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Time-delay control of reversible electron spirals using arbitrarily chirped attosecond pulses
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Photoionization through single-photon absorption by two synchronous, linearly chirped, oppositely circularly
polarized, attosecond pulses is known [N. J. Strandquist, Jr., and J. M. Ngoko Djiokap, Phys. Rev. A 106, 043110
(2022)] to create reversible spiral patterns in the momentum distribution of the ejected electron when the two
pulses have equal but opposite chirp rates. Here we extend this study by demonstrating how this reversible
spiral pattern can be controlled by varying the chirp rates as well as the time delay between the pulses. For two
synchronous pulses, we find that using arbitrary chirp rates for each attosecond pulse can create a reversible spiral
pattern identical to the one produced by equal but opposite chirp rates when adjusting the carrier-envelope phase
difference. By adding a nonzero time delay between the two pulses, we show that the reversible spiral pattern
can be controlled by using the accumulated linear Ramsey spectral phase to manipulate the chirp-induced linear
or quadratic spectral phases of the photoelectron. Possible applications of such exquisite manipulation of both
linear and quadratic spectral phases include manipulation of the photoelectron wave packet group delay.
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I. INTRODUCTION

Spatial two-slit experiments are a cornerstone of inter-
ferometry in quantum mechanics and optics. Their temporal
counterparts constitute Ramsey interferometry [1] and have
been widely studied in atomic systems using linearly polar-
ized laser pulses [2-9] or circularly polarized attosecond laser
pulses [10-14]. In the case of linear polarization, Ramsey
interference of wave packets producing electrons in Rydberg
states [2,4] and in the continuum [5] have been demonstrated
experimentally. The 2002 seminal work [5] made use of a
sequence of two femtosecond laser pulses to multiphoton
ionize potassium atoms. The advent of train [15] or isolated
attosecond pulses [16,17] has aroused a tremendous interest
in studying, manipulating, and controlling electronic wave
packets through Ramsey interference [1]. L'Huillier and col-
laborators conducted single-photon ionization experiments in
argon atoms using a sequence of two attosecond pulses sepa-
rated by half the infrared laser cycle [7], as well as a train of
multiple attopulses [8].

In the case of circular polarization, for broad bandwidths—
characteristic of attopulses—capable to support several Ram-
sey fringes, Ngoko Djiokap ef al. discovered the Archimedean
irreversible spiral interferogram in the photoelectron mo-
mentum distribution (PMD) in the laser polarization plane
following single-photon [10] or multiphoton [11] ionization of
helium atoms by a pair of time-delayed, oppositely circularly
polarized, copropagating attosecond pulses. The predictions
for these attopump-attopump processes [10,11] later con-
firmed experimentally by the Wollenhaupt group (see, e.g.,
[12,13]) in the femtosecond regime, have opened up a new
research subfield for searches and applications of this key
pattern from different processes, regimes, targets, and laser
polarization configurations.

Although isolated attopulses [15-21] with full control
of their polarization [21] state do exist, the experimental
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demonstration of these predictions for both the attopump-
attopump linear [10] and nonlinear [11] processes in the
attosecond regime, as well as the holy grail (attopump-
attoprobe nonlinear processes) of attosecond science, is not
yet a reality. Indeed, current methods for producing an iso-
lated attopulse, either from the nonlinear process of high-order
harmonic generation within the XUV region [15-21] or from
free-electron lasers within the soft x-ray spectral region [22],
always introduce an intrinsic chirp called an attochirp, i.e.,
a time-dependent laser pulse carrier frequency. This chirp
decreases the isolated attopulse intensity and broadens its
duration (but keeps its bandwidth unchanged). The weak
intensity combined with a lack of carrier-envelope phase sta-
bilization render difficult any realization of the holy grail
so far, while the measurement of the spiral interferogram
requires copropagating attopulses with broad bandwidth char-
acteristic of transform-limited pulses (TLPs). To achieve the
main goal of attosecond science by using an isolated attopulse
to better control electronic motion [23], it is crucial to examine
whether and how attochirp influences the PMDs produced
from both linear and nonlinear ionization processes. Just like
carrier-envelope phase effects, while the chirp of a single
laser pulse is known to affect nonlinear ionization processes
[24-41], no chirp effects are expected for linear ionization
processes starting from the ground state (not a superposition
of states like in [42]) within the rotating-wave approximation
(RWA).

