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Photoelectron spectra in circularly and elliptically polarized laser pulses
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We present results of numerical simulations of the time-dependent Schrödinger equation and theoretical
analysis concerning the interaction of a rare gas atom with circularly and elliptically polarized laser pulses.
In agreement with recent observation in circularly polarized fields, the photoelectron energy spectra for coun-
terrotating electrons are peaked at lower kinetic energy than those for corotating electrons. We show that this
difference can be interpreted as being due to the additional pathways to ionization that are available for the
counterrotating electrons only. Furthermore, our results show, in agreement with earlier work, that the offset
angle by which the emission of electrons is rotated in an elliptically polarized field increases with each successive
above-threshold ionization (ATI) order and is larger for the emission from counterrotating states as compared
to that from corotating states. A simple model based on the interference and relative phase difference between
just three continuum states provides remarkable agreement and once again emphasizes the importance of the
additional ionization pathways available for the counterrotating electrons.
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I. INTRODUCTION

Spin polarization of electrons is a valuable tool for prob-
ing the structure of and the electron dynamics in atoms,
molecules, and solids. Spin-polarized photoelectrons can be
generated via the interaction of atoms, molecules, or solids
with circularly polarized laser light. An important aspect in
the generation is the selective emission of electrons with a spe-
cific rotation in their initial state, which is determined by the
magnetic quantum number of the state, relative to the helicity
of the circularly polarized laser pulse. Numerous experimental
and theoretical studies have recently analyzed how the helicity
of the initial state impacts the electron emission in a strong
laser field [1–57]. In the multiphoton and tunneling regime
helicity-dependent ionization enhancement has been proposed
[1] and observed [2,17,31], where counterrotating electrons
from initial states with helicity opposite to the applied field
are found to be preferentially ionized. This is in contrast to
earlier findings for single-photon ionization, where the emis-
sion of electrons corotating with respect to the rotation of the
applied electric field is more likely than that of counterrotating
electrons [58–61].

Theoretical analysis, supported by numerical results of
ab inito simulations of the time-dependent Schrödinger equa-
tion, indicate that the reversal in the ionization ratio of co- to
counterrotating electrons as a function of wavelength is due
to the photon absorption channels which are only accessible
for electrons rotating opposite to the rotation direction of the
external electric field [49,51]. This mechanism is illustrated in
Fig. 1, which illustrates the absorption pathways for a right-
handed circularly polarized field. Due to quantum selection
rules the absorption of a photon causes a change in the orbital
angular quantum number (�l = ±1) and the magnetic quan-
tum number (�m = +1). Consequently, the available (real or
virtual) states for the electron are constrained, as it transitions
towards the continuum. For the counterrotating initial p state

(m0 = −1, l0 = 1), the absorption of one photon leads to m =
0 and, hence, the electron can transition to either the l = 0 or
l = 2 states. Conversely, for the corotating state (m0 = 1, l0 =
1), a transition occurs to the m = 2 state, which is available
for the l = 2 state only. Thus, photoelectron emission from
the counterrotating initial state benefits from the additional
transition pathways during each successive photon absorption
towards ionization. This results in the theoretically predicted
and experimentally observed enhancement of ionization for
counterrotating electrons in the few-photon, multiphoton, and
tunneling regimes. The interpretation based on additional
pathways and doorway states [49,51] has recently been recon-
firmed in Ref. [56].

The goal of the present work is to study how these ad-
ditional absorption pathways impact observables beyond the
total ionization yields, such as photoelectron energy spectra
and angular distributions. More specifically, we are interested
in analyzing two recently reported observations. First, it has
been shown that in circularly polarized laser fields the en-
ergy spectra of photoelectrons emitted from initial states with
opposite helicity differ [5,14,17,31]. For counterrotating elec-
trons the maximum of emission occurs at lower energies than
for corotating electrons, which was related to the difference in
azimuthal velocities at the tunneling exit. Photoelectrons with
initial momentum antiparallel to the rotation of the field (i.e.,
counterrotating electrons) gain a lower final energy than those
with parallel momentum (i.e., corotating electrons) [5,17].

