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Superfluid fraction and Leggett bound in a density-modulated strongly interacting
Fermi gas at zero temperature
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We calculate the superfluid fraction of an interacting Fermi gas, in the presence of a one-dimensional periodic
potential of strength V0 and wave vector q. Special focus is given to the unitary Fermi gas, characterized by
the divergent behavior of the s-wave scattering length. Comparison with the Leggett’s upper bound (〈n1D〉 <

1/n1D >)−1, with n1D the one-dimensional column density, explicitly shows that differently from the case of a
dilute interacting Bose gas, the bound significantly overestimates the value of the superfluid fraction, except in
the phonon regime of small q. Sum rule arguments show that the combined knowledge of the Leggett bound
and of the actual value of the superfluid fraction allows for the determination of curvature effects, providing
the deviation of the dispersion of the Anderson-Bogoliubov mode from the linear phonon dependence. The
comparison with the predictions of the weakly interacting BCS Fermi gas points out the crucial role of two-
body interactions. The implications of our predictions on the anisotropic behavior of the sound velocity are also
discussed.
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I. INTRODUCTION

In 1970, Leggett [1] derived an upper bound to the su-
perfluid fraction fS = nS/n̄, given by the ratio between the
superfluid density relative to the motion of the fluid along
the x direction and the mean density, in terms of the spatial
average of the inverse of the one-dimensional (1D) column
density n1D(x) = ∫

n(r)dydz [2],

fS �
(

〈n1D(x)〉
〈

1

n1D(x)

〉)−1

≡ f L
S . (1)

Result (1) is particularly relevant at zero temperature, where
the superfluid fraction is affected by the density modulations
induced by the breaking of translational invariance, and holds
independent of whether the breaking occurs spontaneously
or is induced by an external force. At finite temperature,
the superfluid fraction is instead affected by thermal effects
even for uniform systems, with important consequences on the
propagation of second sound [3–5]. Under the assumption that
the many-body wave function is described by a single phase
equal for all the particles, i.e., an assumption applicable to a
dilute Bose gas at zero temperature described by the Gross-
Pitaevskii equation, Leggett derived a further lower bound [6]
to the superfluid fraction. The Leggett upper and lower bounds
coincide if the 3D density depends only on the x variable, so
that in this case the inequality (1) reduces to an equality. In a
recent experiment [7], the Leggett’s integral entering Eq. (1)
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was actually measured in an ultracold Bose gas confined in
a 2D box, in the presence of a periodically modulated ex-
ternal 1D potential, causing important dishomogeneities in
the density profile, and the bound (1) was shown to agree,
with good accuracy, with the result for the superfluid fraction
measured through the velocity of sound, in agreement with the
predictions of Gross-Pitaevskii theory.

The question of the accuracy of the Leggett bound in other
interacting many-body systems is relatively unexplored and
the aim of our work is to address the question in the case
of an interacting Fermi gas at zero temperature, with special
focus on the so-called unitary limit, where the s-wave scat-
tering length is infinite and the system behaves as a strongly
interacting superfluid. We will consider a gas confined in a
box in the presence of a periodic potential of the form

Vext = V0 cos(qx), (2)

which induces density modulation of period d = 2π/q in
the ground-state density profile. We will attack the problem
following two different lines. In Sec. II, we develop a sum-rule
approach to explore the behavior of the superfluid fraction in
the presence of a weak perturbation (small V0) and calculate
the Leggett’s integral as well as the exact value of the su-
perfluid fraction. The sum-rule results provide the proof that
only if the excitation spectrum of the unperturbed uniform su-
perfluid consists of a single excitation exhausting the relevant
sum rules of the dynamic structure factor, will the inequality
(1) reduce to an identity. This is the case of the dilute BEC gas
for all values of the wave vector q, but remains an inequality
in the most general case. The results of the sum-rule approach
are also used to infer on the curvature of the dispersion of the
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Anderson-Bogoliubov collective mode of a Fermi superfluid
at long wavelengths. In Sec. III, we first provide a quantitative
implementation of the sum-rule approach developed in Sec. II
by applying the dynamical Bardeen-Cooper-Schrieffer (BCS)
theory [8]. We then present our numerical results for the
superfluid fraction of the unitary Fermi gas by solving the
Bogoliubov–de Gennes (BdG) equations in the presence of
the external periodic potential (2) in order to provide a quan-
titative comparison between the Leggett bound and the actual
value of the superfluid fraction, beyond the weak perturbation
limit of small V0, in a wider range of parameters of possible
relevance for future experiments. In Sec. IV, we discuss how
our predictions for the superfluid density could be tested by
measuring the effects of anisotropy in the velocity of sound.

