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The laser-induced recollision of electron trajectories is usually used to describe high-order harmonic gener-
ation (HHG), which also lays the foundation for high-order harmonic spectroscopy. Electron trajectory models
based on the saddle-point approximation are conceptually similar to the light ray model in optics. Considering
that ray optics is not complete to explain all wave optics phenomena, we revisit the validity of trajectory models
when incorporating the Coulomb potential. Results show that, under commonly used gas HHG experimental
conditions, both the classical three-step model and the quantum orbit model have dozens or hundreds of
attoseconds of deviation in emission time. By using the Gaussian wave-packet method, we reveal that the time
shift can be attributed to the deformation of the recollision electron wave packet. Wave-packet deformation is
an inherent wavelike phenomenon caused by group delay dispersion and higher-order dispersion, and thereby
is difficult to modify by particlelike trajectories. In addition, we reveal the notable influence of wave-packet
deformation on observables in two-color field HHG experiments.
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I. INTRODUCTION

High-order harmonic generation (HHG) is an extremely
nonlinear and nonperturbative optical up-conversion process
that occurs when an intense laser interacts with matter. Its
physical picture is usually explained in terms of the laser-
induced recollision of electron trajectories [1]. Due to its
unique time-frequency features, HHG can be utilized as co-
herent light sources in extreme ultraviolet and x-ray regions
[2–5], and to generate attosecond pulses [6,7]. Additionally,
the recollision process can be seen as a self-probe of the elec-
tron wave function. The analysis of the HHG signal enables
the extraction of both static [8–10] and dynamical [11–14]
information of electrons with both angstrom spatial resolution
and attosecond temporal resolution [15], which is known as
high-order harmonic spectroscopy (HHS) [16,17].

The trajectory-resolved model is the foundation of HHS.
The interference of trajectories links the electron dynamics
with experimental observables, and thereby enables the re-
trieval of ionization and recombination time [18–20] and the
transition dipole moment [17,21]. The accurate modeling of
electron trajectories is pivotal for HHS applications. In the
well-known classical three-step model [1], electrons are first
ionized and subsequently accelerated by laser fields. The tra-
jectories are given by classical Newtonian motion equations.
High-order harmonics are generated when trajectories return
to the core. This classical model (CM) interprets the plateau

*liangl@hust.edu.cn
†pengfeilan@hust.edu.cn

and cutoff structure of harmonic spectra in a straightforward
and intuitive way. The quantum-mechanical version of the
three-step model is known as the strong-field approxima-
tion (SFA) model [22,23]. It provides a more sophisticated
path-integral formulation for quantitatively calculating the
HHG spectrum. By performing the saddle-point approxima-
tion (SPA), the SFA model yields complex-valued electron
trajectories, which are known as quantum orbits (QOs) [24].

In the original formulation of the CM and SFA, the
Coulomb interaction between the electron and core is ne-
glected when the electron propagates in the continuum.
However, both the retrieved results from HHS experiments
[17–19] and the theoretical results acquired by numerically
solving the time-dependent Schrödinger equation (TDSE)
[25–27] demonstrate that the Coulomb potential can induce
time shifts in ionization and recombination. The time shifts
range from dozens to hundreds of attoseconds, which has
non-negligible influence on applications of HHS. Aiming to
modify the Coulomb interaction, various improved models
have been proposed [28]. In the classical trajectory Monte
Carlo (CTMC) [29] and Coulomb-modified SFA [30] meth-
ods, Coulomb force is incorporated into Newtonian equations.
Additionally, in the quantum trajectory Monte Carlo [31] and
analytical R-matrix (ARM) [32–34] methods, an additional
phase term involving the Coulomb potential is attached.

According to Feynman’s path integral, HHG can be repre-
sented as a coherent superposition of contributions from all
possible paths [24]. The trajectory-resolved models are based
on the saddle-point approximation. The SPA reduces the infi-
nite path integral into a few classical trajectories or quantum
orbits. Generally, previous Coulomb-corrected models make
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modifications within the framework of SPA. They either cal-
culate Coulomb-corrected classical trajectories or modify the
phase and derive modified quantum orbits. Basically, they still
relate the generation of given harmonics with a certain trajec-
tory. The SPA is conceptually similar to Fermat’s principle,
and the electron trajectories correspond to light rays. Just as
not all wave optics phenomena can be well explained by ray
optics, the trajectory models are simplified models that are not
complete for describing all wavelike phenomena. Recently,
the Huygens-Fresnel picture of solid HHG has been proposed
[35,36]. Instead of using recollision trajectories, it uses the
perspective of wavelet interference to model the generation
of solid high-order harmonics. It has been demonstrated that
particlelike trajectories are insufficient to trace electron wave-
packet deformation induced by the nonparabolic dispersion
of a solid energy band. In gas HHG, the Coulomb potential
can also make the continuum electron wave packet deformed,
which makes the validity of SPA questionable.