It is within this context that we previously investigated
the linear process of single-photon single ionization of He
produced by a pair of synchronous, oppositely circularly po-
larized attopulses with equal and opposite chirp rates and
identified a new type of spiral interferogram. Because of its
energy-dependent handedness, it was dubbed reversible spiral
[43]. Not only was the sense of rotation of such spirals found
to depend on the pulse helicities, it also has a dependence
on the sign of the chirp-rate difference. This behavior of
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reversible spirals can be traced from the chirp-induced lin-
ear and quadratic spectral phase accumulated between the
simultaneous creation of the two-electron wave packets in
the continuum. In contrast, irreversible spirals [10-13] can
be traced from the Ramsey linear spectral phase accumulated
between the creation of the two-electron wave packets in
the continuum with a time delay. For reversible spiral pat-
terns predicted in 2022 [43]—which has just been confirmed
experimentally in 2023 but in the femtosecond regime by
the Wollenhaupt group [44]—to be measured in the attosec-
ond regime, they need to be fully controllable. This can be
achieved by tuning the amount of chirp inside the laser pulse
while eventually delaying in time the two ionizing attopulses,
as considered in this contribution. Such a control scheme
provides a great possibility of investigating or comparing the
shapes of the PMDs produced by electric fields, whose com-
ponents in the polarization plane can be viewed as temporal
single slit or double slits.

In this paper we examine the linear process of single-
photon single ionization of an S-state atom using a pair of
oppositely circularly polarized laser pulses with a focus on
the chirp nature of the pulse electromagnetic radiations while
they are temporally separated eventually. Because the inves-
tigation [43] was restricted to the case of equal and opposite
chirp rates with zero time delay, the present investigation is a
natural extension of the study [43] to the case where isolated
attopulses with arbitrary chirped rates are used with eventually
nonzero time delay. Although the perturbation theory (PT)
for single-electron ionization holds for any S-state atom (H,
He, etc.), we restrict the presentation of our numerical time-
dependent Schrodinger equation (TDSE) results to the case of
helium atom, because it was previously used in [43] and it is
more easily handled experimentally than hydrogen atom. Our
findings are threefold:

(i) For two synchronous pulses (i.e., a temporal single slit
in the x component and a distorted temporal double slit in the
y component of the resulting electric field), we find that using
arbitrary chirp rates for each attosecond pulse can create a
reversible spiral pattern identical to the one produced by equal
but opposite chirp rates for the same chirp-rate difference
A& when properly tuning the carrier-envelope phase differ-
ence. For fixed helicities of the oppositely circularly polarized
pulses, the energy-dependent spiral handedness is determined
by the sign of A§.

By temporally delaying the two attopulses, the shape of
the reversible spiral pattern can be transformed using the ac-
cumulated time-delay—induced linear Ramsey spectral phase
to manipulate the chirp-induced linear or quadratic spectral
phases of the photoelectron. There are two key results of
interest reported here.

(i1) For A& > 0, we find that the time delay strengthens the
linear spectral phase, thus causing the spiral pattern due to the
linear phase term to dominate even in the high-energy region.
This transforms the reversible spiral to an irreversible one
with broader spiral-arm widths as the photoelectron energy
increases.

(iii) For A& < 0, the time delay weakens the linear spectral
phase, and the obtained reversible spirals are not the sym-
metrical mirror image of the irreversible spiral produced for
A& > 0 with the same |A&|. When the time delay is present,

mirroring effects can only be seen now when flipping the
pulse helicities at a fixed A&. We determine the critical time
delay . for which the total linear spectral phase vanishes,
since the linear spectral phase components from chirp (with
A < 0) and time delay balance each other. Taking this time
delay 7. allows us to isolate a tightly wound irreversible (not
reversible) spiral pattern stemming from linear and quadratic
spectral phases with the same sign.

This paper is organized as follows. In Sec. I we describe
our numerical methods for solving the full dimensional TDSE
together with a parametrization of the chirped, oppositely cir-
cularly polarized isolated attopulses. In Sec. III we present our
numerical TDSE results, which are analyzed using first-order
PT. Finally, Sec. IV is devoted to some concluding remarks.
Throughout this work, atomic units are used unless stated
otherwise.

II. NUMERICAL METHODS

We begin our investigation by considering the interaction
of the helium atom in its ' S¢ ground state with the electric field
F(¢) of a pair of oppositely circularly polarized attopulses with
the same carrier frequency wg, but maybe differing in their
carrier-envelope phases ¢, and chirp rates &; ,. These two
pulses may be delayed in time by 7. Throughout this work we
focus on the process of photoionization, i.e., single ionization
by a single photon absorption, with the observable of interest
being the PMD. We parametrize the electric field as

F(t) = Fi(t)Re {e;e 1210 Foily
+ Fy(t — T)Re {ege 12— 002Dy 0

where for the jth pulse (j = 1, 2) with carrier-envelope phase
pj.e;=R~+in;§)/(1+ n?)'/2 is the polarization vector. The
unit vectors X and § define the major and minor axes, re-
spectively, of the polarization ellipse, while the laser pulse
is propagating along the Z axis. The quantity |n;] is the el-
lipticity in which —1 < n; < 1 [33]. For linear polarization,
one has |;| = 0, while for circular polarization (CP), one has
[nj| = 1. Here the sign of n; defines the helicity, where for the
Jjthpulse, n; = +1(—1) for the right (left) circularly polarized
attopulses, abbreviated as RCP (LCP).

