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Stability analysis in an optical lattice clock using the four-path measurement
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In this paper, we propose a method for identifying the contribution of various sources of noise to the
instability of an optical lattice clock. These sources include Dick noise, quantum projection noise, shot noise,
and technical noise. By measuring the clock instability at four different sets of parameters, we can determine
the frequency fluctuations due to each type of noise separately. Furthermore, we can accurately extract the
absolute number of atoms, the photon number detected per atom by the photoelectric detector, and the root
mean square fluctuations of the atom number. We demonstrate the effectiveness of our approach through
numerical simulations, showcasing the ability to determine these parameters with an uncertainty of less than
10%. Specifically, a remarkable uncertainty of 1% can be achieved when determining the atom number.
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I. INTRODUCTION

Optical lattice clocks (OLCs) have achieved remarkable
fractional frequency instability of 4.8 × 10−17 τ−0.5 (where τ
indicates the measurement time shown in seconds), and ex-
ceptional measurement precision in the regime of 10−21 [1–3].
These advancements have had significant impacts on reduc-
ing clock systematic uncertainty [2–6], advancing relativistic
geodesy [7,8], generating ultrastable microwave signals [9],
and conducting fundamental physics research [10–12].

Clock instability arises from two main sources of noise
that contribute to the error signal detected in the clock cy-
cle: Clock laser noise and atomic detection noise [13]. The
intermittent interaction of atoms with the clock laser leads to
the conversion of high-frequency laser noise to low-frequency
noise (referred to as the Dick effect [14,15]), which results
in incorrect frequency corrections for the clock laser. The
Dick effect can be mitigated by employing zero-dead-time
sampling of the clock laser noise using two clocks [16]
or through synchronized detection techniques [17–19]. Ad-
ditionally, nondestructive detection methods [20], improved
stability of the clock laser [21–23], and increased duty cy-
cle [14,15] can help reduce the impact of the Dick noise.
The atomic detection noise includes quantum projection noise
(QPN) [24,25], shot noise from the photoelectric detector,
and technical noise arising from dark counts and stray light
in the photoelectric detector [13]. The QPN is determined
by the atom number and the frequency-sensitive slope of the
clock transition spectrum. It can be suppressed by increasing
the atom number or overcome utilizing techniques such as
squeezed states [26] and atom entanglement [27]. Shot noise
and technical noise are associated with the fluorescence de-
tection system and become more significant when the atom
number is small [13].

A thorough comprehension of the impact of various noise
sources on clock stability is essential for achieving optimal
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clock performance. Moreover, it enables researchers to de-
termine crucial systematic parameters such as the absolute
number of atoms N0, which is essential for studying many-
body interactions [3,28]; the photon count η detected per
atom by the photoelectric detector; and the root mean square
fluctuations of the atom number δN. However, the traditional
method to distinguish different noise contributions to stability
relies on measuring each noise contribution one by one, which
is cumbersome and complicated [13].

This study introduces the four-path measurement (FPM)
method, which distinguishes different noise contributions to
stability with high precision in optical lattice clocks. Our
approach involves conducting four measurements of clock sta-
bility under different systematic parameters, rather than based
on analysis of the different types of noise from the detection
and interrogation laser [13]. By performing numerical simu-
lations, we demonstrate that the FPM method can accurately
measure different noise contributions and potentially provide
accurate values for N0, η, and δN.

II. THE FOUR-PATH MEASUREMENT METHOD

When considering a transition probability of 0.5 and ne-
glecting the detection laser noise, which can typically be
significantly reduced compared to other effects [13], the clock
instability σp1 at τ =1 can be expressed by [17,29]

σ 2
p1 = σ 2

Dick + σ 2
QPN + σ 2

Shot + σ 2
Det. (1)

In Eq. (1), σ 2
Dick represents the variance of frequency

fluctuation caused by the Dick effect. σ 2
QPN = TC/4K2

0 N0 cor-
responds to the variance contributed by the QPN, where TC is
the clock cycle time, and K0 denotes the absolute value of the
frequency-sensitive slope of the spectrum at the half-height
points. σ 2

Shot = TC/4K2
0 N0η indicates the variance originating

from shot noise, while σ 2
Det = TCδ2

N/2K2
0 N2

0 represents the
contribution of technical noise. Equation (1) is valid only
under the precondition that all noises are independent of
each other. Since the four terms in Eq. (1) exhibit distinct
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dependencies on N0 and η, we can utilize experimental mea-
surements to distinguish these noise components effectively.
Additionally, we can determine the values of N0, η, and δN

by analyzing the measurement results of σQPN, σShot, and σDet,
respectively. The Dick-noise-limited instability can be written
as [14]