In this paper, we investigate the Coulomb-induced emis-
sion time shift in gas HHG. We reveal the important role of
wave-packet deformation and discuss the limitations of SPA.
This paper is organized as follows. In Sec. II, we introduce the
theoretical approaches. We introduce the extraction method
of emission time from TDSE calculations. Next, we make a
brief review of the commonly used trajectory models. Using
the comparison between geometric optics and wave optics
as an analogy, we discuss the foundation of SPA and trajec-
tory models. Then we introduce the Gaussian wave-packet
method (GWM). In Sec. III, we present our main results and
discussions. Our results show notable disagreement between
commonly used models and full quantum TDSE simulations.
We demonstrate that the wave-packet deformation is respon-
sible for the deviation. Additionally, in order to study the
influence of deformation on HHS, we investigate the results
of two-color field experiments. We show that, via interference,
the wave-packet deformation can have a notable influence on
experimental observables. Finally, we conclude in Sec. IV.

II. THEORETICAL APPROACHES

A. TDSE calculation

In length gauge, the time-dependent Schrödinger equa-
tion is given by

∂

∂t
ψ (r, t ) = Ĥψ (r, t )

=
[
−1

2

2�
+V (r) + r · E(t )

]
ψ (r, t ). (1)

Atomic units (a.u.) are used throughout this paper unless
stated otherwise. ψ (r, t ) is the time-dependent wave function
of the system. Ĥ denotes the Hamiltonian. We consider a
Coulomb potential of a hydrogen atom in the form of V (r) =
−Ze−ρr2

/
√

r2 + ξ . ρ is the screening parameter with ρ = 0
for the long-range potential and ρ > 0 for the short-range
potential [37]. ξ is the smoothing parameter, and Z is the
effective charge. Unless stated otherwise, Z = 0.9495, ρ =
0, and ξ = 0.5 are used to match the ionization potential Ip

= 0.5 a.u. of the hydrogen atom. The initial ground state ψ0

is prepared by imaginary-time propagation [38]. A linearly

polarized driving field E(t ) = f (t )E0 cos(ωt )êx is applied to
this atom. f (t ) is a trapezoidal envelope with a one-cycle
rising and falling edge and one-cycle plateau. The time-
dependent evolution of the wave function is obtained by
numerically solving Eq. (1) through the split-operator method
[39]. At each time step, the wave function is multiplied with
an absorbing mask function M(r) to eliminate the spurious
reflection from the boundary:

M(r) =
⎧⎨
⎩

1 r � R
cos1/8

[
π (r−R)

2L

]
R < r � R + L

0 r > R + L
. (2)

Here L = 25 a.u. denotes the width of the absorbing area.
In our simulation, the space step is dx = dy = 0.2 a.u., and
the time step is dt = 0.05 a.u. Once the time-dependent
wave function ψ (r, t ) is calculated, the induced dipole ac-
celeration a(t ) is calculated via the Ehrenfest theorem, and
the high-order harmonics D(�) can be obtained by Fourier
transformation:

a(t ) = 〈ψ (r, t )| − ∇V (r) − E(t )|ψ (r, t )〉,

D(�) ∝
∫

a(t )e−i�t dt . (3)

To extract the time-frequency property of HHG, we resort to
the Gabor analysis [40]:

IG(�, t ) =
∑
j=x,y

∣∣∣∣
∫

a j (t
′)e−(t−t ′ )2/2τ 2−i�t ′

dt ′
∣∣∣∣
2

. (4)

There are short, long, and multiple recombination trajecto-
ries that contribute to the generation of the same harmonics
[41,42]. Experimentally, each channel can be selected by
controlling phase matching [43]. Since the envelope of the
laser that we use just has a one-cycle plateau, the multiple
recombination signal can be neglected. The short and long
trajectory signals can be selected by adjusting the absorbing
mask M(r). According to CM, the maximal displacement of
short trajectories is about 1.127xm, where xm = E0/ω

2, and
that in long trajectories is about 2xm. Therefore, the short tra-
jectory harmonics Ds can be selected by setting R = 1.127xm

[44,45]. The superposition of short and long harmonics Ds+l

can be calculated by setting R = 2xm. Then the long trajectory
harmonics can be obtained as Dl = Ds+l − Ds. It should be
noted that the separating is difficult in the cutoff region where
the short and long trajectories mutually merge. Therefore,
we pay more attention to the plateau HHG. Figure 1 shows
the separated signal of short and long trajectory HHG. Here
we first extract short and long trajectory signals and draw
their Gabor time-frequency distributions individually. Then
we overlay these two figures together. For given harmonic
frequency �, the temporal position tr of local maxima of
IG(�, t ) is regarded as the emission time. The solid blue
and orange lines show the extracted emission time of short
and long trajectory HHG respectively. The ionization time ti,
which is difficult to extract directly, is less discussed in this
paper.
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FIG. 1. Gabor time-frequency distribution of harmonic emission.
The short and long trajectory HHG profiles are extracted respectively
and then overlaid together. The wavelength of laser is 800 nm and
the intensity is 0.15 PW/cm2. The blue (left) and orange (right) solid
lines denote the emission time of short and long trajectory harmonics
when intensity reaches local maxima.