A pulse is said to be chirped when its instantaneous carrier
frequency is time dependent [47]. For a linearly chirped pulse,
the carrier frequency of the jth pulse can be mathematically
expressed as

§ t
— = blt, 2

wj=wy+2In2
where the quantity &; is the dimensionless chirp rate, which
can be controlled as described in [23] or by propagating
the pulse through a dispersive media with thickness d; and
group velocity dispersion k7, where ¢/ = k}d; = &7 /41n2
[37,46,47] is the group delay dispersion [37,45-47]. The di-
mensionless chirp rate can be positive (up-chirp), where it
would increase the carrier frequency. It can also be negative
(down-chirp), where it would decrease the carrier frequency
of the attopulses as time goes on. Here, [y = Foz, T, and
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wo are respectively the peak intensity, duration (FWHM)
of the intensity profile, and central carrier frequency of the
corresponding TLP. The functions Fi(t) and F(t — ) in
Eq. (1) are the Gaussian envelope, defined as F;(t) =

\/Tjexp(—Zan%) for j=1,2, and involving the peak
intensity, ’

and the duration of the intensity profile,

T =r01/1+$]2‘ (4)

Since the chirp extends the effective pulse duration as demon-
strated in (4), to maintain equivalent total energy with the
chirp-free case the peak intensity is reduced by the same
amount (1 + éjz)l/ 2 as demonstrated in (3). This allows for
a transparent comparison between the chirped and chirp-free
cases [43], as well as between the case of equal and opposite
chirp rates and the case of arbitrary chirp rates discussed here.
For pedagogical reasons, we use the same pulse parameters
as in [43]: a central carrier frequency wy = 36eV, a peak
intensity Iy = 10'* W/cm?, and a pulse duration (FWHM) in
the intensity profile 7p = 243 as corresponding to three optical
cycles.

To numerically calculate the triply differential probability
(TDP) for the photoionization process, we numerically solve
the following seven-dimensional two-electron TDSE in the
length gauge,

a
igq)(rlerﬂt) :H(t)cb(rl,rz,t), (5)

to obtain the electron wave packet at the end of the laser
pulse duration t = Ty, where H(t) = Hy + d - F(¢) includes
the field-free two-electron Hamiltonian H, and the laser-atom
interaction term d - F(¢) within the electric dipole approxi-
mation, with d = ry 4+ r, being the electric dipole moment
operator and F(¢) being the electric field given by Eq. (1).

To solve the seven-dimensional (including time) two-
electron TDSE, we adopt a close-coupling approach first
introduced in [48,49], which consists of expanding the two-
electron wave function ®(ry, rz, ) onto the basis of bipolar
spherical harmonics A7 (71, 7,):

I/ILAj(r]”byt) A
O(ry.rp. )=y Yy & A (R P2 (6)

rr
M L 172

Such close-coupling expansion reduces the complexity of the
problem from seven dimensions to three dimensions, as re-
flected by the number of variables in the argument of the
expansion coefficient WIL,?Z (r1, rp, t). This is possible because
the bipolar spherical harmonics involve the four dimensions
of the solid angles (7, 7) of the two electrons. To discretize
the radial wave function WILI?Z” (r1, r2, 1), we use a fine-gridding
scheme of finite-element, discrete-variable representation first
introduced in [50]. We used a two-dimensional grid ranging to
a maximum of 120 Bohr radius, which is spanned by 60 finite
elements with an equal size of 2 Bohr radius. Within each

finite element, an eight-point Gauss-Legendre-Lobatto basis
is used. To time propagate the wave function I/flL]i” (r1, 12, 1),
we employ the real-space-product algorithm (a variant of
the split-operator method) [51-54]. To treat the complicated
M-mixing problem [55] introduced by the use of circular
polarization, we adopt the basic principle of the method intro-
duced by Muller [56] and developed further in [10,11,55,57—
59]. At each time step we introduce two frames: the laboratory
frame in which we treat the atomic interaction and the rotating
frame of the instantaneous electric field in which we treat
the laser-matter interaction. The passage from one frame to
another is done by means of Wigner rotation transformation
that deals analytically with the M-mixing problem and thus
speeds up the numerical computation. The rationale behind
this procedure is that the electric field seen by an observer in
the rotating frame is always linearly polarized. This procedure
is very accurate for small time steps, which is guaranteed
throughout this work. In our photoionization calculations, we
include four total angular momentum (L = 0 — 3) of the two
electrons—the azimuthal total angular momentum |M| < L
and all possible combinations of each electron angular mo-
mentum /; =0 —5and , =0 — 5. Att = Ty, i.e., at the end
of the laser pulse, we project the wave function W(ry, r, Ty),
the solution of the TDSE, onto a field-free scattering wave
function as prescribed in [60]:

