.9 [43,51]. Rabi drives with
�0 � EF, 1/ma2

s thus yield the prospect of strongly modifying
the diatomic molecule and hence of tuning the elusive quasi-
particle transition.
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APPENDIX A: FREE ENERGY

In this Appendix we present the details of how to obtain
the free-energy relation, Eq. (29). In the single-impurity limit,
the spectral function Aσ (p, ω) coincides with the unoccupied
spectral function [58]

Aσ+(p, ω) =
∑
n,ν

e−βEn

Zmed
|〈n|ĉpσ |ν〉|2δ(ω + En − Eν ). (A1)

Here, we define the eigenenergies and states of the system
(medium plus impurity) as Eν and |ν〉, respectively, as well
as those of the medium in the absence of the impurity, En

and |n〉. Then we have the medium partition function Zmed =∑
n e−βEn .
Analogously to Eq. (A1), we have the occupied spectral

function [58]

Aσ−(p, ω) =
∑
n,ν

e−βEν

Zint
|〈n|ĉpσ |ν〉|2δ(ω + En − Eν ), (A2)

with corresponding partition function Zint =∑ν e−βEν . By us-
ing the properties of the δ functions, we find that the occupied
and unoccupied spectral functions satisfy the detailed balance
condition [37]

Aσ−(p, ω) = e−βω Zmed

Zint
Aσ+(p, ω). (A3)

To proceed, we make use of the sum rule,∫
dω Aσ−(p, ω) = nσ

int (p), (A4)

which follows from the definition in Eq. (A2). Here, nσ
int (p) =

Tr[ρ̂ĉ†
pσ ĉpσ ] are the impurity momentum distribution densities

of the interacting many-body system, and ρ̂ is the correspond-
ing density matrix [see the discussion below Eq. (21)]. Since
we have a single impurity, we therefore arrive at∫

dω
∑
p,σ

Aσ−(p, ω) = 1. (A5)

As discussed in Sec. III, we define the impurity free energy
as the difference between the free energy in the presence of
both interactions and Rabi coupling, and the free energy of
the system where the impurity is completely decoupled from

the medium and there is no Rabi coupling. From the relation-
ship between the free energy and the partition function, we
therefore have the simple relation

e−βF = Zint

ZmedZimp
, (A6)

where Zimp =∑p e−βεp is the partition function of a single
impurity in the absence of Rabi coupling. Using the detailed
balance condition (A3) and the sum rule (A5), we find

e−βF = Zint

Zmed

∫
dω
∑

p,σ Aσ−(p, ω)∑
p e−βεp

=
∫

dω
∑

p,σ e−βωAσ+(p, ω)∑
p e−βεp

. (A7)

The equivalence between A+ and A then yields Eq. (29) in the
main text.

We can use the same ideas to find the magnetization di-
rectly from the spectral function. We have

Sz = N↑ − N↓
N↑ + N↓

=
∫

dω
∑

p[A↑−(p, ω) − A↓−(p, ω)]∫
dω
∑

p[A↑−(p, ω) + A↓−(p, ω)]

=
∫

dω e−βω
∑

p[A↑(p, ω) − A↓(p, ω)]∫
dω e−βω

∑
p[A↑(p, ω) + A↓(p, ω)]

. (A8)

However, we find that this formulation is not as numerically
stable as first calculating the free energy and then taking the
appropriate derivatives.

Finally, we note that we can straightforwardly extend the
detailed balance relations to a finite density of impurities. This
directly follows the arguments of Ref. [37] (see Appendix D
of that work) which we do not repeat here.

APPENDIX B: TWO-BODY CORRELATOR

In this Appendix, we derive the spin-resolved two-body
correlators used to calculate the full dynamics of the dressing
cloud in the Rabi oscillations. We start by considering the
Fourier transform of the spin-σ impurity Green’s function

Gσ (p, ω) =
〈
ĉpσ

1

ω − Ĥ + i0
ĉ†

pσ

〉
, (B1)

where the average is over medium-only states and the Hamil-
tonian measures energy from that of the medium state in the
absence of the impurity. Using the fact that we can rewrite the
inverse operator as

1

ω − Ĥ + i0
= 1

ω − Ĥ0 − Ĥ� + i0

+ 1

ω − Ĥ + i0
V̂

1

ω − Ĥ0 − Ĥ� + i0
, (B2)

we have

G↑(p, ω) =
〈
ĉp↑

1

ω − Ĥ0 − Ĥ� + i0
ĉ†

p↑

〉
+
〈
ĉp↑

1

ω − Ĥ + i0
V̂

1

ω − Ĥ0 − Ĥ� + i0
ĉ†

p↑

〉
(B3)
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= G(�)
↑ (p, ω) + g

∑
k,k′,q

〈
ĉp↑

1

ω − Ĥ + i0
ĉ†

k↑ f̂ †
k′ f̂k′−qĉk+q↑

1

ω − Ĥ0 − Ĥ� + i0
ĉ†

p↑

〉
(B4)