B. Trajectory-resolved models

In the classical three-step model, the initial longitudinal
velocity of electrons is assumed to be zero. After ionization,
electrons are accelerated by the laser field:

v(ti ) · E(ti ) = 0,

v(t ) = v(ti ) − A(ti ) + A(t ),∫ tr

ti

v(τ )dτ = 0,

v(tr )2/2 + Ip = �.

(5)

Here A(t ) = − ∫
E(t )dt is the vector potential of the driv-

ing field. High-order harmonics are generated when electrons
recollide with the parent ion. The mapping between harmonic
frequency � and return time tr is built via the conservation
law of energy at tr .

The SFA model gives a quantum-mechanical counterpart
of the three-step model. The high-order harmonics D(�) are
contributed by trajectories with different ionization time ti,
recombination time tr , and canonical momentum p:

D(�) ∝
∫

dti

∫
dtr

∫
dpW(ti, tr, p)e−iS(ti,tr ,p),

W(ti, tr, p) = d∗[p + A(tr )]E(ti )d[p + A(ti )],

S(ti, tr, p) =
∫ tr

ti

{[p + A(τ )]2/2 + Ip}dτ − �tr .

(6)

Here W and S are the weight and phase factors of trajecto-
ries. For atomic gas, the dipole matrix element d(k) changes
smoothly over tens of electron volts. The S varies on a charac-
teristic scale ≈1/(tr − ti ). Since tr − ti can be approximated as
half of the optical cycle (o.c.) of the driving laser, the S varies
thus much faster than the other factors [22,23]. Therefore, the
e−iS in the integrand yields a very strong oscillation. Conse-
quently, the integral of D(�) accumulates predominantly near
the saddle points where S is stationary, which is known as the
saddle-point approximation [24,36,46]. The SPA allows one
to reduce the integral into a few quantum orbits [23,47]. By

solving the following saddle equations, the ionization time,
recombination time, and canonical momentum of the QO can
be calculated:

∂S

∂ti
= 1

2
[p + A(ti )]

2 + Ip = 0,

∂S

∂tr
= 1

2
[p + A(tr )]2 + Ip − � = 0,

∂S

∂p
=

∫ tr

ti

[p + A(τ )]dτ = 0.

(7)

As introduced in [26,32], the QO can be corrected to the
first order in the electron-core interaction by ARM theory, in
which a Coulomb term Sc is added to the SFA phase:

Sc =
∫ tend

tk

V [ra(τ )]dτ. (8)

Here ra(t ) is the potential-free trajectory. The lower limit
of the integral in Eq. (8) is determined by a boundary-
matching procedure which leads to tk = ti − i/(2Ip). The
upper limit is found by the condition

√
r2

a(t end ) = r0, where
r0 = 1

2vr
e2{0.5772−∑∞

p=1[1−vr p arccot(vr p)]/p} [48]. The Coulomb
phase term leads to the shifts of the real parts of the saddle-
point times (for more details, see Appendix A in [32]):

δti = −∂Re(Sc)

∂Ip
− ∂Re(Sc)

∂�
,

δtr = −∂Re(Sc)

∂�
. (9)

The analog of SPA in optics is Fermat’s principle, and
electron trajectories correspond to light rays. In contrast,
Huygens-Fresnel’s principle provides a more comprehensive
wave picture. Here we use the comparison between geo-
metric optics and wave optics as an analogy to discuss the
validity of SPA in gas HHG. Figures 2(a1)–2(a3) illustrate
the propagation of light beams in three different kinds of
medium. The black dashed lines denote the wavefronts. The
blue lines denote the light rays that are perpendicular to the
wavefronts. The orange arcs denote the secondary wavelets
emanating from each point on the wavefronts. According to
Huygens-Fresnel’s principle, the superposition of wavelets
forms a new wavefront. Figure 2(a1) depicts the simplest case.
A beam of light travels through a homogeneous medium.
One can use a straight light ray to describe the propagation.
Figure 2(a2) shows the propagation in an inhomogeneous
medium where the refractive index changes linearly in space.
The lower area has a larger refractive index. The wavefronts
tilt gradually but remain in plane. The normals at each point
on the same wavefront remain mutually parallel. Therefore,
one can still use a bending ray to describe the propagation.
Figure 2(a3) shows a more complicated case, where the re-
fractive index has high-order nonlinear distribution in space.
The inhomogeneity consists of Gaussian distributions besides
the linear term. The wavefronts are deformed and the normals
are no longer parallel to each other. It is insufficient to use
only one light ray to describe the propagation, while Huygens-
Fresnel’s principle is of more validity.