W(p) = (O (r1, r2)|D(r1, 12, Tp) . (7)
Here, the field-free scattering state @;;i)(rl, r3), for our single
ionization without excitation channel, where the photoelec-
tron in the continuum with momentum p = (p, 6, ¢) and
the residual helium ion remaining in its ls ground state are
constructed using the Jacobi matrix method [52]. For large
chirp rates, the effective pulse duration increases significantly.
Thus it is important that the TDSE be solved for long enough
time 7y given the long-tail nature of the Gaussian envelope.
For the typical pulse parameters used throughout this paper,
converged results for the TDP are obtained.

III. ANALYTICAL AND NUMERICAL RESULTS

For pulse parameters used throughout this work, the
Keldysh parameter y is about 33 and the electron pondero-
motive energy U, of 0.011 eV is very small compared to
wp = 36eV. The implication is that we are in the perturbative
multiphoton regime, where the time-dependent PT is applica-
ble. To understand the TDSE numerical results for the TDP
for the following photoelectron energy range 0 < E < 30eV
presented below in Sec. III B for the case of equal and opposite
chirp rates at T =0, in Sec. IIIC for the case of arbitrary
chirp rates at T = 0, and in Sec. IIID for the case of equal
and opposite chirp rates at nonzero time delays, we employ
the first-order PT framework with the TDP being calculated
analytically as W(p) = |A|?. Here, the transition amplitude A
is given by [61]

o0
A=—i f e (Wi |d - Fliye ™ dr, 8)

oo

where |W( ) is the final state with energy E; =E +E,
satisfying incoming wave boundary conditions [62] and
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comprising the bound state v of the residual ion and the
continuum state of the electron with energy E = p?/2; and
|i) is the initial state with experimental energy E; = —E, =
—2.9037 a.u., which compares well with our calculated en-
ergy of —2.9031 a.u. In terms of the binding energy Ej, =
E, + E; of an He atom, one has E; — E; = E + E},. Note
that the PT transition amplitude (8) describes only single-
photon absorption processes. Indeed, for the rather weak laser
peak intensity used here, single-photon emission processes
are negligible. This means that the analytical evaluation of
the amplitude (8) does exclude the c.c. part of the expression
of the electric field F(¢) given by Eq. (1). In contrast, the
full expression for the electric field F(¢) is used in the TDSE
calculation.

A. Electric field analysis in the time domain
for synchronous pulses

Before we present our analytical and numerical results for
the TDP in the different three cases mentioned above, it is
instructive to first inspect the time dependence of the elec-
tric field components Fi(t) = Fi,(t) + > x(t) and F,(t) =
Fy ,(t) + F>,4(t) in the laser polarization plane for some chirp
configurations at zero time delay and equal carrier-envelope
phases.

For a pair of identically chirped oppositely circularly po-
larized attopulses, it is obvious that the x components of the
electric field add up constructively to produce F(¢), which
exhibits a single unchirped burst of light; while the y compo-
nents of the electric field cancel out, F;(t) = 0, as illustrated
in Fig. 1(a) for the chirp rates & = &, = +1. The implication
is that the resulting electric field of the pair of identically
chirped oppositely circularly polarized attopulses (just like
for two oppositely circularly polarized TLPs) is then linearly
polarized along the major x axis of the polarization ellipse,
meaning that the PMD in the laser polarization plane from this
temporal single-slit scheme should exhibit a dipole pattern
along the x axis. This prediction, based on the analysis of the
electric field, is confirmed by TDSE calculations; see Fig. 1(d)
in [43].

