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High-order S-matrix theory of atomic nonsequential double ionization in intense laser fields
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Coulomb corrections to the conventional strong-field approximation (SFA) theory (the lowest-order term of
the S-matrix expansion) for nonsequential double ionization are considered by calculating higher-order terms of
the S-matrix expansion that take into account multiple Coulomb interactions of the first-ionized electron with the
ionic core while the second electron is still in its ground state. For a Ne atom in a linearly polarized laser field,
the distribution of the components of the final electron momenta parallel to the field polarization is presented
based on the S-matrix expansion up to the sixth order, which involves up to four Coulomb interactions between
the parent ion and the first-ionized electron before it collides with the second bound electron. The calculated
electron momentum distribution is significantly modified compared with the outcome of the conventional SFA.
It is consistent with experimental results and a semiclassical simulation that fully takes into account the effect
of the Coulomb potential on the first-tunneled electron. Our analysis shows that multiple Coulomb interactions
of the first-ionized electron with the ionic core significantly modify the distribution of the final momenta by
favoring larger and nearly equal momenta, in line with experimental results and semiclassical simulations.
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I. INTRODUCTION

Among the nonlinear phenomena displayed by atoms
subjected to intense laser fields [1–4], nonsequential dou-
ble ionization (NSDI), as one of the most fundamental and
significant processes that involve electron correlation, has
been intensely studied over the past few decades [4–6]. Af-
ter a long debate about its underlying mechanism [7–10],
the cold target recoil ion momentum spectroscopy technique
[11] provided decisive experimental evidence of the domi-
nance of the rescattering mechanism in atomic NSDI [12–15]
and paved the way towards the acquisition of a wealth of
information about the electron-electron correlation in the
double-ionization process. Experimental measurements of the
full two-electron momentum correlation distributions have
shown that, within a certain range of field intensity, both of
the liberated electrons in atomic NSDI are mainly emitted into
the same hemisphere, which has consolidated the dominant
contribution of the rescattering mechanism [16–20]. Now it
is commonly accepted that rescattering is the main physical
mechanism responsible for NSDI [8].

In this picture, one of the valence electrons is liberated
from its parent ion by tunneling ionization. This electron may
be driven back by the laser field into an inelastic collision
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with its parent ion. If the energy thereby transferred to the
second electron is higher than its ionization potential, the
second electron will be ionized directly. This process is called
recollision-impact ionization. If the transferred energy is not
sufficient to free the second electron, it may be pumped into
an excited state from which it may be liberated by the external
laser field at a later time. This is referred to as recollision
excitation with subsequent ionization (RESI) [17,21]. Later,
fingerlike structures were observed in the electron-electron
correlation distribution and attributed to the postcollision
Coulomb interaction between the two electrons [22–27]. In
addition, interference effects have been revealed in the RESI
channel in 800-nm [28–30] and 2400-nm laser fields [31].
More recently, recollision of the second electron with the ion
is also found to play an important role in the NSDI process
[32].

Traditional perturbation theory with respect to the laser
field fails to describe the nonlinear phenomena of strong-
field physics. Various nonperturbative approaches have been
developed, such as numerical solution of the time-dependent
Schrödinger equation [33], semiclassical models [34–36],
completely classical models [37], and models based on par-
ticular Feynman diagrams and the strong-field approximation
(SFA) [10,21,38–41]. The SFA theory has the advantage of
requiring a relatively small calculational effort and provid-
ing a clear physical picture. Various atomic and molecular
processes in intense laser fields have been well described by
theories based on the SFA, in which the interaction between
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FIG. 1. Feynman diagrams of nonsequential double ionization
for the (a) second-order, (b) third-order, (c) fourth-order, (d) fifth-
order, and (e) sixth-order terms of the S-matrix expansion. In these
diagrams, the dashed line at the initial time stands for the electron-
electron correlation in the initial ground state of the atom, the
notation—× represents the initial interaction with the laser field that
liberates the first electron, the horizontal (blue) line between the
two electron lines denotes the electron-electron interaction, and the
short (red) horizontal lines represent the Coulomb interactions of the
first-liberated electron with the core. Time goes up as indicated. All
electron lines describing liberated electrons correspond to Volkov
states.