= G(�)
↑ (p, ω) + g

∑
k,q

〈
ĉp↑

1

ω − Ĥ + i0
ĉ†

p+q−k↑ f̂ †
k f̂q

〉〈
ĉp↑

1

ω − Ĥ0 − Ĥ� + i0
ĉ†

p↑

〉
. (B5)

In the last line, we used Wick’s theorem as well as the fact that the single-particle Hamiltonian Ĥ0 + Ĥ� does not change the
impurity momentum. Defining the spin-↑ two-body correlator

χ↑(k, q; p, ω) =
〈
ĉp↑

1

ω − Ĥ + i0
ĉ†

p+q−k↑ f̂ †
k f̂q

〉
k �=q

, (B6)

the spin-↑ impurity Green’s function can be written as

G↑(p, ω) = G(�)
↑ (p, ω)

⎡
⎣1 + g

∑
q

〈 f̂ †
q f̂q〉G↑(p, ω) + g

∑
k,q

χ↑(k, q; p, ω)

⎤
⎦. (B7)

The two-body correlator, Eq. (B6), is the Fourier transform of Eq. (53).
The spin-↑ two-body correlator can now be expanded by inserting Eq. (B2):

χ↑(k, q; p, ω) =
〈
ĉp↑

1

ω − Ĥ + i0
V̂

1

ω − Ĥ0 − Ĥ� + i0
ĉ†

p+q−k↑ f̂ †
k f̂q

〉
k �=q

, (B8)

where the first-order term is zero since we require k �= q. Performing the different contractions for the f̂ operators, we then
obtain

χ↑(k, q; p, ω) = g
∑

q′
〈 f̂ †

q′ f̂q′ 〉
〈

ĉp+q−k↑
1

ω − Ep
kq − Ĥ� + i0

ĉ†
p+q−k↑

〉
χ↑(k, q; p, ω)

+ g〈 f̂ †
q f̂q〉〈 f̂k f̂ †

k 〉
〈

ĉp+q−k↑
1

ω − Ep
kq − Ĥ� + i0

ĉ†
p+q−k↑

〉
G↑(p, ω)

+ g〈 f̂k f̂ †
k 〉
〈

ĉp+q−k↑
1

ω − Ep
kq − Ĥ� + i0

ĉ†
p+q−k↑

〉∑
k′

χ↑(k′, q; p, ω)

− g〈 f̂ †
q f̂q〉

〈
ĉp+q−k↑

1

ω − Ep
kq − Ĥ� + i0

ĉ†
p+q−k↑

〉∑
q′

χ↑(k, q′; p, ω), (B9)

where Ep
kq = εp+q−k + εk − εq. Using the fact that

G(�)
↑ (p + q − k, ω + εq − εk ) =

〈
ĉp+q−k↑

1

ω − Ep
kq − Ĥ� + i0

ĉ†
p+q−k↑

〉
, (B10)

we finally obtain the coupled equations

χ↑(k, q; p, ω) = G(�)
↑ (p + q − k, ω + εq − εk )

[
g〈 f̂ †

q f̂q〉〈 f̂k f̂ †
k 〉G↑(p, ω) + g〈 f̂k f̂ †

k 〉
∑

k′
χ↑(k′, q; p, ω)

]
, (B11a)

G↑(p, ω) = G(�)
↑ (p, ω)

⎡
⎣1 + g

∑
k,q

χ↑(k, q; p, ω)

⎤
⎦. (B11b)

In arriving at Eq. (B11a), we have dropped the first and last lines of Eq. (B9) since both vanish when we take g → 0 to
renormalize the interactions. Similarly, in Eq. (B11b) we have dropped the Hartree term from Eq. (B7) which also renormalizes
to zero. Note that the first term in Eq. (B11a) will also eventually renormalize to zero; however since it is the only term linking
G↑ to χ↑ we must keep it while we are considering the coupling between these quantities [45].

It is straightforward to show that this gives the expected impurity Green’s function within the non-self-consistent T -matrix
approximation. Specifically, if we define

�(q; p, ω) ≡ g
∑

k

χ↑(k, q; p, ω), (B12)
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then performing a sum over k in Eq. (B11a) gives[
1

g
−
∑

k

〈 f̂k f̂ †
k 〉G(�)

↑ (p + q − k, ω + εq − εk )

]
�(q; p, ω) = 〈 f̂ †

q f̂q〉G↑(p, ω), (B13)

where we have used the fact that g
∑

k〈 f̂k f̂ †
k 〉G(�)

↑ (p + q − k, ω + εq − εk ) → 1 as 
 → ∞. The quantity in brackets is
precisely the inverse T matrix in the presence of Rabi drive, and thus we have Eq. (55) in the main text:

�(q; p, ω) = T (p + q, ω + εq)G↑(p, ω)nq. (B14)

Rearranging for �(q; p, ω) and inserting this into Eq. (B11b) finally gives

G↑(p, ω) = G(�)
↑ (p, ω) + G(�)