In gas HHG, the SPA has been proven to be valid when
completely neglecting the Coulomb potential [46]. It corre-
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FIG. 2. (a1–a3) The propagation of light beams in different kinds of media. (a1) The propagation in a homogeneous medium. (a2) The
propagation in an inhomogeneous medium where the refractive index changes linearly in space. (a3) The propagation in an inhomogeneous
medium where the refractive index changes nonlinearly in space. (b) Schematic illustration of the quantum orbit and Gaussian wave-packet
method. (c) The pseudocolor shows the profile of the time-dependent wave packet. The orange solid line shows the effective trajectory of the
wave packet. The blue dashed line shows the QO result. (d) The defined degree of wave-packet deformation with initial width changing. In
(c) and (d), the wavelength of the laser is 800 nm and the intensity is 0.15 PW/cm2. The results correspond to the electron trajectory of H19.

sponds to the case shown in Fig. 2(a1). HHG can be well
described in terms of free electron trajectories. The problem
is how to account for the effect of the Coulomb potential.
Previous works, like ARM, correct the Coulomb effect within
the framework of SPA. It is similar to the case shown in
Fig. 2(a2). The correction is valid provided the Coulomb
effect is perturbative and does not influence the foundation
of SPA. In SPA, the reduction for the path integral consists of
two steps. In the first step, the entire integral is reduced into
the integral over the vicinity of saddle points at which the first
partial derivative of S(ti, tr, p) equals zero. In the second step,
the S(ti, tr, p) is approximated as a truncated Taylor expansion
up to the second order in the vicinity of saddle points [23].
Hence the integral over the vicinity can be approximated as
a Gaussian integral. Clearly, the second reduction is based on
the assumption that in the Taylor expansion the second-order
term dominates over higher-order terms [36]. In a local space,
the Coulomb potential can be seen as an influence on the
dispersion of free electrons. The S(ti, tr, p) cannot be simply
treated as a quadratic function of p. Similar to the case in
solid HHG [35], the group delay dispersion and higher-order
dispersion can lead to the wave-packet deformation, which
makes the validity of SPA questionable.

C. Gaussian wave-packet method

In this section, we introduce the Gaussian wave-packet
method. A general propagator K̂ (t, t0), describing the propa-
gation of the wave function from t0 to t , satisfies fundamental
properties as

|ψ (t )〉 = K̂ (t, t0)|ψ (t0)〉,
K̂ (t, t0) = K̂ (t, tm)K̂ (tm, t0). (10)

Here the tm denotes an arbitrary middle time. Using Eq. (10)
and inserting a Gaussian projection operator, the wave
function ψ (r, t ) in Eq. (3) can be rewritten as

ψ (r, t ) = 〈r|ψ (t )
〉

=
∫∫

〈r|K̂ (t, tm)|ψG, rc, kc, σk〉

× 〈ψG, rc, kc, σk|K̂ (tm, t0)|ψ (t0)〉drcdkc. (11)

Here the set of Gaussian wave packets |ψG, rc, kc, σk〉 forms
an overcomplete basis [49]:

〈r|ψG, rc, kc, σk〉 =
√

σkx σkx

π
exp

[
−σ 2

kx
(x − xc)2

2

−
σ 2

ky
(y − yc)2

2
+ i(kxc x + kyc y)

]
.

(12)

(xc, yc), (kxc , kyc ), and (σkx , σky ) represent the central
position, central momentum, and standard deviation of mo-
mentum. The physical picture behind Eq. (11) is similar to
Huygens-Fresnel’s principle shown in Figs. 2(a1)–2(a3). At
tm, the wave function can be expressed as a superposition
of Gaussian wave packets. The wave packets serve as sec-
ondary sources, propagating and mutually interfering. The
HHG is contributed by all wave packets. It should be noted
that because of the overcompleteness of Gaussian wave pack-
ets Eq. (11) as it stands is not exact. Since our goal is to
qualitatively investigate the influence of wave-packet defor-
mation on SPA, we can make further reductions. As Fig. 2(b)
shows, for HHG with given energy, we first select the most
representative Gaussian wave packets based on QO results,
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and then trace the wave-packet deformation. Here the dashed
blue line denotes the tunneling process occurring during
complex-valued time from Re(ti ) + Im(ti ) to Re(ti ). The tun-
neling is a quantum-mechanical process with no classical
counterpart. After tunneling, the QO is conceptually related
to the classical three-step model. The movement follows clas-
sical Newtonian equations. The solid blue line shows the
trajectory during real-valued time from Re(ti ) to Re(tr ). We
regard the time when the electron drifts farthest from the
parent ion as tm:

kQO(tm) = Re[p + A(tm)] = 0,

rQO(tm) = Re

{∫ tm

ti

[p + A(τ )]dτ

}
. (13)

At this time, we release an initial Gaussian wave packet, the
central position and momentum of which are consistent with
QO results. It corresponds to performing an approximation
that reduces the 〈ψG, rc, kc, σk|K̂ (tm, t0)|ψ (t0)〉 into δ[rc −
rQO(tm)]δ[kc − kQO(tm)]. Here the δ symbolizes the Dirac
delta function. Therefore, the integral in Eq. (11) becomes
〈r|K̂ (t, tm)|ψG, rQO(tm), kQO(tm), σk〉. The above reduction
means that the SPA makes a prefiltering for the Gaussian wave
packets at tm. The contribution from those wave packets that
deviate far from saddle points is neglected. The reason for
choosing the Gaussian expansion at the maximal excursion
time is that the Coulomb effect is relatively weak in the
far field, which facilitates the simplification. By contrast, at
ionization time, electrons are too close to the parent ion. As
a result, the electron wave packet receives strong Coulomb
interaction, and can split into several separated wave pack-
ets. It forces us to trace the propagation of more than one
wave packet which makes the analysis complicated and not
intuitive. It should be noted that since we make the reduction
based on QO results the Coulomb effect before tm is not well
incorporated. It may introduce certain deviations for quantita-
tive results. But here we focus on the physical picture rather
than accurate calculation. The approximations do not impact
our main conclusions. After tm, the time-evolution operator
K̂ (t, tm) is carried out by solving the TDSE. Our simulation
differs from previous field-free Gaussian wave-packet colli-
sion methods [50,51] in the following aspects.