For the case of two oppositely circularly polarized at-
topulses with equal and opposite chirp rates, Eq. (A5) in
[43] shows that the x components of the electric field add
up constructively to produce a single unchirped burst of light
F,(t), while Eq. (A6) in [43] shows that the y components
now overlap to produce two unchirped bursts of light well
separated in time, as illustrated in Fig. 1(b) for the chirp rates
& = —& = +1. The implication is that there is a temporal
single slit along the major axis of the polarization ellipse
and a chirp-induced temporal double slit along its minor
axis. These observations indicate that the shape of the PMD
in the laser polarization plane should strongly differ from
the one (dipole pattern discussed above) produced by TLPs
or identical chirped pulses from one side and from the one
produced by a pair of time-delayed, oppositely circularly po-
larized TLPs on the other side. In the latter case, each of
F.(t) and F,(t) are equivalent to a temporal double slit, as
each exhibits two bursts of light, and Archimedean spirals
emerge in the PMD. Those spirals are coined irreversible

& =418, =41
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FIG. 1. Time dependence for the electric components, F, =
Fi,+F, and F, = F, + F,, of two synchronous, right-left cir-
cularly polarized (RLCP) attopulses for (a) equal chirp rates (§; =
& =1), (b) equal but opposite chirp rates (§; = —& = +1), and
(c) arbitrary chirp rates (&, = 43, & = +1).

spirals because once the direction of a spiral winding is es-
tablished by the pulse helicities it is impossible to reverse it.
For illustration, Fig. 1(e) in [43] and Fig. 2(a) show an ex-
ample of this new class of pattern, coined hereafter reversible
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Ei= +15 5, =-1 I U £ =4352,=+1 -

s
p, (a.u.)
= +15¢, = +3 I

FIG. 2. PMDs in the polarization plane produced by two syn-
chronous (i.e., with zero time delay) right-left circularly polarized
(RLCP) pulses for (a) equal and opposite chirp rates (§; = 1,& =
—1), (b) arbitrary chirp rates & = +3, & = +1, (c) equal and op-
posite chirp rates & = —1, & = +1,and (d) & = +1, & = +3. The
pattern produced in (a) is similar to that in (b) but with a difference in
their global rotation. Exchanging the chirp rates of the two attopulses
results in PMDs which are mirror images to one another.

spirals given their energy-dependent handedness, as explained
later.

In the instructive case where the two oppositely circularly
polarized attopulses are arbitrarily chirped (e.g., & = 43 and
& = +1), despite the difference in both the envelopes and
carrier waves, a single unchirped burst of light (i.e., a single
slit) in the x component F,(¢) can still be seen in Fig. 1(c)
as a result of mixing the two x components of the electric
field. It is also seen that the duration of the electric field is
extended, while its field strength is reduced. However, the y
component of the resulting electric field F(¢) presents two
overlapping irregular bursts of light with significantly reduced
nonzero structures in between them, meaning that the concept
of time slit is not applicable. Given the dramatic differences
in the shape of the electric field component F(¢) for the
equal and opposite chirp case in Fig. 1(b) and the arbitrary
chirp case in Fig. 1(c), whether the shapes of the produced
PMDs in those two cases with the same chirp-rate difference
A§ = (& —&)/2 = +1 can be identical or even similar is
a nontrivial question that needs to be elucidated. Below we
provide a clear answer to that question using perturbation
theory analysis. In Sec. III B, PT predicts that the PMD for
the case of oppositely circularly polarized with arbitrary chirp
rates produces an interferogram similar to the spiral pattern
for the case of oppositely circularly polarized with equal and
opposite chirp rates, but they differ only by a global rotation,
which can be eliminated using the carrier-envelope phase

difference. This prediction turns out to be in concert with the
TDSE results.

B. Reversible electron spiral pattern by oppositely circularly
polarized pulses with equal and opposite chirp
rates at zero time delay

Although this case was the focus of Ref. [43], for pedagogi-
cal reasons we provide here a brief overview of these findings,
as the structure of the argument of the kinematical factor of
the TDP is the main ingredient in grasping the modification
brought by the arbitrary nature of the pulses (see Sec. III C).
For the case of oppositely circularly polarized pulses with
equal and opposite chirps & = —&, = &, the TDP W(p) de-
rived in [43] is written

B 2 [(@+B)  rglwo—€E |
W(p) = g(p, 0)cos { > 62 }

€))

where p = (p, 6, ¢) is the photoelectron momentum, and ® =
@12 + (E + Ep)t is the relative phase involving the Ramsey
(E + Ep)T and the carrier-envelope phase difference ¢, =
¢1 — ¢,. Here, B = arctan (§) is the chirp-induced phase
shift; 7 = +1(—1) for RLCP(LRCP) pulses; and we introduce
the energy parameter € = E 4 Ej,. The function g(p,0) =
g(p)sin®(0) has a dynamical variable g(p) that depends only
on the energy of the photoelectron where E = p?/2:

ot (wo — €)1}
"~ 8In2 21n2

The term Y(p) is the radial matrix element between the
ground state and the final state. The pattern of the PMD that
emerges in the polarization plane (xy plane, where 6 = 7 /2)
is described by the zeros and maxima of the argument of the
cosine factor in the TDP (9),