II. SUM RULE APPROACH

At zero temperature, the dynamic structure factor S(ω, q)
of a many-body system is related to the imaginary part of the
density response function χ (ω, q) by

S(ω, q) = − 1

π
Imχ (ω + i0+, q), (3)

so that its spectral representation is

S(ω, q) = 1

V

∑
n

|〈0|ρq|n〉|2δ(ω + E0 − En), (4)

where V is the volume of the box, ρq = ∑
k exp(iq · xk ) is the

Fourier transform of the density operator, |n〉 is a complete set
of eigenstates of the many-body Hamiltonian, and (En − E0)
are the corresponding excitation energies. Here, and in the
following, we use the convention h̄ = 1 and consider configu-
rations where the dynamic structure factor S(ω, q) depends on
the wave vector only through its modulus q = |q|. From the
dynamic structure factor, one can extract the energy weighted
moments [9],

mj (q) = 1

n̄

∫ ∞

0
dωω jS(ω, q), (5)

where j is an integer and n̄ = N/V is the average fermion
density. The energy weighted moment m1(q) is model inde-
pendent and equal to q2/(2m), as follows from the number
conservation law ( f -sum rule), with m the particle mass. All
the other moments are generally model dependent and do
carry crucial information on the many-body properties of the
system, as we shall see below.

A. Superfluid fraction fS vs Leggett bound f L
S

If the periodic potential (2) is weak (small V0), the density
changes induced by the perturbation can be calculated via
linear response theory and take the form

δn(x) = V0χ (0, q) cos(qx), (6)

where χ (ω = 0, q) is the static response function, related to
the inverse energy weighted moment of the dynamic structure
factor S(ω, q) by [10]

−1

n̄
χ (0, q) = 2m−1(q). (7)

By expanding the Leggett’s integral up to terms quadratic
in V0, one finds the following result for the Leggett’s upper
bound:

f L
S = 1 − 2V 2

0 [m−1(q)]2, (8)

in terms of V0 and m−1(q). Since Eq. (8) is based on linear
response theory, the moment m−1(q) in Eq. (8) has to be
evaluated using the unperturbed (V0 = 0) uniform system.

In the following, we will consider many-body systems,
characterized by the absence of transverse gapless excita-
tions. This includes, among others, single-component Bose
and Fermi superfluids in the presence of an external periodic
perturbation of the form (2). In order to calculate the super-
fluid fraction along the x direction, it is convenient to calculate
the expectation value 〈Px〉 of the longitudinal momentum
Px = ∑N

k=1 pk,x acquired by the system in the presence of the
longitudinal perturbation −vPx and use the definition

fS = 1 − lim
v→0

〈Px〉
Nmv

. (9)

Notice that Eq. (9) holds true for both Bose and Fermi su-
perfluids, with m being the single-particle mass and N the
total number of individual particles in the system. By applying
perturbation theory, the superfluid fraction can then be written
in the form

fS = 1 − 2

Nm

∑
n �=0

|〈0|Px|n〉|2
En − E0

. (10)

If the Hamiltonian is translationally invariant, i.e., if
[H, Px] = 0, then fS = 1. If instead the Hamiltonian contains
the additional term (2) breaking translational invariance, then
the system will acquire a normal component. Using the com-
mutation relation

[H, Px] = −q

2
V0(ρq − ρ−q), (11)

one can rewrite Eq. (10) in the form

fS = 1 − 1

Nm
V 2

0 q2
∑
n �=0

|〈0|ρq|n〉|2
(En − E0)3

= 1 − 2V 2
0 m1(q)m−3(q), (12)

showing that the superfluid fraction is controlled by the in-
verse cubic energy weighted moment m−3(q). While Eq. (8)
is valid only for a weak periodic potential, Eq. (12) holds for
arbitrary values of V0. Of course, for small V0, the moment
m−3 can be safely evaluated using the unperturbed uniform
system.

Equations (8) and (12) are the main results of this section.
They show that in the considered limit of weak perturbations
(small V0), the Leggett bound coincides with the exact value
of the superfluid fraction only if the general inequality [9]

m1

m−1
� m−1

m−3
, (13)

which follows from the positiveness of the domain of the
dynamic structure factor, reduces to an equality. The equality
holds only in a few notable cases: (i) for a dilute BEC gas,
where the Bogoliubov excitation spectrum is characterized
by a single mode for all values of the wave vector q, with
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TABLE I. Low momentum behavior of the leading contributions
to a given physical quantity (left column), coming from gapless
collective modes (central column) and from gapped single-particle
excitations (right column). Notice that the sums of the q4 contribu-
tions of the gapless and gapped excitations to the energy weighted
moment m1 cancel out in order to ensure the fulfillment of the f -sum
rule, m1(q) = q2/(2m).

Gapless Gapped

|〈0|ρq|n〉|2 q + q3 q4

ω(q) q + q3 const
m1(q) q2 + q4 q4

m−1(q) const + q2 q4

m−3(q) 1/q2 + const q4

frequency ω=
√

q2μb/m + q4/(2m)2, where μb is the mean-
field chemical potential of the BEC gas. (ii) In general, for
superfluids in the phonon limit, q → 0, as a consequence
of the fact that in this limit, the phonon mode exhausts the
relevant sum rules entering the inequality (13). This includes,
in particular, the case of the interacting superfluid Fermi gas
considered in this paper, but also the case of superfluid 4He. In
general, the inequality (13) implies that f L

S � fS , in agreement
with Leggett’s prescription.