the external laser field and the electron is treated nonperturba-
tively [5,42–45]. However, such theories ignore the effect of
the Coulomb potential of the parent ion on the emitted elec-
tron after it has been freed. The low-energy structure (LES)
[46–50] and the zero-energy structure [51] in the photoelec-
tron momentum distribution of above-threshold ionization are
accessible to the SFA [52]. However, the surprising magnitude
of the LES, which for long wavelengths dominates the spec-
trum at very low energies, is caused by the Coulomb potential,
which dramatically enhances the formation of these peculiar
structures [48–50,52–59].

In the quantum description, i.e., the SFA theory of NSDI,
work so far has focused on the lowest-order Feynman dia-
gram, which is presented in Fig. 1(a). It describes the first
electron being lifted by the laser field into the continuum and
propagating in its presence up to a recollision with the second
(up to this time bound) electron, which is liberated in this
process. Thereafter, both electrons continue to propagate in
the field towards the detector. All interactions with the laser
field are incorporated exactly to all orders via the Volkov
solution [5,10,38]. The mutual Coulomb interaction of the
two final electrons can be and has been included [24,27,40].
However, the presence of the ionic core enters this formalism
only via the initial bound state of the second electron. In
reality, both electrons, once in the continuum, will interact
not only with one another but also with the ionic core. This

leads to a multitude of diagrams that describe the electrons
Coulomb interacting with the core. For example, one colli-
sion between both electrons and the ionic core after they are
ionized is taken into account in the third-order term [60].
(In earlier work, the second-ionizing electron-electron colli-
sion was sometimes simulated by a contact interaction, which
was interpreted as an effective interaction that includes the
Coulomb potential of the ion [40].) Another class of diagrams
that we disregard describes the aforementioned process of
rescattering excitation with subsequent ionization where the
recolliding electron promotes the bound electron to an excited
state, which is ionized at a later time (see, e.g., the review in
[5]). For neon, the excited states of the singly charged ion are
comparatively high in energy. Hence, for neon, neglecting the
RESI diagrams may be better justified than, e.g., for argon. In
this paper we evaluate up to four additional Coulomb inter-
actions of the first electron with the core while it is in the
continuum, preceding the crucial second-ionizing electron-
electron interaction. The core is treated as one Coulomb center
including the second electron, which is still bound. We make
no claim that these higher-order diagrams are the most im-
portant high-order diagrams. Rather, their calculation allows
us to assess the characteristic modifications in the electron
momentum correlation distribution that occur if one proceeds
order by order in the S-matrix expansion [cf. Figs. 1(b)–1(e)].
Physically, these diagrams correspond to repeated interactions
of the first-ionized electron with the core. For a short-range
or a contact potential, due to their short range, the interac-
tion has to occur when the electron returns to the core, so
the interactions correspond to recollisions and their signif-
icance quickly diminishes owing to wave-packet spreading.
However, for a long-range Coulomb potential the interaction
between the Coulomb potential and the first electron can
actually occur at any time and at any distance from the ion
during the evolution of the photoelectron, so it may or may not
correspond to a recollision [56]. Therefore, the higher-order
diagrams also include Coulomb focusing, which counteracts
spreading [61,62]. It will then turn out that the higher-order
diagrams significantly modify the electron-electron corre-
lation distribution obtained by the lowest-order correlation
diagram.

We leave aside the question of the convergence of the
corresponding series. In fact, our results strongly suggest that
the Dyson series for the double-ionization amplitude does
not converge. A corresponding problem occurs in the much
simpler case of field-free electron scattering off a Coulomb
potential where it is well understood. In this case, all di-
agrams higher than first order diverge, but the series can
be summed up and all divergencies enter a divergent phase
factor. This drops out of the scattering cross section, which
becomes identical to the first-order result. A similar problem
also occurs in the SFA description of the so-called low-energy
structure in above-threshold ionization [53]: The lowest-order
rescattering diagram yields a good description. According to
our calculations, higher orders appear to preserve the shape
of the lowest-order ionization rate while they increasingly
enhance its magnitude. This suggests that the series fails to
converge [63].