(@+8)  wwn— €)%
+ 2 161In2 - b

where k is an integer for maxima and half-integer for zeros.
For the chirp-free case where § = 0, we see that § = 0 and
Eq. (11) becomes ¢™*%(E) = fj(kw + ®/2). At zero time
delay T = 0, the term & now becomes & = ¢; ». As described
in [10], the TDP predicts a dipole pattern whose direction is
described by ® = ¢1,. When ¢, = 0, the dipole pattern is
aligned along the major x axis of the polarization ellipse.
Any term with an energy dependence in (11) determines
the shape of the PMD. Looking at the case & # 0 while
7 =0, we see from Eq. (11) that the chirp-induced phase
shift B as well as ® = ¢, only induce a global rotation
of the PMD. The only term in Eq. (11) with an energy
dependence is its last term, o [tg(wo — €)?£], which is in-
duced by the chirp § = & = —&;. This chirp-induced spectral
phase produces a reversible spiral pattern in the PMD with
two arms because one photon is absorbed from each pulse.
The origin of the reversible spiral pattern can be explained
quantitatively using the astrophysical concept of pitch angle
thoroughly discussed in [43] or qualitatively by expanding the
chirp-induced spectral phase, (wy — e)ztozé , into three terms
[} — 2woe + €?]73€. For a fixed & and ), the first term w3 t&
will induce a global rotation of the PMD; because the linear

g(p)

Y(p) sinZGCxp{ } (10)

" E) = f?{kn
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spectral phase —2wpetié and the quadratic spectral phase
€272€ have opposite signs, they will rotate the dipole pattern
to generate spirals in two opposite directions. While the linear
spectral phase dominates in the low-energy region and dictates
the spiral handedness, the quadratic spectral phase dominates
in the high-energy region and is responsible for the change
in the sense of rotation. Between low and high energies, the
linear and quadratic spectral phases are comparable. Such
a reversible pattern is shown in Fig. 2(a) from TDSE cal-
culations for the case § =&, = —§, = +1 at T =0, where
D =¢=0.

C. Reversible electron spiral pattern by arbitrarily chirped,
oppositely circularly polarized pulses at zero time delay

For the case where the two attopulses have arbitrary chirp
values &; and &;, and are different in absolute values, the TDP
W(p) in the laser polarization plane (6 = 7 /2) can be written
as

(®+ AB) B roz(wo —€)’AE . }

_ 2
W(p) = g(p, 0) cos { > 162

12)

At first glance, one sees that the TDPs in Egs. (9) and (12)
have the same structure, with the only difference being that
the chirp-induced phase shift 8 = arctan (§) in (9) is now
replaced by the chirp-induced phase-shift difference A =
[arctan (&;) — arctan (§;)]/2 in (12), while the chirp rate £ in
(9) is now replaced by the chirp-rate difference A& = (§; —
&)/2 in (12). For equal and opposite chirp rates & = §; =
—&),onehas A§ = (§; — &)/2 = & and AB = [arctan (&) —
arctan (&,)]/2 = arctan (£ ), because arctan is an odd function.
One sees that in this scheme, the TDP (12) reduces to Eq. (9),
as it should be. Therefore, the implication is that reversible
spirals are then expected to emerge in the PMD in the po-
larization plane for the case of arbitrarily chirped, oppositely
circularly polarized pulses at zero time delay, as illustrated in
Fig. 2(b), where the chirp rates considered are §; = +3 and
& = +1 at T = 0 and zero carrier-envelope phases. Here, the
chirp-rate difference is Aé = (& — &,)/2 = +1, which is the
same for the equal and opposite chirp rates § = & = =&, =
+1. Inspecting carefully Fig. 2(b) shows that this pattern bears
a close resemblance to the pattern in Fig. 2(a), but they differ
just by a global rotation. It should be noted that TDSE calcu-
lations for the case of arbitrarily chirped, oppositely circularly
polarized pulses with large chirp amounts is challenging be-
cause of the rather long pulse duration. Only when the TDSE
code is propagated long enough in time to account for the
long-tail Gaussian envelope are converged results for the TDP
obtained.