It is useful to stress that the existence of a finite m−3 for a
Fermi gas requires the particle-hole excitations spectrum to be
gapped (as is indeed the case in the superfluid state), otherwise
m−3 diverges due to the presence of gapless particle-hole
excitations at the Fermi surface [10].

B. Curvature effect in the excitation spectrum

Interestingly, the moments m−1 and m−3, controlling the
behavior of the Leggett bound f L

S and of the actual value fS of
the superfluid fraction in the presence of the periodic potential
(2), can also be used to characterize the dispersion relation
of the Anderson-Bogoliubov mode of a uniform system at
small q,

ω2 = c2q2(1 + γ q2), (14)

where c is the sound velocity, related to the inverse compress-
ibility κ−1 = n(∂μ/∂n), through the thermodynamic relation
c2 = κ−1/m, and γ measures the curvature effect beyond the
linear dispersion. The coefficient γ is positive in the case of a
dilute BEC gas [γ = 1/(4μb)], while it is expected to become
negative in the BCS region of the BEC-BCS crossover. Its
change of sign takes place around unitarity and has been the
object of several theoretical calculations [11–14] and of a
recent measurement in a superfluid atomic Fermi gas using
Bragg spectroscopy [15].

To understand the connection between the results for
the superfluid fraction in the presence of the perturbation
V0 cos(qx) and the curvature effect, it is useful to explore the
behavior of the contributions to the various sum rules originat-
ing from the gapless branch and from the gapped excitations
in the small-q regime (see Table I). The q4 dependence of
the strength contribution of the gapped states follows from
general arguments based on Galilean invariance (see, for ex-
ample, [10]) and implies that the m−3 and m−1 moments of the

dynamic structure factor are exhausted by the gapless mode,
not only in the lowest-q phonon regime, but also including the
first corrections in q2. A nontrivial consequence is that at low
q, the average square excitation energy

ω2 = m−1(q)/m−3(q) (15)

exactly coincides with the expansion (14) of the square fre-
quency, including the curvature correction in γ . Vice versa,
the most popular ratio m1(q)/m−1(q) correctly reproduces
only the leading phonon term c2q2. Using the small-
q expansions m−1(q) = (κ/2)(1 − β−1q2) and q2m−3(q) =
(mκ2/2)(1 − β−3q2) in Eq. (15) and comparing the obtained
expression with Eq. (14), one finds

γ = β−3 − β−1. (16)

By substituting the same expansions in Eqs. (8) and (12), we
note that the inequality fS � f L

S yields β−3 � 2β−1. When γ

vanishes, corresponding to β−1 = β−3, the q2 corrections to
the Leggett bound and to the exact superfluid fraction differ
exactly by a factor of 2. In the case of a superfluid Fermi
gas, this happens very close to unitarity [15]. The situation
is different for a dilute BEC gas, where β−3 = 2β−1, since
f L
S = fS for all values of q.

It is also interesting to compare the above results with
the effective field theory for the unitary Fermi gas devel-
oped in [11], which includes the leading-order corrections
in an expansion in small gradients of the quantum hydrody-
namic Lagrangian density (see, also, the related discussion
in Ref. [12]). The corresponding predictions for the static re-
sponse function and for the dispersion of the collective mode
at small q are given by [11]

χ (0, q) = −nκ

[
1 + A

(
c1 − 9

2
c2

)
q2

k2
F

]
, (17)

ω2 = c2q2

[
1 − A

(
c1 + 3

2
c2

)
q2

k2
F

]
, (18)

where c1 and c2 are dimensionless parameters entering the
Lagrangian density, kF = (3π2n)1/3 is the Fermi wave vec-
tor, A = 2π2√2(1 + β ), and β is the dimensionless Bertsch
parameter entering the equation of state of the homogeneous
Fermi gas at unitarity: μ = (1 + β )k2

F /(2m). The BdG equa-
tions yield β = −0.41 (see Sec. III), while more accurate
Monte Carlo calculations predict β = −0.58 [16,17], which is
quite close to the value β = −0.63 reported in the experiment
[18].

By comparing Eqs. (17) and (18) with Eqs. (7) and (15),
respectively, we find that the parameters of the effective field
theory can be expressed as

c1 = (2β−1 − 3β−3)
k2

F

4A
,

c2 = (2β−1 − β−3)
k2

F

6A
. (19)

In Ref. [12], it was demonstrated that the coefficient c2 must
be positive. From Eq. (19), we see that this is equivalent to the
condition fS < f L

S .
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III. NUMERICAL RESULTS

A. Dynamical BCS theory and sum rules

In this section, we evaluate the sum-rule moments of a
unitary Fermi gas with the help of the dynamical BCS theory
developed in Ref. [8] (see, also, an earlier work by Minguzzi
and collaborators [19]). In particular, we will make use of the
general expression for the density response function,

χ (ω, q)

= − 1

2π2

[
I ′′(ω, q) − F (ω, q)

I11(ω, q)I22(ω, q) − ω2I2
12(ω, q)