(1) The momentum width of the wave packet is not quite
narrow.

(2) The initial central position is not far enough from the
ionic core.

(3) The laser field acts on the wave packet during
propagation.

(4) The ground state is unoccupied initially.
The bottom of Fig. 2(b) illustrates the initial wave packet

and the subsequent deformed wave packet. For a clear com-
parison, we attach blue circles to show the outline of the
wave packet in Coulomb-free propagation. In the absence of
potential, the dispersion of the free electron is parabolic. The
wave packet spreads due to the group velocity dispersion, but
keeps a Gaussian distribution. The full width at half maximum
(FWHM) of the wave packet at a later moment t is given
by [52]

FWHM = 2
√

2ln2/

√
1/σ 2

k + (t − tm)2σ 2
k . (14)

In the QO model, the spreading of the wave packet is related
to the weight of trajectories. In the presence of potential, the
dispersion is nonparabolic. The group delay dispersion and
higher-order dispersion lead to the wave-packet deformation.
Like the case shown in Fig. 2(a3), it is insufficient to use par-
ticlelike trajectories to trace the wave-packet deformation. We
use the average position 〈r〉 and momentum 〈k〉 as the effec-
tive position and momentum. The time t ′

r when 〈r(t ′
r )〉 = 0 is

recorded as the corrected recollision time and the time-energy
mapping is modified by �′ = 〈k(t ′

r )〉2/2 + Ip. In Fig. 2(c), the
pseudocolor figure shows the profile of the time-dependent
distribution |ψG(x, y = 0, t )|2. At each moment, the distribu-
tion is normalized individually. Here σkx = σky = 0.5 a.u. is
used. The orange line denotes the effective displacement, and
the blue dashed line denotes the uncorrected QO result. The
laser wavelength is 800 nm and the intensity is 0.15 PW/cm2.
The trajectory corresponds to the 19th-order harmonics. It
shows that the effective trajectory approaches the core faster
than QO due to wave-packet deformation, which results in an
earlier recollision with higher kinetic energy. We use the av-
erage deviation between QO and effective trajectory to define
the degree of deformation:

�x = 1

t ′
r − tm

∫ t ′
r

tm

|〈x(τ )〉 − xQO(τ )|dτ. (15)

Next, we discuss the value setting of the factor σk. Phys-
ically, σk indicates the momentum width of the continuum
electron that contributes to the given HHG. Considering the
uncertainty principle, its value should be neither too small
nor too large. Here we set σk empirically. As introduced in
previous works, the FWHM of the continuum wave packet
at recombination time tr is typically ≈ 20 Å [53]. The time
interval (tr − tm) can be approximated as a quarter of the
optical cycle of the driving laser. Assuming the wavelength
of the laser ranges from 800 to 1200 nm and substituting the
above estimated values into Eq. (14), we can calculate the
factor σk is about 0.4–0.6 a.u. We also show the dependence of
�x on σk in Fig. 2(d). When σk tends to zero, the momentum
width is narrow. The Coulomb influence on dispersion can
be approximated as a truncated Taylor expansion up to the
low orders in the vicinity of central momentum kc. Therefore,
the deformation effect is not obvious. As the σk increases,
higher-order dispersion becomes non-negligible, and thereby
the deformation effect becomes obvious. Results show that
the degree of deformation gradually converges when σk > 0.3
a.u.. We have verified the case for different parameters and
find that the results are similar. Based on the above results, we
adopt σk = 0.5 a.u. in the following discussion.

III. RESULTS AND DISCUSSIONS

We commence the study with the emission time shift in
short trajectory HHG. In Fig. 3(a), the gray lines show the
temporal distribution IG(�, t ) calculated by Eq. (4). Each line
is normalized individually. The black dashed lines show the
extracted emission time. The laser intensity is 0.3 PW/cm2

and the wavelength is 1000 nm. The Keldysh parameter γ =√
Ip/(2Up) is 0.49, where Up = E2

0 /4ω2 is the ponderomotive
kinetic energy. We first focus on the deviation of the classical
three-step model. As the blue dashed line shows, the emission
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FIG. 3. (a), (b) The emission time of short trajectory harmonics. The gray lines show the temporal distribution IG(�, t ) of each harmonic.
Each line is normalized individually. The laser in (a) has a wavelength of 1000 nm and an intensity of 0.3 PW/cm2. The laser in (b) has a
wavelength of 800 nm and an intensity of 0.15 PW/cm2. (c)–(e) The average time shift of CM, QO, and GWM. (f) The average results of QO
deviation and the degree of deformation.