Second, for ionization in elliptically polarized laser fields
it has been found that the most probable emission angle, also
called attoclock offset or streaking angle [62–66], increases
with the energy of the emitted photoelectron [67–71]. This
observation is in contrast to theoretical predictions based on
classical Monte Carlo calculations due to which the Coulomb
interaction of the photoelectron with the residual ion should
lead to a decrease in the photoemission angle [67]. The re-
sults have been explained by a nonadiabatic tunneling effect
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FIG. 1. Photon absorption pathways during the interaction of
electrons in initial states with m0 = −1 (counterrotating state) and
m0 = 1 (corotating state) with a right-handed circularly polarized
pulse. Direct path for corotating electrons is indicated by the red ar-
rows, direct path for counterrotating electrons is indicated by the blue
arrows, and the offset path for counterrotating electrons is marked by
the light blue arrows.

[1,72,73] in which the electron gains energy from the light
field in the classically forbidden tunnel region, which impacts
the tunnel exit position [67]. Concerning the relative helicity
of the electrons with respect to the rotation direction of the
applied field, the emission angle was found to be larger for the
counterrotating electrons than for the corotating ones, which
was again explained by the difference in lateral momentum of
the two kinds of electrons at the tunneling exit [14].

In this study we aim to complement these previous findings
and explanations by showing that the difference in the photo-
electron energy spectra and the shifts in the emission angles
can be understood based on quantum selection rules for pho-
ton absorption and the above-mentioned additional pathways
for counterrotating electrons. To facilitate this analysis, we
refer back to the diagram in Fig. 1 and introduce labels to
distinguish the various pathways. The pathway with �l = +1
(for right-handed circularly polarized light) in each absorption
step is common for both the co- and the counterrotating initial
state and we will refer to it as the “direct pathway.” The ad-
ditional pathways, available for the counterrotating electrons
only, in which in one absorption step �l = −1, we label as
“offset pathways.”

The rest of the paper is organized as follows: In the next
section we briefly outline the details of the numerical calcula-
tions as well as the evaluation of the photoelectron energy and
angular distributions from the numerical results. In Sec. III
we present and discuss results for the energy spectra of elec-
trons in circularly polarized field, while in Sec. IV we present
numerical data and theoretical analysis for the most probable
angular emission angle. The article ends with a brief summary.

II. NUMERICAL CALCULATIONS

We consider the interaction of a model neon atom in the
single active electron approximation with an elliptically po-
larized intense laser pulse. The corresponding time-dependent
Schrödinger equation (TDSE) in dipole approximation and
velocity gauge is given by (we use Hartree atomic units

e = me = h̄ = 1, if not stated otherwise)

i
∂

∂t
�(r, t ) =

[
−∇2

2
− iA(t ) · ∇

c
+ VSAE (r)

]
�(r, t ), (1)

where A(t ) is the vector potential of the laser pulse given by

A(t ) = A0 sin2

(
πt

τ

)
[sin (ωt )x̂ − ε cos (ωt )ŷ], (2)

where ω is the laser frequency, A0 = c
√

I
ω

, τ = 2πN
ω

, c is the
speed of light, I is the peak intensity, and N denotes the num-
ber of cycles. Without loss of generalization, in our study we
have chosen right-handed polarized pulses, i.e., ε > 0 (ε = 1
for circularly polarized light). The single-active-electron po-
tential

VSAE (r) = −1

r
− 9e−0.8870r

r
−9.9286e−1.3746r (3)

+ 5.995e−3.79636r (4)

is fitted to a density functional theory calculation [74]. To
solve the TDSE numerically we expand the wave function �

in spherical harmonics up to lmax = 60 and mmax = 60. The
radius is discretized using the fourth-order finite difference
method with a grid spacing of 0.05 a.u. and a maximum
radius of 1250 a.u. with exterior complex scaling on the outer
62 a.u. of the grid. In time the wave function is propagated
using the Crank-Nicolson method with a time step of 0.05
a.u. We have performed numerical calculations in which the
central wavelength of the laser pulse is varied between 400 nm
and 800 nm.

The energy-resolved photoelectron angular distributions
can then be obtained from the time-propagated wave function
as

F (k) = |〈φ(−)
k (r)|�(r)〉|2

= 1

k2
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∑
l,m

[
(−i)l eiδkl

∫
χkl (r)χlm(r) dr

]
Yl,m(k̂)
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2

,

(5)

where φ
(−)
k (r) = 1

k

∑
lm il e−iδl (k) χkl (r)

r Y ∗
lm(k̂)Ylm(r̂) is the out-

going scattering state, �(r) = ∑
lm

χlm (r)
r Yl,m(r̂) is the wave

function at the end of the pulse, Yl,m are the spherical harmon-
ics, and δkl is the phase shift. To calculate the photoelectron
energy spectrum, consisting of the above-threshold ionization
(ATI) peaks, the summation is performed over the various or-
bital angular and magnetic components of the wave function.
In certain parts of our analysis we will restrict the sum to show
the impact of the different pathways on the results.