]
,

(20)

where I ′′, F , and Ii j are functions whose definition in terms
of integrals over momenta can be found in Ref. [8]. Notice
that with respect to the result quoted in Ref. [8] [see their Eq.
(25)], the right-hand side of Eq. (20) contains an extra factor
of 2 because, in our definition of the density response func-
tion, we account for the spin degeneracy [see Eq. (6)]. The
first term in Eq. (20), proportional to I ′′, represents the bare
contribution from the linear response formalism applied to the
BCS state, while the second term accounts for the fluctuations
of the order parameter over its mean-field value, which are
included via the random phase approximation (RPA). In par-
ticular, the vanishing of the denominator of the second term,
I11(ω, q)I22(ω, q) − ω2I2

12(ω, q) = 0, yields the dispersion re-
lation of the Anderson-Bogoliubov mode, ω = ωAB(q), which
has a phononlike behavior at low momentum.

Although not explicitly written, all functions in Eq. (20)
also depend on the two mean-field parameters describing the
BCS-BEC crossover in Fermi gases, namely, the energy gap
� and the chemical potential μ. Their values can be obtained
by inverting the BCS gap equation and the number equa-
tion describing the BCS-BEC crossover for uniform systems;
see, for instance, [8]. In particular, for a unitary Fermi gas,
corresponding to 1/(kF a) = 0, one finds μ = 0.591EF and
� = 0.686EF . The dynamic structure factor can be calculated
numerically from Eqs. (3) and (20). For a given momentum
q, there is a threshold frequency ωtr (q) where the collective
mode merges with the continuum of single-particle excitations
[8],

ωtr (q) =
{

2� for μ > 0 and q < 2
√

2mμ,

2
√

(q2/(8m) − μ)2 + �2 otherwise.
(21)

For ω < ωtr (q), all the functions I ′′, F , and Ii j in Eq. (20)
are real due to the energy gap in the single-particle energy
spectrum. In this case, the only contribution to the dynamic
structure factor originates from the collective mode, as the
vanishing of the denominator in the second term in Eq. (20)
causes the appearance of an imaginary part, via the formula
1/(x + i0+) = P1/x − iπδ(x), where P stands for the princi-
pal part. In contrast, for ω > ωtr (q), the only contribution to
S(q, ω) comes from the continuum of single-particle excita-
tions, with all the functions I ′′, F , and Ii j in Eq. (20) acquiring
an imaginary part by themselves.

From the dynamic structure factor, we extract the mo-
ments (5) and use them to estimate the superfluid density
and the associated Leggett bound in the presence of a weak

0 1 2 3 4
q/kF

0

1

2

3

α
S,α

SL

αS

αS
L

FIG. 1. Lattice-induced perturbative corrections to the superfluid
density, αS = (1 − fS )E 2

F /V 2
0 , and to the associated Leggett bound,

αL
S = (1 − f L

S )E 2
F /V 2

0 , of a unitary Fermi gas, calculated from the
sum-rule approach [see Eqs. (8) and (12)].

periodic potential, corresponding to V0 
 EF , with EF =
k2

F /(2m) being the Fermi energy of the unperturbed system.
Since the potential induces a quadratic in V0 corrections
to both quantities, we write fS = 1 − αS (V0/EF )2 and fS =
1 − αL

S (V0/EF )2, where αS and αL
S are dimensionless func-

tions. From Eqs. (8) and (12), we find, respectively, αL
S (q) =

2[m−1(q)]2E2
F and αS (q) = 2m1(q)m−3(q)E2

F . In Fig. 1, we
plot such quantities as a function of the ratio q/kF for a unitary
Fermi gas. We see that in general αL

S (q) �= αS (q), showing
that the Leggett bound is not exhausted in the presence of
the external periodic potential. A notable exception occurs for
vanishing q, where the two quantities coincide and reduce to
κ2E2

F /2 = 9E2
F /(8μ2) = 3.221. Moreover, we see from Fig. 1

that the corrections to the superfluid density become less and
less important as q increases, and vanish for infinite q. In this
extreme limit, sum rules are dominated by the single-particle
kinetic energy ε(q) = q2/(2m), implying that mj (q) = ε(q) j

and therefore αS (q) = αL
S (q) = 2k4

F /q4.
In Fig. 2, we plot the low-momentum estimates

ω(q) = √
m1(q)/m−1(q) (green circles) and ω(q) =√

m−1(q)/m−3(q) (red diamonds) for the energy dispersion of
the Anderson-Bogoliubov collective mode of a unitary Fermi
gas based on the sum-rule approach. The black solid line
represents the full numerical result, ω = ωAB(q), showing a
positive, albeit small curvature [13]. At higher momentum,
however, the correction to the phononic dispersion becomes
negative, as the frequency of the collective mode is bounded
above by the threshold frequency ωtr . We see that the
sum-rule estimate ω(q) = √

m1(q)/m−1(q) reproduces only
the sound velocity of the superfluid in the phononic regime,
while missing the curvature correction. In contrast, the
sum-rule estimate ω(q) = √

m−1(q)/m−3(q) is more accurate
as it includes the first nonlinear correction.