time given by the CM is later than the TDSE result. It is
notable that the time shift exists in the entire plateau region
and hardly diminishes with the increase of harmonic order.
The average time deviation �tr is about 0.023 o.c., corre-
sponding to 77 as. Figure 3(b) shows the result when using
lower laser intensity and shorter laser wavelength. The laser
intensity is 0.15 PW/cm2, and the wavelength is 800 nm. The
Keldysh parameter γ equals 0.87. In this case, the discrep-
ancy between CM and TDSE is more obvious. The average
deviation reaches 145 as. Figure 3(c) shows the dependence of
�tr on laser parameters. It is clear that the deviation increases
as intensity decreases and wavelength decreases. We choose
�tr = 50 as as a threshold and highlight the contour line by
adjusting the color map. The black dashed line shows the
contour line of the Keldysh parameter γ = 0.36. It shows that
�tr is related to γ . Then we move our focus to the QO results.
As blue solid lines show, the time shift in QO is about half
of that in the CM. In Fig. 3(a), its average deviation is 35 as,
and in Fig. 3(b) the average deviation is 65 as. As Fig. 3(d)
shows, in the QO model, the contour line of �tr = 50 as
corresponds to γ = 0.67. Next, we compare the correction
given by ARM and Gaussian wave-packet method (GWM).
As reported in previous researches [26,32], ARM can obvi-
ously reduce the ionization time shift, but the correction for
emission time is less obvious. As blue circles in Figs. 3(a)
and 3(b) show, the ARM results are almost the same as the
QO ones. We have verified the results under different laser
parameters and find that ARM always gives nearly identical
emission time with QO. As orange squares show, the GWM
gives earlier emission time than the QO model. It is seen that

GWM results correspond well with TDSE results. As Fig. 3(e)
shows, the time shift can be well eliminated by GWM under
different laser parameters. We average results from different
laser wavelengths but the same γ . As Fig. 3(f) shows, both
�tr and �x increase almost linearly with γ . It should be noted
that in gas HHG experiments the driving laser with 800 nm of
wavelength is commonly used, and γ usually approximately
equals 1. In this parameter region, CM, QO, and ARM exhibit
deviation of dozens or hundreds of attoseconds, which has
non-negligible influence on the applications of HHS that has
attosecond precision.

Next, we investigate the role of the Coulomb potential.
First, we calculate the TDSE with a short-range potential.
Here Z = 1.77, ρ = 1, and ξ = 0.5 are used, and the laser
parameters are the same as those in Fig. 3(b). As shown in
Fig. 4(a), in this case, the TDSE results are nearly identical
with QO results. The average deviation is merely 7 as. It
indicates that the deviation of QO mainly stems from the
long-range Coulomb effect. We divide the total potential into
short-range and long-range parts as follows:

V (r) = βV S + (1 − β )V L = βZSe−ρr2 + (1 − β )ZL√
r2 + ξ

. (16)

The smoothing parameter ξ is fixed at 0.5 and the effective
charges ZS and ZL are adjusted to keep the ionization potential
constant. The β and ρ determine the depth and width of the
long-range Coulomb tail. As illustrated in Figs. 4(b) and 4(c),
the time shift �tr and wave-packet deformation �x have simi-
lar variation. The larger proportion of the long-range tail leads
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FIG. 4. (a) The emission time of short trajectory harmonics. The
laser parameter is the same as that in Fig. 3(b), but a short-range
potential is used in TDSE calculation. (b) The emission time shift in
the QO model. (c) The degree of wave-packet deformation calculated
by GWM. (d) The emission time shift in GWM.

to the larger deformation and thereby the larger deviation.
In addition, as Fig. 4(d) shows, the time shift can be well
eliminated by modifying the deformation effect.

Then we move our focus to the long trajectory HHG. As
Fig. 5(a) shows, the emission time shift �tr of long trajectory
harmonics is obviously smaller than short ones. It can be ex-
plained by two aspects. One reason is that the long trajectory
electrons drift further from the parent ion and thereby feel
weaker than the Coulomb potential. As Fig. 5(b) shows, the
degree of deformation is smaller than that in Fig. 3(f). The
other reason is attributed to the chirp of HHG. As Fig. 2(c)
illustrates, the deformation makes the electron recollide with
the core earlier and with higher kinetic energy. Therefore the
�-tr curve shifts both left (smaller tr) and upward (higher �).
For short trajectory harmonics with positive chirp, both these
two kinds of shift contribute to positive �tr , while for long
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FIG. 5. (a) The emission time shift of the QO model for long tra-
jectory HHG. (b) The average time shift and degree of deformation.

trajectory harmonics with negative chirp these two kinds of
shift have opposite effect, which reduces the total deviation
and even makes �tr negative.