This tiny difference (global rotation) can be fully under-
stood by comparing the reversible spiral equations for the case

(@+AB) 3w — €PA§ }
2 161n2

" E) = f;{kn +

(13)

with those (11) for the case of equal and opposite chirp
rates. Indeed, for the case of equal and opposite chirp
rates, £ = & = —&, = +1, the chirp-induced phase shift is

B = arctan (§) = 45°, while for the case of arbitrarily chirped,
oppositely circularly polarized pulses with & = +3 and
& = +1, the chirp-induced phase-shift difference is AS =
[arctan (&) — arctan (&;)]/2 = 13.3°. The implication is that
a counterclockwise rotation of the PMD in Fig. 2(b) by an
angle of |AB —&| =31.7° would lead to Fig. 2(a). As all
these results were obtained for zero carrier-envelope phases, it
turns out that tuning the carrier-envelope phase difference @,
in the case of arbitrarily chirped, oppositely circularly polar-
ized pulses to cancel the angle |AB — &| = 31.7° appears as a
natural way to control the reversible spirals in Fig. 2(b) in such
a way that they will coincide with the pattern in Fig. 2(a). This
prescription from PT has been implemented by our TDSE
calculation, and this test was satisfactory.

Swapping the chirp rates between the two pulses or the
pulse helicities engenders an intriguing phenomenon. Regard-
ing the sense of rotation of the reversible spirals, Eq. (12) or
(13) demonstrates that it is dictated by the signs of 7) and A£.
For fixed pulse helicities, i.e., ) = +1 (RLCP) as is the case
in Fig. 2(b), because A& > 0 one sees a counterclockwise
spiral at low energy followed by a clockwise spiral at high
energy. Changing the pulse helicities to ) = —1 (LRCP) while
keeping the same A& would lead to a reversible spiral that is a
mirror image of the pattern in Fig. 2(b), not shown. Swapping
the chirp rates while maintaining the same pulse helicities,
one sees that the PMDs for & = +3, & = +1 [see Fig. 2(b)]
and & = +1, & = +3 [see Fig. 2(d)] exhibit a symmetrical
mirroring effect. Because the case of equal and opposite chirp
rates is just a particular case of arbitrary chirp rates, the same
phenomenon is observed for &, = +1, & = —1 [see Fig. 2(a)]
and & = —1, & = +1 [see Fig. 2(¢)].

D. Reversible electron spiral pattern by oppositely circularly
polarized pulses with equal
and opposite chirp rates at nonzero time delay

Since ® = ¢ + (E + Ep)7, having a nonzero time delay
T may be transformative in the sense that the physical picture
for the mirroring effect discussed above in Sec. IIIC can
change. Indeed, when the two oppositely circularly polarized
pulses with arbitrary chirps are synchronous, mirroring effects
occur in the PMD in the laser polarization plane and they are
dictated by both the pulse helicities (i) = £1) and the sign of
chirp-rate difference A&. Here, when the two pulses are de-
layed in time we show that such mirroring effects are now only
controlled by the pulse helicities. In other words, we show
below how flipping the sign of the chirp-rate difference A&
(while keeping 7 fixed) destroys the symmetrical mirroring
effects.

The reversible spiral equations (13) can be expanded to
take the following form:

2.2
wmax,O(E) — ﬁ{k?’[ + (¢1,2 + A,B) _ TOCDOAé}

2 161n2
T 2102w0A$ ‘L’&AE )
(L . 14
+”{(2+ o2 )¢ Tomac o Y

where we have grouped together the energy-independent
terms and the energy-dependent terms. In the right-hand side
of Eq. (14), its second term presents a linear energy-dependent
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FIG. 3. PMDs in the polarization plane produced by a pair of
time-delayed RLCP pulses for (a) equal and opposite chirp rates & =
+1,&6 = —1 atatimedelay t =150 as, (b) & = +1,& =—1 ata
time delay T = 350as, (c) §; = —1, & = +1 atatime delay 7 = 150
as, and (d) & = —1, & = +1 at the critical time delay . = 1.165 fs,
see text.

term and a quadratic energy-dependent term with opposite
signs. Note that only the linear energy-dependent term has
an explicit dependence on the time delay t. Since the linear
spectral phase dominates in the low-energy region while the
quadratic spectral phase dominates in the high-energy region,
delaying the two oppositely circularly polarized pulses in time
can either strengthen or weaken the linear energy-dependent
term depending upon the sign of A§. When A& > 0, the time
delay strengthens the linear term, making the spiral pattern
due to the linear spectral phase dominate even at high energy.
We tested this PT prediction using our TDSE calculations.
The obtained results for & = —&, = +1 at time delays t =
150 as [see Fig. 3(a)] and 7 = 350 as [see Fig. 3(b)] can be
compared with the reference result at 7 = 0 [see Fig. 2(a)].
One sees that the clockwise spiral pattern (known to be due
to the quadratic spectral phase) clearly visible in Fig. 2(a) at
high energy fades out with increasing the time delay, while a
counterclockwise spiral pattern (known to be due to the linear
spectral phase) fades in. Thus, the reversible spiral produced
by two synchronous, oppositely circularly polarized pulses is
now transformed to an irreversible spiral when the two pulses
are significantly delayed in time. For the case of A§ <0,
Eq. (14) shows that the time delay weakens the linear term.
To show this numerically, we present in Fig. 3(c) our TDSE
results for the same pulse parameters as in Fig. 3(a) (e.g., T =
150 as) but for swapped chirp rates (i.e., §; = —& = —1).
Comparing Figs. 3(a) and 3(c) for equal but opposite A& at
the same time delay 7 = 150 as, one sees that they are very
different. While Fig. 3(c) exhibits a clear reversible spiral,
Fig. 3(a) presents almost an irreversible spiral (as some little