B. BdG equations for systems in a periodic potential

So far, we have considered a weak external periodic poten-
tial, so that its effect on the transport properties of the unitary
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0 0.4 0.8
q/kF

0.44

0.46

0.48

0.5

ω
/v

Fq

ωΑΒ
m-1/m-3
m1/m-1

FIG. 2. Dispersion relation of the Anderson-Bogoliubov collec-
tive mode of the unitary Fermi gas. The sum-rule estimates (symbols)
in the long-wavelength limit are compared with the full numerical re-
sult ω = ωAB(q) (black solid line), first discussed in Ref. [13]. Here,
kF is the Fermi momentum and vF = kF /m is the Fermi velocity. The
sound velocity of the system is c = 0.444vF .

Fermi gas can be calculated within perturbation theory. Below
we compute the superfluid fraction and the Leggett bound
for a periodic potential of arbitrary strength by numerically
solving the BdG equations. Since the external potential (2)
is periodic, the superfluid fraction defined in Eq. (9) coincides
with the effective mass ratio m/m∗ of the Fermi gas, calculated
from the curvature of the lowest-energy band according to

fS = m

m∗ ≡ lim
Q→0

1

n̄

∂2e(n̄, Q)

∂Q2
, (22)

where e = E/V is the energy density and Q is the wave vector
of the supercurrent. To see this, we note that −〈Px〉 in Eq. (9)
represents the total momentum of the system along the x
axis measured with respect to the moving frame, so that the
supercurrent density j in the laboratory frame is given by

j = n̄v − 〈Px〉
mV

= fSn̄v + O(v2). (23)

Since the supercurrent density is related to the wave vector by
j = ∂e/∂Q, from Eq. (23) we find v = Q/m and

e(n̄, Q) = e(n̄, 0) + fSn̄
Q2

2m
+ O(Q3), (24)

which is consistent with Eq. (22). In the absence of the lattice
(V0 = 0), one has e(n̄, Q) = e(n̄, 0) + n̄Q2/(2m), and hence
Eq. (22) yields m∗ = m and fS = 1.

In order to calculate the superfluid fraction via Eq. (22), we
proceed as in Refs. [20,21] by imposing an order parameter
of the Bloch form �(r) = ei2Qx�̃(x) in the BdG equations,
where �̃(x) is a periodic function with period d . This implies
that the corresponding eigenfunctions take the form u(r) =
ũk(x)eiQxeik·r/

√
V and v(r) = ṽk(x)e−iQxeik·r/

√
V , where kx

lies in the first Brillouin zone and the amplitudes ũk(x) and

ṽk(x) are periodic functions with period d obeying(
HQ(x) �̃(x)

�̃∗(x) −H−Q(x)

)(
ũk(x)

ṽk(x)

)
= εk

(
ũk(x)

ṽk(x)

)
, (25)

where

HQ(x) ≡ 1

2m

[
k2

⊥ + (−i∂x + Q + kx )2
] + Vext (x) − μ. (26)

For a given value of the momentum k, the BdG equa-
tions (25) represent an eigenvalue problem with the cor-
responding eigenfunctions being normalized according to∫ d

0 [ũ∗
kα (x)ũkβ (x) + ṽ∗

kα (x)ṽkβ (x)]dx = dδα,β .
The local pairing field �̃(x) and the chemical potential μ,

appearing in Eqs. (25) and (26), are variational parameters
to be determined self-consistently. The first constraint is pro-
vided by the gap equation

�̃(x) = −g
1

V

∑
kα

ũkα (x)ṽ∗
kα (x), (27)

where g is the bare coupling constant of the contact inter-
action potential and the sum is restricted over the solutions
with εkα � 0. Notice that Eq. (27) is well defined, as by
construction both the left-hand side and the right-hand side
are periodic functions with period d . It is well known that the
right-hand side of Eq. (27) is actually plagued by a ultraviolet
divergence and must be regularized. Following the procedure
suggested in Ref. [22], we introduce an explicit high-energy
cutoff Ec in the sum over eigenenergies, and replace g with a
position-dependent effective coupling constant. To solve the
BdG equations, we write all periodic functions as truncated
Fourier series, for instance, ũk(x) = ∑Nc

j=−Nc
u jeiq jx, and set

Ec = (2Nc + 1)2ε(q)/4 ≈ N2
c ε(q). The value of Nc must be

chosen such that Ec is much larger than all energy scales
in the problem, Ec � max[EF ,V0, ε(q), μ,�]. The second
constraint to be satisfied is that the spatial average of the
density profile must yield the mean density n̄, that is, n̄ =∫ d

0 n(x)dx/d , where

n(x) = 1

V

∑
kα

2|ṽkα (x)|2. (28)

Once the mean-field parameters are known, we compute
the energy density e = E/V of the system according to

e = 1

V

∑
kα

∫ d

0

dx

d
[2(μ − εkα )|ṽkα (x)|2

+ �̃∗(x)ũkα (x)ṽ∗
kα (x)]. (29)

and use Eq. (22) to extract the superfluid fraction from the
obtained result. Notice that the two contributions in the right-
hand side of Eq. (29) are separately divergent, but their sum is
finite, implying that this equation is well defined.