The approach that we pursue in this paper, viz., including
increasingly higher orders of the Coulomb potential in an
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S-matrix expansion, should be seen in contrast to nonperturba-
tive avenues that include the Coulomb potential in the action,
which might be subsumed under the Coulomb quantum-orbit
strong-field approximation (see, e.g., [64]).

This paper is arranged as follows. In Sec. II the high-
order S-matrix theory is presented. Then we apply the theory
to study the electron-electron momentum correlation distri-
bution of NSDI for a Ne atom. The results are presented
and discussed in Sec. III. We summarize and give our
main conclusions in Sec. IV. The Appendix briefly presents
the corresponding S-matrix expansion for above-threshold
ionization.

II. THEORY

We study the nonsequential-double-ionization process
of the Ne atom by applying the Dyson expansion of
the S matrix up to sixth order, which takes into ac-
count the Coulomb interaction between the parent ion and
the first-ionized electron up to four times in between its
liberation and its collision with the second (up to this
time bound) active electron. The corresponding Feynman
diagrams are presented in Fig. 1. Within our approxi-
mation of two active electrons, the pertinent transition
amplitudes are
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Here the angular brackets denote matrix elements of
the interaction operators, which will be evaluated in po-
sition space. The wave function of the initial atomic
ground state with binding energy Ei = −Ip1 − Ip2 < 0
is �i(r1, r2, t ) = exp(−iEit )φi(r1)φi(r2), while ψ+

j (r2, t ) =
exp(−iE jt )φ+

j (r2) is the ground-state wave function of
the residual ion with binding energy Ej = −Ip2 < 0 (Ip1

and Ip2 are the ionization potentials of the first and
the second electron, respectively). The plane-wave Volkov
state is ψ

(V )
k (r, t ) = φk(r) exp{−i

∫ t dτ [k + A(τ )]2/2}, with
φk(r) = exp(ik · r)/v1/2, where v is the normalization vol-
ume. The laser-electron interaction in the velocity gauge,
the binding potential of the first-ionized electron, and
the Coulomb interaction between the two active electrons

are

VL(t ) = p · A(t ) + A2(t )/2,

VC = −Zeff

r1
,

V12 = 1

|r1 − r2| , (5)

respectively, where A(t ) is the vector potential of the laser
field; in the following we restrict ourselves to the linearly po-
larized field A(t ) = A0ε cos ωt , with A0 the amplitude, ε the
unit polarization vector, and ω the frequency of the field. The
effective charge of the Ne+ ion is defined as Zeff = √

2Ip1 . The
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physical significance of the third- to sixth-order terms (1)–(4)
of the S-matrix expansion is illustrated by the corresponding
Feynman diagrams of Fig. 1. At the initial time, the two active
electrons are in the atomic ground state; at the later time t1 one
of the electrons (labeled 1) interacts with the laser field and
is freed, absorbing a large number of photons in the process.
This emitted electron may return to and Coulomb interact with
the atomic core once, twice, three times, or four times until
finally it interacts with the second active electron and kicks

it out so that the electrons emerge in the continuum with the
final momenta p1 and p2.

In our calculation, we employ the Jacobi-Anger formula
to expand the Volkov wave functions ψ

(V )
k (r, t ) in terms of

Bessel functions, which allows us to perform the multiple
time integrations exactly, yielding the δ function for overall
momentum conservation in Eq. (6) and the energy denomina-
tors in Eqs. (9)–(12). The differential rates of nonsequential
double ionization due to absorption of N photons then can be
written as

dW (N )(p1, p2)

dp1dp2
= 2πδ

(
p2

1

2
+ p2

2

2
+ Ip1 + Ip2 + 2Up − Nω
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where
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The quantities T (M )(p) combine the various matrix elements. To third, fourth, fifth, and sixth order they are
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The generalized Bessel function of two arguments is
defined as

Jm(a, b) =
∞∑

n=−∞
Jm−2n(a)Jn(b) (13)

and z = Up/ω, α = A0ε/ω denotes the electron quiver motion
vector in the laser field, and Up = A2

0/4 is the ponderomotive
energy of the electron in the laser field.