For the angular distributions we perform the sum across or-
bital angular and magnetic components of the wave function.
We will consider angular emission patterns in the plane of
polarization by setting θ = π/2. In test calculations we have
checked that the results are similar to those obtained after in-
tegration of the distribution over the angle θ . For the analysis
we further consider the angular distribution corresponding to
each individual ATI peak, which is determined by selecting a
narrow energy bin around the position of each peak. Within
this energy bin the sum across orbital angular and magnetic
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FIG. 2. Comparison of photoelectron energy spectra for a neon
atom, initially in l = 1, m = 1 (corotating) state, indicated by the
red curve, and atoms, initially in l = 1, m = −1 (counterrotating)
state, indicated by the blue curve. The top panel represents the total
spectrum, while the bottom panel shows the spectrum originating
from the direct paths only. The results were obtained using a ten-
cycle right-handed circularly polarized laser pulse with an intensity
of 3 × 1014 W/cm2.

components of the wave function is being performed, which
gives us the angular distribution specific to each ATI peak.

III. ENERGY SPECTRA IN CIRCULARLY
POLARIZED PULSES

We have conducted simulations of the interaction between
a model neon atom (in the single-active-electron approxi-
mation) and a right-handed circularly polarized laser pulse,
considering the initial states of l = 1, m = 1 (corotating state,
red line) and l = 1, m = −1 (counterrotating state, blue line).
The pulse duration was set to ten cycles, wavelengths were
400 nm and 800 nm, and a peak intensity of 3 × 1014 W/cm2

was chosen. The results for the photoelectron energy spectra
are shown in Fig. 2 for 400 nm (left column) and 800 nm (right
column). In the top panels we show the comparison between
the spectra for corotating (red line) and counterrotating (blue
line) helicity of the initial state. For the comparison the highest
ATI peak in each spectrum is set to 1. In agreement with
earlier observations and studies [14,17,31], the shapes of the
spectra differ for the emission from the two initial states.
Furthermore, in agreement with the earlier predictions [14]
the maximum in the spectrum for the counterrotating electrons
occurs at lower energies than that for the corotating electrons.
We may note that we did not include the contributions from
the m = 0 state since those are negligible for the total yields.

In order to show that the difference in the spectra arises
due to the additional offset pathway, available for the counter-
rotating electrons only, we note that the absorption of photons
along the direct pathway is governed by quantum selection
rules such that l = m for corotating electrons and l = m + 2
in the case of counterrotating electrons (c.f. Fig. 1). Therefore,
we have performed calculations in which we restricted the
sum over orbital angular and magnetic components according
to these rules when evaluating the energy spectra. The results
are presented in the lower panels of Fig. 2 and, indeed, we
observe a high degree of similarity in the spectra for co-
and counterrotating electrons. The comparison shows that the
discrepancy in the full spectra can be indeed attributed to the

FIG. 3. Distribution of population in the orbital angular and mag-
netic states of a neon atom after interaction with a 400-nm circularly
polarized laser pulse. Laser parameters are the same as in Fig. 2.
Left for initial counterrotating state with l = 1, m = −1 and right
for corotating state with l = 1, m = 1.

presence of the additional pathway exclusively available in
the counterrotating case. To further interpret this result, we
note that transitions into final states with small energies are
more favored the lower the angular orbital momentum l [75].
Thus, for the counterrotating electrons transitions along the
offset pathways (with l = m) result in stronger population of
low-energy continuum states than photon absorption along the
direct pathway (with l = m + 2), which explains the shift in
the energy spectrum to lower energies.