For the Leggett bound, we instead solve the BdG equa-
tions (25) at equilibrium, i.e., with Q = 0, and then extract
f L
S from Eqs. (1) and (28). In Fig. 3, we display fS and f L

S
as a function of the ratio V0/εF for the unitary Fermi gas,
with the two panels corresponding to two different values of
the dimensionless parameter kF d = 4 [Fig. 3(a)] and kF d =
10 [Fig. 3(b)], which correspond to typical values available
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FIG. 3. Superfluid fraction fS (blue triangles) and its Leggett
bound f L

S (red circles) for the unitary Fermi gas as a function of the
ratio V0/EF for (a) kF d = 4 and (b) kF d = 10. The green solid line
refers to the local density approximation (LDA) at unitarity. In each
plot, we also include the corresponding predictions for the weakly
interacting BCS regime for fS (black dotted line), f L

S (black dashed
line), and the LDA (green dashed line).

in current experiments with atomic superfluid Fermi gases.
For kF d = 4, which corresponds to q/kF = 1.57, the Leggett
bound remains well above the superfluid fraction, which is
consistent with the sizable difference observed in the pertur-
bative corrections for the two quantities displayed in Fig. 1.
For kF d = 10, the Leggett bound is instead quite close to
the superfluid fraction. In particular in the limit kF d � 1,
the two values of fS and f L

S are expected to approach the
prediction of the local density approximation (LDA), where
the density profile of the Fermi gas can be calculated start-
ing from the expression μ0 = μhom[n(x)] + V0 cos(qx) for
the chemical potential, with μhom(n) = (1 + β )EF = (1 +
β )(3π2n)2/3/(2m) the equation of state of the uniform Fermi
gas at unitarity [9]. The density profile in the LDA then takes
the form

nLDA(x) = 1

3π2

(
2m

1 + β

)3/2

[μ0 − V0 cos(2πx/d )]3/2, (30)

yielding the prediction

1

f LDA
S

= 〈n〉
〈

1

n

〉
= h

(
V0

μ0

) ∫ 1

0
dx̃

[
1 − V0

μ0
cos(2π x̃)

]−3/2

,

(31)

for the inverse superfluid fraction, where x̃ = x/d and
the function h is defined as h(V0/μ0) = ∫ 1

0 dx̃[1 −
(V0/μ) cos(2π x̃)]3/2. The chemical potential μ0 is related to
the Fermi energy EF and the potential strength V0 via the
normalization condition n̄ = ∫ d

0 nLDA(x)dx/d , yielding

μ0 = (1 + β )EF

h(V0/μ0)2/3
. (32)

Equations (31) and (30) show that in the LDA, the super-
fluid density is independent of the lattice period d and only
depends on the ratio V0/EF (see green solid line in Fig. 3).
In particular, the superfluid fraction vanishes for V0/EF =
(1 + β )/h(1)2/3 = 0.522, corresponding to V0/μ0 = 1, where
the integral in Eq. (31) diverges. Differently from the LDA
prediction, the actual value of the Leggett bound (and, con-
sequently, of the superfluid fraction) differs from zero for all
values of V0, as shown in Fig. 3. It vanishes asymptotically
as V0 → ∞, the spatial average 〈1/n1D(x)〉 entering Eq. (1)
becoming larger and larger.

For small values of V0/EF , the LDA expression for the su-
perfluid density exhibits the quadratic dependence (see, also,
[20] and Eq. (12) in the q → 0 limit)

f LDA
S = 1 − 9

8(1 + β )2

V 2
0

E2
F

. (33)

It is interesting to compare the above expansion with the
corresponding expansion for the compressibility, in the same
LDA regime (q → 0 limit):

κLDA = 2

3
(1 + β )EF

[
1 + 1

8(1 + β )2

V 2
0

E2
F

]
. (34)

Equation (34) is easily obtained by applying perturbation the-
ory for the calculation of the energy in the presence of the
perturbation (2) and plays a crucial role in the propagation of
sound (see Sec. IV below). Notice, in particular, that the effect
of the perturbation is smaller by a factor of 9, with respect
to the analogous expansion (33) for the superfluid fraction.
It is also interesting to compare the above results with the
expansions holding in a dilute BEC gas [7] where, in the LDA,
the V 2

0 correction to the compressibility is exactly vanishing,
as a consequence of the linear density dependence exhibited
by the equation of state.