For single ionization, the analog of the delta function in
Eq. (6) is δ(p2/2 + Ip1 + Up − Mω), where the integer M =
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m0 + l denotes the number of photons absorbed from the field
with m0 = [(Ip1 + Up)/ω]int the minimum number required to
overcome the ionization potential ([x]int is the smallest integer
greater than or equal to x) and l = 1, 2, 3, . . . the number of
additional photons absorbed.

For double ionization, the analogous photon number
is N = n0 + m = [(Ip1 + Ip2 + 2Up)/ω]int + m. The photon
numbers M in Eqs. (9)–(12) are equal to n + n1, n + n1 + n2,
n + n1 + n2 + n3, and n + n1 + n2 + n3 + n4, respectively,
where n is the number of photons absorbed from the field
when the first electron is liberated into the continuum and n1,
n2, n3, and n4 count the photons absorbed in its subsequent
(first, second, third, and fourth) Coulomb scatterings off the
core. The photon numbers ni can be positive or negative,
corresponding to absorption of photons from the laser field
(ni > 0) or emission into the field (ni < 0). For the later
discussion, we note that the number m of excess photons
determines the kinetic energy left for the final electrons.

In Eqs. (7) and (9)–(12) the integrations over the intermedi-
ate momenta k, k1, k2, k3, and p remain to be carried out. We
recall that the energy denominators in Eqs. (9)–(12) all have
a small positive imaginary part iε with ε > 0, which was in-
troduced to enforce convergence of the temporal integrations
at their upper limits. For the integrations over the absolute
values k, k1, k2, k3, and p we then invoke the so-called pole
approximation [65], which consists in using the generalized
function

lim
ε→0

1

x + iε
= P

1

x
− iπδ(x), (14)

where P denotes the principal part, and keeping only the δ

function. For example, for the third-order contribution we
have

lim
ε→0

∫ ∞

−∞

f (k)d (k2/2)

(k2/2 + Ip1 + Up − nω) + iε
≈ −iπ f (kn), (15)

with kn = √
2(nω − Ip1 − Up). The remaining integrations

over the angular components of the momenta k, k1, k2, k3,
and p then are calculated numerically. All spatial integrations
in Eqs. (8)–(12), which are denoted by the angular brackets,
are performed analytically.

The momentum distributions of the two electrons parallel
to the polarization direction are obtained by integrating the
differential ionization rate (6) over the final-momentum com-
ponents perpendicular to the laser-field polarization

dW

d p‖
1d p‖

2

=
∑

N

∫
dW (N )(p1, p2)

dp1dp2
p⊥

1 p⊥
2 d p⊥

1 d p⊥
2 dϕ1dϕ2,

(16)

where p‖
i and p⊥

i denote the components of pi parallel and
perpendicular to the laser polarization axis and ϕ1 and ϕ2 are
the azimuthal angles, which vary between 0 and 2π .

III. CALCULATIONS AND DISCUSSION

We first show the results obtained from the S-matrix ex-
pansion (16) up to sixth order, which incorporate up to four
interactions between the first-ionized electron and the ionic
Coulomb potential. Initially, the Ne atom is in the 2pz ground

FIG. 2. Correlated electron momentum distribution as a function
of the momentum components p‖

1 and p‖
2 parallel to the polariza-

tion direction obtained using the (a) second-order, (b) third-order,
(c) fourth-order, (d) fifth-order, and (e) sixth-order terms of the S-
matrix expansion and (f) derived from the semiclassical model.

state and it is ionized by a linearly polarized laser field with
intensity 1.05 × 1015 W/cm2 and wavelength 800 nm. The
corresponding ionization potentials of the ground states of the
Ne atom and its ion are Ip1 = 0.7928 a.u. and Ip2 = 1.506
a.u., respectively. Here we assume that the initial state has
the magnetic quantum number m = 0, since this is known to
generally dominate the ionization process [66].