σ 2
Dick = σ 2

clock

2ln2

TC

τ

∞∑
k=1

1

k

∣∣∣∣
gk

g0

∣∣∣∣
2

, (2)

where the frequency flicker noise floor of the clock laser,
designated as σclock, is determined by analyzing the fre-
quency correction signals, with the linear frequency drift
removed. Meanwhile, gk refers to the Fourier coefficients of
the frequency-sensitive function. σ 2

Dick exhibits a nonlinear
relationship with the duty cycle; however, we can derive σ 2

Dick
by altering the clock detection time Tp, the time during which
the clock transition is excited by the clock laser, while main-
taining TC constant. When we adjust Tp to β1Tp, the total clock
instability can be expressed as

σ 2
p2 = β0σ

2
Dick + (

σ 2
QPN + σ 2

Shot + σ 2
Det

)
/β2

1 . (3)

The precise determination of β0 can be carried out using
Eq. (2). Subsequently, we can determine the other factors
associated with atomic detection noises. The value of η is
directly proportional to the length of the detection laser pulse
(Tdet), which can be precisely controlled and measured in
experiments. By adjusting Tdet to β2Tdet while keeping the
other parameters constant as described in Eq. (1), the value
of η will become β2η. Hence, the total clock instability can be
denoted as

σ 2
p3 = σ 2

Dick + σ 2
QPN + σ 2

Shot/β2 + σ 2
Det. (4)

Finally, by changing the atom number from N0 to β3N0,
we can separate the technical noise from other sources of
noise. This modification results in a total clock instability
represented by

σ 2
p4 = σ 2

Dick + (
σ 2

QPN + σ 2
Shot

)
/β3 + σ 2

Det/β
2
3 . (5)

Combining Eq. (1) with Eqs. (3)–(5), we have the follow-
ing equation:

⎡
⎢⎢⎢⎣

1 1 1 1
β0 1/β2

1 1/β2
1 1/β2

1

1 1 1/β2 1
1 1/β3 1/β3 1/β2

3

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

σ 2
Dick

σ 2
QPN

σ 2
Shot

σ 2
Det

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

σ 2
T1

σ 2
T2

σ 2
T3

σ 2
T4

⎤
⎥⎥⎥⎦. (6)

By solving Eq. (6), we can determine the precise values of
σDick, σQPN, σShot, and σDet, thereby inferring the parameters
of N0, η, and δN. The measurement of N0 using the FPM
method eliminates the need for precise determination of the
solid angle and quantum conversion efficiency of the detection
systems, which are typically required in fluorescence detec-
tion methods [30]. Additionally, it removes the limitation of
having to know the shape of the cold ensemble, which affects
the measurement precision of absorption imaging techniques
[31]. As a result, the FPM method exhibits great potential
for achieving high accuracy. Moreover, the FPM approach
allows for the precise measurement of the parameters of η

and δN, providing an opportunity to validate corresponding
measurements obtained through traditional techniques [13].

FIG. 1. Frequency stabilities at four-group parameters. The
points represent the numerical results, where the single clock stabil-
ity was inferred by dividing the interleaved self-comparison stability
by

√
2. The dotted lines indicate the corresponding theoretical re-

sults. Error bars represent the 1σ standard error.

III. NUMERICAL RESULTS

To validate this method, we performed a numerical simu-
lation of the clock operation process [18,32,33] and obtained
relevant parameters by analyzing the Allan variance of the
self-comparison data. The simulation involved four main
steps. In Step 1, we initialized the necessary parameters,
including the modulation parameters of β1–β3, as well as
other systematic parameters such as N0, η, δN, and the drift
rate of the clock laser frequency. Additionally, we calculated
the Dick limits to determine the value of β0. Moving on to
Step 2, we calculated the standard deviations (σp1 ∼ σp4) and
generated noise for the four cases by multiplying normally
distributed random numbers by their corresponding standard
deviation. Step 3 involved performing the self-comparison
operation to measure the stability of the individual clock. In
this step, the central frequency of the laser frequency was
interleavedly locked to two transitions with independent feed-
back. By detecting the difference in excitation fractions at the
half-width points of the spectrum, the frequency correction
can be expressed by (PeR-PeL)/2K0, where PeR and PeL are the
excitation fractions at the right and left sides of the spectrum,
respectively. The noise-induced frequency fluctuations were
directly added to the frequency corrections of each interleaved
loop. In Step 4, we performed calculations to determine the
single clock stabilities. This was done by dividing the self-
comparison stability by