In Fig. 3, we also show the superfluid fraction (dotted
line) and its Leggett bound (dashed line) for a Fermi gas in
the weakly interacting (WI) BCS regime, corresponding to
� 
 EF . In this limit, the density profile and the energy of
the system can be calculated by assuming that the Fermi gas
is noninteracting. Of course, the noninteracting Fermi gas is
not superfluid because of the occurrence of transverse gapless
excitations. However, in the superfluid phase, the superfluid
fraction fS coincides with the effective mass [see (Eq. (22)].
The evaluation of the effective mass in the noninteracting
Fermi gas is expected to provide the actual value of f W I

S , if
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the condition qkF /m � �, corresponding to wavelengths of
the perturbation that are much smaller than the size of Cooper
pairs, is satisfied. One can then write [23]

f W I
S � 1

n̄V

∑
k j

∂2ε j (kx )

∂k2
x

2�

[
μ − ε j (kx ) − k2

⊥
2m

]
, (35)

where ε j (kx ) are the single-particle dispersion relations in-
duced by the 1D external potential, with j being the band
index, and the integration over kx is restricted to the first
Brillouin zone.

The Leggett bound in the WI regime can be obtained from
Eq. (1) by using the density profile of the noninteracting Fermi
gas,

n(x) = 1

n̄V

∑
k j

|ψkx j (x)|22�

[
μ − ε j (kx ) − k2

⊥
2m

]
, (36)

where ψkx j (x) are the amplitudes of the Bloch states.
A first useful comparison between the superfluid fractions

calculated at unitarity and in the weekly interacting BCS gas
concerns the behavior of the Leggett bound in the local density
approximation [see Eq. (31)]. Since the chemical potential of
the noninteracting Fermi gas and of the gas at unitarity have
the same density dependence, except for the factor (1 + β )
[see Eq. (32)], one finds that in the weakly interacting case,
f LDA
S always stays significantly above the corresponding value

at unitarity. In particular, the LDA superfluid fraction vanishes
for a larger value of the ratio V0/EF , equal to 0.522/(1 + β ) =
0.883. The situation can, however, be very different for the
actual value fS of the superfluid fraction. For example, for
small values of V0, the superfluid fraction of the weakly inter-
acting BCS gas always stays below the value at unitarity. For
large wave vectors [see Fig. 3(a)], the same also happens for
larger values of V0, suggesting that interactions play a crucial
role to facilitate superfluid transport, as previously reported
by Watanabe and Pethick with important implications on the
behavior of neutrons stars [21].

Another interesting feature emerging from Figs. 3(a) and
3(b) is that in the WI regime, fS exhibits a linear dependence
for small V0. We have checked that this behavior occurs only
for kF d � π , while for kF d < π , we find that 1 − fS ∝ V 2

0 ,
as previously observed for the interacting system. This effect
can be simply understood by noting that for a noninteracting
uniform Fermi gas, the moment m−3(q) in Eq. (12) diverges
for q < 2kF because the dynamic structure factor S(q, ω) is
linear in ω at low frequency, reflecting the presence of gap-
less single-particle excitations at the Fermi surface. In the
superfluid Fermi gas, these excitations are instead gapped due
to Cooper pairing. In the Appendix, we provide an explicit
derivation of the behavior of fS for small V0 in the WI regime
based on degenerate perturbation theory.

IV. BEHAVIOR OF THE SOUND VELOCITIES

The results discussed in the previous section on the su-
perfluid density of the interacting Fermi gas have important
implications for the value of the sound velocity and, in partic-
ular, its anisotropy in the presence of the periodic perturbation
(2). According to the hydrodynamic theory of superfluids, the
square sound velocities along the longitudinal and transverse

directions are given by

c2
x = fSκ

−1,

c2
y = c2

z = κ−1, (37)

emphasizing that their anisotropy, caused by the presence
of the 1D periodic potential, follows from the anisotropy of
the superfluid fraction. From an experimental point of view,
a natural strategy to determine the value of the superfluid
fraction, associated with the motion of the superfluid along
the x direction, then consists of measuring the ratio

c2
x

c2
y

= fS, (38)

which is independent of the value of the compressibility. This
procedure has been recently successfully employed in the case
of a dilute Bose gas confined in a 2D box trap [7].

V. CONCLUSIONS

In this work, we have investigated the superfluid fraction of
a Fermi gas at unitarity, in the presence of a one-dimensional
periodic potential. We have shown that in sharp contrast with
the dilute BEC gas case, the Leggett’s upper bound for the su-
perfluid fraction can significantly overestimate its actual value
at zero temperature, unless the period 2π/q of the applied
lattice becomes much larger than the size of Cooper pairs,
i.e., if q 
 �/(mkF ), where � is the pairing gap energy. We
have pointed out the occurrence of important deviations of
Leggett’s bound from the actual value fS of the superfluid
fraction at unitarity and shown that these deviations become
more and more important as one approaches the weakly in-
teracting BCS regime of small and negative values of the
s-wave scattering length. Using sum-rule arguments, we have
also shown that the deviations of the Leggett bound from
the superfluid fraction explain the change of sign of the cur-
vature of the Anderson-Bogoliubov mode dispersion taking
place around unitarity.
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APPENDIX: ANALYTICAL RESULTS IN THE WEAKLY
INTERACTING BCS REGIME

For completeness, in this Appendix, we provide an ana-
lytical calculation of fS for a weak periodic potential in the
weakly interacting BCS regime, under the assumption that
q � �m/kF , which is equivalent to kF d 
 EF /�. As dis-
cussed in the main text, under this condition, one is allowed
to identify the inverse effective mass, calculated using the
ideal Fermi gas, with the superfluid fraction of the weakling
interacting BCS superfluid. Below we will separately consider
two cases, kF d < π and kF d � π .
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1. Case kF d < π