We can gain more insight by investigating the population
in the different orbital angular momentum (l) and magnetic
(m) components of the continuum part of the time-propagated
wave function. In Fig. 3 we present these components for the
counter- (left column) and corotating (right column) initial
states in the case of the TDSE simulation at 400 nm. We
separate the components related to the direct pathway (shown
in red) and those for the offset one (shown in blue). As ex-
pected from our analysis of the energy spectra, we see that the
relative amount of population over the different components
of l is similar for the direct pathway for both co- and coun-
terrotating electrons. In contrast, those for the offset pathway
have a different distribution. In particular, we note that for
the counterrotating electrons the contributions related to the
offset pathway are much stronger, reinforcing the interpreta-
tion that the additional pathway is the dominant one at this
wavelength. Consequently, transitions via this pathway are
the origin for the strong enhancement of the total ionziation
yield for counterrotating electrons, as discussed previously
[49,51]. This can be further understood by the fact that along
the offset pathway transitions occur between states having the
same orbital angular and magnetic quantum number (l = m),
which quantum mechanically have the strongest coupling.

Furthermore, the comparison in the left-hand panel of
Fig. 3 shows that for the counterrotating state the distribution
is peaked at lower orbital angular momentum for the offset
pathway than for transitions via the direct pathway. To inter-
pret this result we note that for a given initial state the final
magnetic quantum number is determined by the number of
photons, Nphot, absorbed by the electron (Nphot = m − mi). On
the one hand, the result is therefore in agreement with the
analysis of the energy spectra, namely, that the shift to lower
energies (corresponding to an absorption of a smaller number
of photons) occurs for transitions along the offset pathway.
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On the other hand, along the offset pathway the same mag-
netic quantum number (corresponding to the same number of
absorbed photons) results in a lower orbital angular quantum
number (l = m) than in the direct pathway (l = m + 2).

IV. ANGULAR DISTRIBUTIONS IN ELLIPTICALLY
POLARIZED PULSES

We now turn to the angular distribution of the emitted elec-
trons. For a circularly polarized pulse consisting of multiple
cycles, emission is uniform across all angles within the plane
of polarization. Instead, we focus on recent observations and
predictions [14,67–71] for patterns in the angular distribution
obtained in an elliptically polarized laser pulse with large
ellipticity, close to circular polarization. Specifically, we will
analyze the change in the most probable emission angle as a
function of kinetic energy of the photoelectron and the differ-
ence in emission angle for counter- vs corotating electrons. To
this end, we performed two sets of numerical simulations for
the interaction of a neon atom with an elliptically polarized
laser pulse, one for an initial (counterrotating) state of l =
1, m = −1 and another for a (corotating) state of l = 1, m = 1
for a 400-nm pulse with an ellipticity of 0.7. The results are
illustrated in the top row of Fig. 4, where the results presented
on the left correspond to the l = 1, m = −1 (counterrotating)
case, and the results on the right represent the l = 1, m = 1
(corotating) case.

The angular emission patterns in the polarization plane
(left column) show the expected ATI structure. The major
axis of the polarization ellipse is oriented along the px axis.
In agreement with recent observations [67], we observe that
the angle of maximum emission, defined with respect to the
minor x axis, increases as a function of the order of the ATI
rings, for both co- and counterrotating electrons. This is seen
even more clearly in the plots in the middle row of Fig. 4,
where we present the angular distributions as a function of the
offset angle for each ATI peak separately. We further observe,
in agreement with earlier theoretical predictions [14], that the
most probable emission angle for the counterrotating case is
larger for each ATI peak and changes more significantly with
each successive peak as compared to the corotating case. For
pulses with polarization close to circular polarization, these
findings are independent of the specific value of ellipticity.
This can be seen from the results for the most probable
emission angle as a function of ATI peak order in Fig. 5 for
ellipticities of 0.8 (red symbols) and 0.9 (blue symbols).

Previous studies have indicated that the origin of the
rotation is associated with nonadiabatic tunneling, where elec-
trons acquire additional momentum in the parallel component
during tunneling due to the interaction with the laser field
[67,68]. Our goal is to provide complementary insight by
exploring the correlation between the emission angle and
the different orbital and magnetic state components that con-
tribute to the photoelectron spectrum. To this end, we first
identify the orbital angular momentum and magnetic states
that provide the most significant contributions to the observed
spectra. In both the corotating and counterrotating cases, we
were able to identify three states that contribute most to each
ATI peak. We plot the ATI-order resolved spectra produced
by considering only these states in the bottom row of Fig. 4.