trace of the quadratic spectral phase is still visible at high
energy for such small time delay). Although the two patterns
have an opposite sense of rotation, it is clear that they are
not mirror images of one another. Regardless of the sign of
the chirp-rate difference A&, TDSE calculations confirm (not
shown) the PT prediction that swapping the pulse helicities
always results in two (irreversible or reversible) spiral patterns
that are mirror images of each other.

As the linear spectral phase in the TDP (14) decreases
with increasing the time delay  when A& < 0, there exists
a critical time delay,

T, = —TiwyAE/4In 2, (15)

for which the linear spectral phase vanishes. When this hap-
pens the linear spectral phase components originating from
the time delay and chirp balance each other. As the linear
spectral phase is completely eliminated from the TDP (14),
this scheme allows us to isolate a pattern purely stemming
from the quadratic spectral phase € = (E + Ej)*. Such a
pattern is shown in Fig. 3(d) for the illustrative case of
oppositely circularly polarized pulses with central carrier fre-
quency wy = 36¢eV, duration (FWHM) of 7y = 243, as with
equal and opposite chirp rates of £, = —&, = —1, for which
the critical time delay evaluates to 7, = 1.165 fs. For these
laser parameters, one observes a counterclockwise irreversible
spiral pattern that is tightly wound because the spectral phase
€? has a linear term (o< 2E,E) and a quadratic term oc E2, but
this time with the same sign. For the values of the time delay
used in Fig. 3, the shapes of the electric field components in
the polarization plane are such that the notion of slit is not
applicable for Figs. 3(a) and 3(c), while it is applicable for
Figs. 3(b) and 3(d).

For the relatively weak intensity used throughout this work,
the numerical TDSE results (including the total electric field)
confirm qualitatively all the predictions by PT. Recall that our
PT is based on the RWA (excluding the c.c. part of the electric
field) and on the assumption that the ground-state depletion
by the first pulse is negligible in the case of time-delayed laser
pulses. For a quantitative confirmation, a hybrid analytical cal-
culation for helium atom can be done where the radial matrix
element Y(p) [see Eq. (10)] between the ground state and final
state can be extracted numerically from a TDSE calculation by
a single laser pulse that is circularly polarized. This extraction
is only possible within the RWA. Indeed, the second term in
Eq. (14) of Ref. [63] describing a photoemission process can
be dropped under the RWA. Because the squared modulus of
the reduced Eq. (14) in Ref. [63] for circular polarization in
the polarization plane (directly proportional to | Y(p)|?) equals
the triply differential probability obtained from TDSE calcu-
lation by such a single laser pulse, such extraction becomes
trivial. When the numerically extracted Y(p) is then used in
Eq. (9) or Eq. (12) to numerically calculate the corresponding
PMDs, we find that the PMDs either from the complete TDSE
calculation or from this hybrid analytical calculation coincide.

IV. SUMMARY AND CONCLUSIONS

In summary, using both first-order time-dependent pertur-
bation theory and full-dimensional TDSE calculations, we
studied photoionization of an S-state atom by a pair of
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oppositely circularly polarized attopulses arbitrarily chirped
and eventually delayed in time. We showed that two syn-
chronous pulses linearly chirped at different rates impart a
novel spectral phase to the pair of electron wave packets
created simultaneously. For this linear (in intensity) ioniza-
tion process by one-photon absorption, this spectral phase
includes a linear term and quadratic term, which is then
reflected in the photoelectron momentum distribution in the
polarization plane by producing a reversible spiral pattern at
zero time delay. An exquisite control of reversible spirals was
achieved by varying either the time delay or the chirp rates.
We demonstrated how time-delayed attopulses can be used to
tune the chirp-induced linear spectral phase, thus isolating ef-
fects of a purely quadratic spectral phase or manipulating the

symmetrical mirroring phenomena. All these results indicate
that timing information in photoionization such as Ramsey
delay can be masked by this chirp-induced spectral phase.
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