√
2 [18]. Once the total stabilities of

the four operation cases were determined, we could proceed
to derive the contribution of each noise source using Eq. (6).
Additionally, we could extract the parameters N0, η, and δN

from the analysis results.
Figure 1 shows the Allan deviations (σp1–σp4) obtained

from both theoretical and numerical results at various param-
eters, including σclock = 0.043 Hz (corresponding to a 10−16

instability of strontium optical lattice clocks), Tp = 0.01 s,
TC = 1 s, N0 = 500, η = 1, δN = 3, β1 = 5, β2 = 3.88, and
β3 = 0.2. Here, we choose a small Tp to intentionally increase
the contribution of atomic detection noise. The values of η
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TABLE I. Comparison of noises amplitudes (represented by the
standard deviation) between extracted results using the FPM method
and the corresponding theoretical values. The numerical results are
derived from a single numerical simulation (shown in Fig. 1), while
the uncertainties represent the standard deviation of 50 simulations.

Noise source Theoretical (Hz) Extracted (Hz)

σDick 0.0778 0.0798(17)
σQPN 1.1787 1.1691(90)
σShot 1.1787 1.1794(17)
σDet 0.2236 0.2343(200)

and δN are from Ref. [17], while β1–β3 are chosen to ensure
obvious differences between σp1–σp4. Table I presents a com-
parison between the 1σ frequency fluctuations of different
noise sources and their theoretical values. The good agree-
ment between the extracted and theoretical values, within the
measurement errors, demonstrates the validity of the FPM
method.

We further conducted a numerical study on the measure-
ments of N0, η, and δN using the FPM method. In this study,
we varied the setting value of N0 from 70 to 2050 while
keeping σclock at either 0.43 Hz or 0.043 Hz to investigate
the influence of σclock on the results. The other parameters
remained the same as in Fig. 1. Figure 2(a) illustrates the
determination of the absolute number of atoms. It can be
observed that the uncertainty is larger for smaller values of
N0 due to the presence of strong atomic detection noises,
which deteriorate the measurement stability. In the case of
σclock = 0.43 Hz, the measurement uncertainty increases with
the increase of N0 as the Dick noise gradually dominates the
total noise. However, by reducing σclock to 0.043 Hz, the atom
number can be measured with an uncertainty below 2% over
a wide range of N0.

Figure 2(b) presents the measurements of η, which can-
not be accurately obtained using traditional methods so far.
With the FPM method, the value of η can be precisely de-
termined within a very wide range of N0. It is worth noting
that in Figs. 2(a) and 2(b), the uncertainties of the group with
σclock = 0.043 Hz are insensitive to N0, whereas in the case
of σclock = 0.43 Hz, the uncertainties increase with increasing
N0.

Figure 2(c) depicts the determinations of δN for different
N0 values. As N0 increases, the measurement uncertainty rises
more rapidly than the other two parameters. This is because
the technical noise is inversely proportional to N2

0 , indicating
that an increase in N0 will rapidly reduce its contribution to
the overall uncertainty.

We discovered that the FPM method yielded average val-
ues of N0, η, and δN that deviated from their expected values.
These deviations resulted in significant inaccuracies when
the number of atoms was less than approximately 300. The
possible reason for these deviations is that the excitation frac-
tion is not always interrogated precisely at the half-height
points of the spectrum. Consequently, determining N0 and
other parameters using a constant maximum slope will lead to
incorrect results, as the average slope during actual operation
tends to be smaller than the half-height points. When N0 is

FIG. 2. Numerical results of measurements of the N0, η, and
δN. (a) Top: The absolute number of atoms N0 as a function of
the setting atom number. The dashed line indicates the theoretical
values. Bottom: The difference between the numerical and theoret-
ical results. (b) The inferred value of η (the theoretical value of
1 represented by the dashed line) at different setting N0. (c) The
extracted value of δN at different setting N0. The dashed line shows
the theoretical value of 3. All error bars represent the standard de-
viation of 50 independent simulations. The simulation results using
σclock1 = 0.43 Hz are indicated by dots, while squares represent the
results using σclock2 = 0.043 Hz. The uncertainties in [(a)–(c)] are
obtained by dividing the error bars by the corresponding theoretical
value.
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FIG. 3. Measurements of N0 by the FPM method based on the
Rabi and triangular spectra. The inset depicts the Rabi and triangular
spectra utilized in this study, wherein δF denotes frequency detuning
and Pe represents excitation fraction. Error bars indicate the standard
deviation of 50 independent simulations.