FIG. 4. Photoelectron spectrum for a neon atom interacting with
an elliptically polarized laser pulse. The top row shows the an-
gular distributions for the initial (counterrotating, left) state with
l = 1, m = −1, and those for the initial (corotating, right) state with
l = 1, m = 1. The plots in the middle row show the emission as a
function of angle for each ATI peak, and those in the bottom row
represent the spectra generated with the three highest contributing
components. The pulse parameters are as follows: wavelength of
400 nm, intensity of 3 × 1014 W/cm2, and ellipticity of 0.7.

FIG. 5. The offset angle corresponding to the maximum emis-
sion of electrons for a neon atom interacting with an elliptically
polarized pulse. The laser parameters are the same as in Fig. 4 for
ellipticities of 0.8 (blue) and 0.9 (red).
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FIG. 6. Illustration of the dependence of angle of electron emis-
sion based on the model given by Eq. (6). Top panels show the phases
of the three contributing components while the bottom panels show
the resulting spectra.

Remarkably, we observe a highly accurate reproduction of the
spectral features that we see in the full spectra (panels in the
middle row).

Independent of the ATI order and for counter- as well as
corotating initial states, we find that the three most contribut-
ing components for the nth ATI peak are represented by the
quantum numbers (ln, mn = ln), (ln − 2, mn − 2), and (ln −
4, mn − 4), where (ln, mn = ln) is the state corresponding to
the absorption of the minimum number of photons needed
to ionize an electron with energy equal to that of the nth
ATI peak. For the laser parameters used in the present TDSE
calculations ln = n + 7. Note that these channels are related to
the offset (direct) pathway in the case of the counterrotating
(corotating) electrons.

This identification simplifies the analysis significantly, as
the spherical harmonics associated with the three states in the
plane of polarization (θ = π

2 ) can be expressed as Yl,m=l ∝
eimφ and it can be assumed that interference and the phase
difference between the states play a dominant role. To this
end, we consider a simple model in which we express the
spectrum for the nth peak as follows:

Fn ∝ ∣∣eiσ1 eimnφ + eiσ2 ei(mn−2)φ + eiσ3 ei(mn−4)φ
∣∣2

, (6)

where eiσ0 is the phase associated with the projection of the
wave function on to the continuum states. To test this model,
we set σ1 = 0 and modify the relative phase between the
states in Eq. (6) to study its impact on the change in the
angle of maximum emission. The results in Fig. 6 confirm
the expectations that the emission angle is determined by the
relative phase of the different components.

We therefore proceed and extract from the TDSE simula-
tions the relative phases of the three largest contributions in
l and m for each ATI peak for both co- and counterrotating
initial states. The results in Fig. 7 for ellipticities 0.7 (top row)
and 0.8 (bottom row) indeed reveal the expected behavior. The
relative phases increase for each successive ATI peak, which
explains the increase in emission angle as a function of ATI
order, and for each ATI peak the relative phases are larger in
the case of the counterrotating state than for the corotating
electrons.

FIG. 7. Phases of the three biggest contributing components of
the photoelectron spectrum of neon interacting with an elliptically
polarized pulse, as extracted from the TDSE simulations. The plots
on the left correspond to the corotating case, while the plots on the
right correspond to the counterrotating case. The top row represents
results from the interaction with a pulse having an ellipticity of 0.7,
and the bottom row those for a pulse with an ellipticity of 0.8. Other
laser parameters are as in Fig. 4.

V. SUMMARY

We have presented results of numerical simulations of
the time-dependent Schrödinger equation for the interac-
tion of a model neon atom in the single-active-electron
approximation with circularly and elliptically polarized laser
pulses. The results are found to be in agreement with re-
cent observations and theoretical predictions. Complementary
explanations based on the fact that counterrotating electrons
can be emitted via additional pathways, as compared to their
corotating counterparts, have been provided. Specifically, we
have shown that the dominant ionization via these additional
pathways leads to emission of photoelectrons at smaller ki-
netic energies in circularly polarized fields. Furthermore, in
elliptically polarized laser pulses with large ellipticity the
most probable emission angle is larger for counterrotating
electrons and increases with each successive ATI order. Our
analysis also shows that these two phenomena, which have
previously been considered to be seemingly disparate, indeed
have a shared underlying mechanism. In this context we may
point out that the analysis and conclusions presented in this
study depend on the angular momentum quantum number and
not on the atomic potential. Those are therefore applicable for
other atoms as well, including the hydrogen atom in its excited
states.
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