We calculate f W I
S from Eq. (12) since m−3(q) is expected

to be finite for a uniform system. For q > 2kF , the dynamic
structure factor of the noninteracting Fermi gas is given
by

S(ω, q) = m

4π2q

[
k2

F − m2

q2

(
ω − q2

2m

)2
]
, (A1)

if the right-hand side of Eq. (A1) is positive, that is, for
|ω − q2/(2m)| < qkF /m, and zero otherwise,

m−3(q) = m

4π2qn̄

∫ q2/(2m)+qkF /m

q2/(2m)−qkF /m

dω

ω3

×
[

k2
F − m2

q2

(
ω − q2

2m

)2
]
. (A2)

To perform the integral, we introduce dimensionless variable
y = [ω − q2/(2m)]/EF and p = q/kF , so that the integral be-
comes

m−3(q) = m3

π2k3
F n̄p

∫ 2p

−2p

(
1 − y2

4p2

)
dy

(y + p2)3
. (A3)

By performing the integration in Eq. (A3) and recall-
ing that n̄ = k3

F /(3π2), we obtain m−3(q) = F (q/kF )/E3
F ,

where

F (p) = 3

8p3

[
ln

(
p − 2

p + 2

)
+ 4p

p2 − 4

]
. (A4)

Since m1(q) = q2/(2m), from Eq. (12) we find

1 − f W I
S � 2

(
q

kF

)2

F

(
q

kF

)(
V0

EF

)2

. (A5)

Notice that the function F (p) in Eq. (A4) diverges at
p = 2 as F (p) ≈ 3

128(p−2) , implying that for q = 2kF , the
correction to the superfluid fraction induced by the periodic
potential is no longer quadratic but linear in V0, as we shall see
below.

2. Case kF d � π

We use degenerate perturbation theory applied to the ex-
ternal periodic potential (2) to show that 1 − fS ∝ V0. For
simplicity, we will prove the claim for the special case kF d =
π , so that only the lowest-energy band is populated. The proof
can be easily adapted to the general case where higher bands
are also populated.

We consider two states with wave vector kx and kx − G,
where G is a reciprocal lattice point. The two energy bands

are obtained by the condition∣∣∣∣∣∣
k2

x
2m − E V0

2

V0
2

(kx−G)2

2m − E

∣∣∣∣∣∣ = 0, (A6)

whose solutions are

E±(kx ) = 1

2

(
k2

x

2m
+ (kx − G)2

2m

)

±
[

1

4

(
k2

x

2m
− (kx − G)2

2m

)2

+ V 2
0

4

]1/2

. (A7)

We consider 0 � kx � π and choose G = 2π/d in Eq. (A7)
so that E±(π/d ) = ER ± V0/2, where ER = π2/(2md2). For
kF = π/d , the Fermi energy EF = ER sits between the two
bands, so the upper band is completely empty and, according
to Eq. (35), it does not contribute to the superfluid fraction.
Let us introduce the dimensionless variables Ẽ− = E−/ER and
x = kxπ/d . Then,

Ẽ−(x) = x2 + 2 − 2x − [
4(1 − x)2 + V 2

r

]1/2
, (A8)

where Vr = V0/(2ER) is the rescaled potential strength. From
Eq. (A8), we find

∂2Ẽ−(x)

∂x2
= 2 − 4V 2

r[
4(1 − x)2 + V 2

r

]3/2 , (A9)

showing that the curvature of the bands diverges as 2−4/Vr

for vanishing Vr . Substituting Eqs. (A8) and (A9) into
Eq. (35), we find

f W I
S � 1 −

4V 2
r

∫ 1
0

[
−(x−1)2+

√
4(1−x)2+V 2

r

][
4(1−x)2+V 2

r

]3/2 dx

2
∫ 1

0

[−(x − 1)2 + √
4(1 − x)2 + V 2

r

]
dx

.

(A10)

Let us discuss the behavior of the two integrals in Eq. (A10),
starting from the upper one. Since the major contribution to
the integral comes from the region around x = 1, the term
proportional to −(x − 1)2 in the numerator can be neglected
as it vanishes for x = 1 (its contribution to the integral is of
the order of V 2

r ln Vr). For the lower integral, we can safely set
Vr = 0 as no singularity is present, so that Eq. (A10) reduces
to

f W I
S � 1 − 4V 2

r

∫ 1
0

[
4(1 − x)2 + V 2

r

]−1
dx

2
∫ 1

0 [−(x − 1)2 + 2(1 − x)]dx
. (A11)

Since Vr is small, in the upper integral we can safely replace 0
with −∞, so that the integration becomes elementary, yield-
ing

f W I
S � 1 − πVr

4/3
= 1 − 3π

8

V0

EF
, (A12)

showing that the correction to the superfluid fraction is linear
in V0, which agrees with our numerics.
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