↑ (p, ω)
∑

q

nqT (p + q, ω + εq)

︸ ︷︷ ︸
�(p,ω)

G↑(p, ω). (B15)

This is precisely Dyson’s equation for the impurity Green’s function, with the self-energy in Eq. (43). We are now free to take
the limit g → 0 in Eq. (B11a), and thus we have Eq. (54) from the main text:

χ↑(k, q; p, ω) = G(�)
↑ (p + q − k, ω + εq − εk )�(q; p, ω)(1 − nk ). (B16)

To obtain the spin-↓ two-body correlator,

χ↓(k, q; p, ω) =
〈
ĉp↓

1

ω − Ĥ + i0
ĉ†

p+q−k↓ f̂ †
k f̂q

〉
k �=q

, (B17)

we use the exact expansion

1

ω − Ĥ + i0
= 1

ω − Ĥ0 − V̂ + i0
+ 1

ω − Ĥ0 − V̂ + i0
Ĥ�

1

ω − Ĥ0 − V̂ + i0

+ 1

ω − Ĥ0 − V̂ + i0
Ĥ�

1

ω − Ĥ + i0
Ĥ�

1

ω − Ĥ0 − V̂ + i0
, (B18)

to relate it to χ↑(k, q; p, ω). Inserting this expansion into Eq. (B17) and using the fact that the first two terms vanish, we find the
exact relation:

χ↓(k, q; p, ω) = �2
0/4

(ω − εp − �0 + i0)
(
ω − Ep

kq − �0 + i0
)χ↑(k, q; p, ω). (B19)

This is Eq. (56) from the main text.

APPENDIX C: CONSERVATION OF IMPURITY NUMBER
IN RABI DYNAMICS

An important consistency check on our numerical calcu-
lation is that the total impurity number remains conserved
throughout the time evolution. That is, for an impurity initially
at momentum p and time t = 0, we require the following
condition to be satisfied:

1 = 〈ĉp↓(t )(n̂↓ + n̂↑)ĉ†
p↓(t )〉

= Np↓(t ) + Np↑(t ), (C1)

where we recall that n̂σ =∑p ĉ†
pσ ĉpσ . The spin-↓ fraction,

Np↓(t ), for an impurity initially at momentum p is given by
Eq. (49), and by complete analogy we determine the spin-↑
fraction Np↑(t ) at momentum p via

Np↑(t ) = 〈ĉp↓(t )ĉ†
p↑〉〈ĉp↑ĉ†

p↓(t )〉

+
∑
k �=q

〈ĉp↓(t )ĉ†
p+q−k↓ f̂ †

k f̂q〉〈 f̂ †
q f̂kĉp+q−k↑ĉ†

p↑(t )〉
〈 f̂ †

q f̂k f̂ †
k f̂q〉

+ · · · , (C2)

where we have used Wick’s theorem and momentum conser-
vation.

The first-order term in Eq. (C2) is directly related to the
off-diagonal Green’s function in Eq. (17):

N (1)
p↑ (t ) = |G↑↓(p, t )|2, (C3)

where

G↑↓(p, ω) = �0/2

�2
0/4 − (ω − εp − �0)[ω − εp − �(p, ω)]

.

(C4)

As in the main text, we utilize the time-reversal symmetry of
the Green’s function to equivalently write Eq. (C3) in terms of
the spectral function A↑↓(p, ω) = − 1

π
ImG↑↓(p, ω):

N (1)
p↑ (t ) =

∫
dωdω′A↑↓(p, ω)A↑↓(p, ω′)e−i(ω−ω′ )t . (C5)

We note that the bare contributions, N (1)
p↓ (t ) + N (1)

p↑ (t ), to
Eq. (C1) do not conserve impurity number at finite times for
any temperature.

To satisfy the single-impurity condition, we need to include
the contribution from the polaron dressing cloud, which is
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contained in the second-order term in Eq. (C2):

N (2)
p↑ (t ) =

∑
k �=q

|χ↑↓(k, q; p, t )|2
nq(1 − nk )

, (C6)

where we define the spin-↑↓ two-body correlator as

χ↑↓(k, q; p, t ) = −iθ (t )〈ĉp↓(t )ĉ†
p+q−k↑ f̂ †

k f̂q〉. (C7)

The Fourier transform of the spin-↑↓ two-body correlator
can be related to the ↑ correlator χ↑(k, q; p, ω) by using the

expansion

1

ω − Ĥ + i0
= 1

ω − Ĥ0 − V̂ + i0

+ 1

ω − Ĥ0 − V̂ + i0
Ĥ�

1

ω − Ĥ + i0
. (C8)

The first term does not contribute to the two-body correlator,
and thus we have

χ↑↓(k, q; p, ω) = �0/2

ω − εp − �0 + i0
χ↑(k, q; p, ω). (C9)

We numerically calculate Eq. (C1) as a function of time for all
results presented in the paper. We find that it is always unity
within a numerical error of �1%, and hence the sum rule is
always satisfied in our numerics.
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