lower, there is a stronger fluctuation in the excitation frac-
tion, leading to larger deviations. This phenomenon may also
explain why larger clock laser noise corresponds to a larger
offset, as shown in Fig. 2. To validate the aforementioned
hypothesis, we conducted a comparison of N0 measurement
results using the FPM method with both Rabi and triangular
spectra. These measurements were performed under identi-
cal linewidth and other parameters (σclock = 0.43 Hz). The
triangular spectrum, characterized by a consistent frequency-
sensitivity slope, remains unaffected by fluctuations in the
excitation fraction. In Fig. 3, we present the numerical re-
sults which validate our inference. It is worth noting that
while achieving the triangular spectrum is challenging, this
phenomenon suggests that the FPM method can effectively
function with σclock = 0.43 Hz when N0 exceeds 300.

Under the same modulation parameters, it is impossible to
simultaneously determine the values of N0, η, and δN with
the smallest uncertainty, highlighting the need to optimize the
values of β1–β3 for accurate measurements of the target. To
investigate the relationship between the measurement uncer-
tainties of N0, η, and δN with β1, β2, and β3, respectively,
we conducted numerical research as shown in Figs. 4(a)–4(c).
In this study, we specified the following values: N0 = 500,
σclock = 0.043 Hz, Tp = 0.01 s, TC = 1 s, η = 1, and
δN = 3. Moreover, we adjusted the values of β1–β3 from 0.1
to approximately 8, a parameter range that is experimentally
attainable in OLCs [2,18]. When β1, β2, and β3 approach 1, all
measurements fail due to a near-zero measurement lever arm.
Within the calculated parameter region, the smallest measure-
ment uncertainties for N0, η, and δN are 1% (β1 = 5, β2 = 3.88,
and β3 = 0.2), 2.3% (β1 = 5, β2 = 7.24, and β3 = 0.2), and
6.3% (β1 = 5, β2 = 1.99, and β3 = 0.2), respectively. It is
possible to achieve even lower measurement uncertainty if a
larger parameter region is considered.

FIG. 4. Effects of modulation parameters on the measurement
uncertainties of N0, η, and δN. (a) Measurement uncertainties as a
function of β1, keeping the values of β2 = 3.88 and β3 = 0.2. (b) De-
pendence of measurement uncertainties on the choice of β2, with
β1 = 5 and β3 = 0.2. (c) The case of changing β3 while maintaining
constant values of β1 = 5 and β2 = 3.88. For all figures, squares,
circles, and triangles indicate standard deviation of 50 independent
simulations of N0, η, and δN, respectively.
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FIG. 5. Relative uncertainty of the atom number measurement
using the FPM method as a function of time consumption. The
relative uncertainty is obtained by dividing the standard deviation
of 50 numerical simulations by the atom number set at 1000. The red
solid lines indicate the linear fitting with a fixed slope of −0.5.

Studying the relationship between total time consump-
tion and measurement uncertainty using the FPM method is
also an interesting avenue to explore, as they are critical in
experiments. Figure 5 depicts the relative uncertainty as a
function of the total measurement time. The uncertainties de-
crease with increasing time at a slope of -0.5, which coincides
with the fact that the clock-comparison instability decreases
with averaging time at the same slope of -0.5. Based on
linear regression, achieving a 10% uncertainty (the typical

uncertainty of the absorption imaging method [30,31]) re-
quires a measurement time of 5 (or 1.3) h for σclock = 0.43
(or 0.043) Hz.

IV. CONCLUSION

We have developed a four-path measurement method to
distinguish the contribution of Dick noise, QPN noise, shot
noise, and technical noise on stability in an optical lattice
clock. This method enables us to determine the systematic
parameters of N0, η, and δN with high accuracy by separat-
ing these noise contributions. Through numerical simulations,
we demonstrate that our method can achieve a measurement
uncertainty of 1% for N0, 2.3% for η, and 6.3% for δN. The
measurement precision of N0 demonstrated in this work is su-
perior to that of the absorption imaging method [30,31], which
typically has a measurement uncertainty of 10% limited by the
knowledge of cold-ensemble shape and technical noises, and
cannot be improved by increasing measurement time. This
work not only enhances our understanding of the system in
noise contribution but also has the potential to facilitate other
research areas such as many-body interaction [3,28], nonde-
structive detection [20], and entanglement of atoms [27] that
benefit from the high precision of atom number measurement.
This method can be easily extended to other systems, such as
atomic fountain clocks [29,34].
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