Figure 2 presents the correlated electron momentum distri-
butions calculated by the second- to sixth-order terms of the
S-matrix expansion as well as the result of the semiclassical
model [34–36] for comparison. We display the results of the
second- to sixth-order terms separately in order to see how
the distributions change from one order to the next, i.e., we
do not add them up as one usually does whenever several
Feynman diagrams contribute to the same process. Figure 2(a)
shows that the second-order momentum distribution populates
all quadrants and is concentrated rather close to the origin.
In contrast, Figs. 2(b)–2(e) demonstrate that with increasing
order the distributions are more and more located in the first
and third quadrants only and their maxima shift away from
the origin. It is worth mentioning that the sixth-order distribu-
tion, which exhibits the largest parallel momenta, qualitatively
agrees with the experimental results presented in Ref. [20].
Figure 2(f) shows that the momentum distribution derived
from the semiclassical model also mostly occupies the first
and third quadrants with rather large values of the paral-
lel momenta. This is consistent with the sixth-order term
but completely different from the result of the second-order
term. It is important to consider the magnitudes of the NSDI
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FIG. 3. Each panel repeats the false-color plot of the correlated
electron momentum distribution of the sixth-order S-matrix expan-
sion as displayed in Fig. 2(e). The various circles in (a)–(d) represent
the maximal longitudinal momenta of the electrons released after the
(a) first, (b) second, (c) third, and (d) fourth returns of the electron
to the core according to the classical simple-man model. Each circle
corresponds to a specific ionization time ωt0, which determines the
return time ωt1 according to the classical simple-man model. For
some of the circles, these times are presented in the form (ωt0, ωt1).
The entire region that is classically accessible to electrons after a
specified number of returns is given by the envelope of the circles
with all possible ionization times. See the text for further explanation.

rates of the various orders: The sixth-order contribution is
by far dominant, dwarfing the lower-order contributions by
orders of magnitude. We notice in passing that the effect
on the momentum-momentum correlation of including more
and more Coulomb interactions gives some credence to the
introduction of an effective electron-electron interaction as
suggested earlier (see, e.g., Refs. [5,67]). In Fig. 3 we present
the boundaries of the classically allowed regimes for various
trajectories of the tunneled electron that correspond to differ-
ent return times as calculated from the classical simple-man
model [8] for NSDI occurring at the first, second, third, and
fourth returns in Figs. 3(a)–3(d), respectively. For some of
the curves the pertinent ionization times ωt0 and return times
ωt1 are indicated. For each return time, the energy left after
the second electron has been kicked out is shared as kinetic
energy by the two electrons. The condition that both elec-
trons have zero momentum transverse to the laser polarization
yields the various circles displayed in Fig. 3. Momenta inside
the circles then correspond to the longitudinal momenta of
electrons with nonzero transverse momenta. For example, the
various yellow circles in Fig. 3(a) enclose the momenta that
are classically accessible to electrons that have been liberated
at specific times ωt0 and dislodged the second electron upon
the first revisit at the time ωt1. All plots are symmetrical
with respect to the off-diagonal, which reflects the fact that
the laser field changes its sign upon ωt → ωt + π so that
the electron momenta change signs as well. The complete
classical boundary for double ionization at the first revisit is
given by the envelope of all these curves. We notice that this
envelope encloses a simply connected region, in agreement

FIG. 4. Correlated electron momentum distributions for NSDI
occurring at (b) the first return, (c) the second return, and (d) the
third return as well as (a) their sum, calculated from the semiclassical
model. (a) is identical to Fig. 2(f).

with the S-matrix result exhibited in Fig. 2(a). The circles in
Figs. 3(b)–3(d) depict the same situation for the second, third,
and fourth returns. Evidently, the resulting regions are no
longer connected, in agreement with the distributions shown
in Figs. 2(b)–2(d). The radii of the circles corresponding to the
later returns are smaller because the maximal return energies
of the later returns are smaller (the maximal energies that the
later returns can acquire converge to 8Up in the simple-man
model).