Here we can delve into a discussion about the origin of
the time shift. The Coulomb effect can be decomposed into
short-range and long-range effect. The classical model fails
to account for both the short-range and long-range effect, thus
exhibiting the most obvious deviation. The QO model is accu-
rate in the limit of short-range potential [32]. The short-range
effect mainly influences the ionization. It makes electrons
spend so-called tunneling time to pass through the barrier.
The tunneling time and nonzero tunnel exit are important for
ionization and return time [25,54]. The QO model ignores the
long-range Coulomb interaction after ionization. The long-
range Coulomb effect has more intricate influence. It can be
seen as an influence on parabolic free electron dispersion.
The influence consists of low-order dispersion and high-order
dispersion. In the parameter region γ � 1, the high-order
effect is weak, and thereby the SPA is still effective. Previ-
ous Coulomb-corrected models based on SPA are valid. In
contrast, we demonstrate that in the parameter region γ ≈ 1
the high-order dispersion becomes non-negligible. The group
delay dispersion and higher-order dispersion lead to the elec-
tron wave-packet deformation. In this case, the modifications
within the framework of SPA are no longer appropriate.

The above results reveal the important influence of wave-
packet deformation on emission time. Though the absolute
emission time is difficult to measure directly, the influence of
wave-packet deformation can be revealed in observables of
two-color field experiments [18,20,55].

We first consider the interferometry experiment formed
by adding a perturbative second harmonic (SH) field in the
parallel direction of the fundamental laser [19,34]. The SH
pulse perturbs electron trajectories differently in the adjacent
half cycle. Thus the dynamical symmetry is broken, which
leads to the generation of even order harmonics. As the SH
field is much weaker than the fundamental field, the electron
trajectories remain unchanged but an additional phase ς is
introduced with opposite sign in the adjacent half cycle. The
intensity of even harmonics is modulated with phase delay φ

between two lasers:

ς (�,φ) =
∫ tr

ti

[v(τ )A2(τ, φ)]dτ,

I (�,φ) ∝ sin2 [ς (�,φ)]. (17)

Here A2 is the vector potential of the SH field. In TDSE
simulation, not only the subcycle interference but also the
ground-state depletion and pulse envelope can influence the
modulation. Moreover, the multirecombination trajectory har-
monics can also disturb the results. In order to prevent the
above influences, we calculate I (�,φ) as

I (�,φ) = |EG(�, tr, φ) − E′
G(�, t ′

r, φ + π )e−i�(t ′
r−tr )|2.

(18)

The EG and E′
G represent the Gabor distribution when the

phase delay is φ and φ + π , respectively. The trapezoidal en-
velope has one-cycle rising and falling edges and a one-cycle
plateau. tr and t ′

r are the temporal locations of maxima that lie
between 1.2 and 1.7 o.c.
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FIG. 6. The optimal phase delay that makes even order harmon-
ics maximal. (a) The results of short trajectory HHG. (b) The results
of long trajectory HHG. The intensity of the fundamental field is 0.15
PW/cm2 and the wavelength is 800 nm. The intensity of the SH field
is 0.1% of the fundamental field.

We first focus on the results of short trajectory HHG shown
in Fig. 6(a). Here φmax is defined as the optimal phase delay
that makes the intensity of even harmonics maximal. The
intensity of the fundamental field is 0.15 PW/cm2 and the
wavelength is 800 nm. The intensity of the SH field is 0.1%
of the fundamental field. The black circles and dashed line
denote the TDSE result. With harmonic order increasing from
14 to 26, φmax changes from 0 to −0.5π . The CM result shown
by the blue dashed line exhibits obvious disagreement with
the TDSE result. The deviation goes as high as 0.3π . The
QO result shown by the blue solid line also exhibits notable
deviation. Its average deviation is about 0.12π . Addition-
ally, the deviation increases with harmonic order and reaches
0.25π near the cutoff. The above deviation is non-negligible
for application of HHS [16] and other investigations such
as terahertz wave generation [56,57]. The purple triangles
display the short-range potential TDSE result. It is consistent
with the QO result, meaning the deviation mainly stems from
long-range Coulomb effect. The orange line shows the GWM
result. We use the effective trajectory to modify the QO trajec-
tory after tm. In fact, the Coulomb effect on ionization time is
also important [26] and can influence the ς (�,φ) according to
Eq. (17). But for the sake of simplicity, we do not discuss the
ionization process in this paper, thereby the trajectory before
tm remains unchanged. The modified GWM result is close to
the TDSE result. Its average deviation is just 0.02π . Next, we
move our focus to the results of long trajectory HHG shown
in Fig. 6(b). In the TDSE result, φmax changes from −0.4π to
−0.1π with harmonic order increasing from 14 to 26. The
CM result has obvious deviation of 0.2π . The discrepancy
between QO and TDSE is smaller than that in Fig. 6(a). The
average deviation of QO is about 0.04π . It corresponds to the
above discussion that long trajectory harmonics have smaller
time shifts. As a result, the long trajectory harmonics are
preferable for the calibration of phase delay.

Next, we investigate the observables in orthogonal two-
color (OTC) fields. As shown in Fig. 7(a), in OTC fields,
electrons can recollide with the parent ion with nonzero
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FIG. 7. (a) The trajectories of H23 from different models. (b) The
intensity ratio of adjacent even and odd harmonics. The fundamental
field has a wavelength of 800 nm and an intensity of 0.15 PW/cm2.
The intensity of the SH field is the same as that of the fundamental
field, and the relative phase is π/2.

angles. Here the intensity of the fundamental field is 0.15
PW/cm2 and the wavelength is 800 nm. The intensity of
the SH field is the same as that of the fundamental field,
and the relative phase is π/2. The trajectories in Fig. 7(a)
correspond to the 23rd-order harmonics. In the GWM result,
the trajectory after tm is modified by effective trajectory. It
shows that the CM result gives the smallest recollision an-
gle, QO gives the second, and GWM gives the largest. The
calibration of recollision angle is important for HHS such as
orbital tomography [9,58]. Additionally, the recollision angle
corresponds to the intensity ratio of adjacent even and odd
harmonics [59]. As Fig. 7(b) shows, both CM and QO predict
a smaller intensity ratio than TDSE results. Once again, the
QO result is consistent with the short-range potential result.
The GWM result corresponds well with the TDSE result. It
is demonstrated that the wave-packet deformation induces not
only the time shift but also the return angle shift.

According to the temporal interferometry [60], elliptically
or circularly polarized HHG can be obtained by using nearly
OTC fields, i.e., the crossing angle is close to 90◦:

D±(�) = C{1 + ηexp[i(�S − ��tr ± �θr )]},

ζ = |D+|2 − |D−|2
|D+|2 + |D−|2 ,

ε = sgn(ζ )

(
1 −

√
1 − ζ 2

1 +
√

1 − ζ 2

)1/2

.

(19)

Here D± represents the projection of high-order harmonics
D(�) onto the circular vector ê± = (êx ± iêy)/

√
2. ζ denotes

the degree of circular polarization, and ε is the ellipticity of
harmonics. The sign of ε denotes the helicity. C represents the
absolute amplitude of temporal emission and η is the relative
amplitude ratio. �S, �tr , and �θr denote the difference in
dynamical phase S, recollision time tr , and angle θr between
two electron trajectories in adjacent half cycles. Note that in
the following discussion the symbol � does not denote the
deviation of the QO model. Equation (19) demonstrates that
not only the time shift but also the return angle shift can
influence the ellipticity. Like Young’s two-slit interferometer,
the distribution of the interferogram is mainly determined by
the phase term �S − ��tr ± �θr , and η just affects the depth
of modulation. It is seen that in the first equation in Eq. (19)
the only difference between D+ and D− is the opposite sign
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of �θr . For convenience, we divide the total phase term into
two parts: the same term �ϕ = �S − ��tr and the opposite
term �θr . First, we investigate the deviation of �θr and �ϕ in
the QO model. In referential TDSE calculation, θr and ϕ are
extracted from Gabor analysis as

θr = arctan[
√

IGy (�, tr )/IGx (�, tr )],

ϕ = arg[EG‖ (�, tr )]. (20)

EG‖ is the projection of Gabor distribution EG onto the vector
ê‖ = cosθr êx + sinθr êy. As shown in Fig. 8(a), in the QO
model both the deviation of �θr and �ϕ increase with har-
monic order and reach 0.2π near the cutoff. As shown in
Fig. 8(b), the deviation has non-negligible influence on the
total phase term. For clarity, only the even order results are
shown in Fig. 8(b). The results of odd harmonics can be easily
obtained via shifting by π and are not shown here. We first
focus on the D+ results shown by orange lines. In the TDSE
result, the total phase �ϕ + �θr reaches π near H18, while
in the QO result the peak shifts to H16. Then we focus on
the D− results shown by blue lines. Since the deviations of
�θr and �ϕ offset each other, the disagreement between QO
and TDSE is smaller for D−. According to Eq. (19), when
(�ϕ ± �θr ) = (2N + 1)π and N is an integer, D+ or D−
interferes destructively and D− or D+ dominates, which yields
a local maxima of |ε|. As shown in Fig. 8(b), for even order
harmonics, the destructive interference mainly occurs in D+.
Therefore the even order harmonics have negative ellipticity.
Instead, the odd harmonics have positive ellipticity. As shown
in Figs. 8(c) and 8(d), since the QO model has more deviation
in the interferogram of D+, it shows obvious deviation in the
polarization of even harmonics.

IV. CONCLUSION

In conclusion, we have investigated the origin of emission
time shift and discussed the validity of SPA in gas HHG. We
revealed that the electron wave-packet deformation plays an
important role in the emission time of high-order harmon-
ics. In the experimental commonly used parameter region,
it can result in a time shift of dozens or hundreds of at-
toseconds, which has non-negligible influence on HHS. We
have demonstrated that the deformation effect, as an inherent
wavelike phenomenon stemming from group delay dispersion
and higher-order dispersion, cannot be well represented by
trajectories within the framework of SPA. We have also re-
vealed that the wave-packet deformation can bring notable
shifts to observables in two-color field experiments. In par-
allel two-color fields, the deformation influences the intensity
modulation of even order harmonics. In OTC fields, the defor-
mation induces a shift in the return angles that determines the
intensity ratio of adjacent even and odd harmonics. In nearly
OTC fields, the time shift together with the angle shift lead to
notable influence on harmonic polarization.

Our paper offers a wavelike perspective for studying
the physics mechanisms behind the gas HHG process, and
also provides guidance for the parameter selection in HHS
applications.
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