For comparison, in Fig. 4 we display the correlated elec-
tron momentum distribution for the first, second, and third
return trajectories and their sum calculated via the semiclas-
sical model [34,35]. Inspection of both the quantum results
(Fig. 2) and the semiclassical results (Fig. 4) shows that the
large momenta in the correlation distributions in the first and
third quadrants mainly come from the contributions of the
later returns, i.e., from the multiple-return collision NSDI pro-
cesses [68]. This is a clear indication that these multiple-return
processes are enhanced, i.e., the Coulomb focusing effect of
the ionized-electron wave packet due to the ion is taken into
account by the high-order S-matrix theory.

As an interlude, to better understand the magnitudes and
shapes of the higher-order contributions of the S-matrix ex-
pansion, we will analyze the above-threshold ionization (ATI)
spectrum of the first-ionized electron as it would be if it were
not interacting with the second electron. The corresponding
S-matrix formalism of ATI is reproduced in the Appendix.

Figure 5 exhibits the ATI photoelectron energy spectrum
(PES) for emission in the field direction without interaction
with the core (black dotted line), the spectrum if one in-
teraction with the core is included (blue dashed line), and
the spectra of electrons that are required to interact twice
(green dash–double-dotted line), three times (orange dash-
dotted line), and four times (red solid line). The lowest-order
term reproduces the well-known direct-electron spectrum
with its cutoff around 2Up. All higher-order terms exhibit the
rescattering plateau. Remarkably, all higher-order terms have
exactly the same cutoff energy of about 10Up and more or
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FIG. 5. The ATI photoelectron energy Ep spectrum of the first-
ionized electron in the field direction without interaction between the
electron and the core (black dotted line), after the electron interacts
with the core once (blue dashed line), twice (green dash–double-
dotted line), three times (orange dash-dotted line), and four times
(red solid line). The ponderomotive energy of the laser field with
an intensity of 1.05 × 1015 W/cm2 and a wavelength of 800 nm
is Up = 2.29 a.u. The inset displays the low-energy spectrum with
expanded energy scale. Here SI denotes single ionization.

less the same shape, but the yield dramatically increases from
one order to the next. Within the plateau, for four interactions
the yield is about four orders of magnitude higher than for
just one interaction (standard high-order ATI). For the direct
electrons, this enhancement, which comes with an increasing
number of electron-core interactions, is not that high but is
still substantial. For very low electron energies below 0.5 a.u.
(0.22Up), the enhancement increases again. This is possibly
related to higher-order contributions to the LES. However, for
the relatively short wavelength of 800 nm, the LES is not very
pronounced.

We notice that there are three distinct effects that contribute
to the overall increase of the yield with an increasing num-
ber of interactions. The Coulomb forward-scattering cross
section is divergent; hence, any additional such interaction
substantially increases the yield without affecting much the
shape of the spectrum. Spreading of the electronic wave
packet tends to reduce the contribution of higher orders. In
contrast, Coulomb refocusing may occur, which enhances the
yield.

It is worth emphasizing that the higher-order terms (two
or more interactions with the core potential) still observe a
cutoff around 10Up, while the cutoffs of the longer orbits, i.e.,
those that rescatter only once but upon a revisit later than the
first, are around 8Up [42]. Doing a saddle-point analysis, we
find indications that this is explained by interaction events in
the forward direction that occur immediately after the release.
If so, the final rescattering that kicks out the bound electron
takes place at about the same time as in the lowest order. Only
rescatterings at this time are able to accelerate electrons up to
10Up. A separate investigation of this is left for future work.

The SFA is not normally utilized to obtain absolute num-
bers for the total ionization rates, only the shape of the
electron momentum spectrum. Hence, one should consider the

FIG. 6. Correlated electron momentum distributions of the sixth-
order term of the S-matrix expansion for different ATI energies Ep of
the first-ionized electron interaction, where (a) Ep = 0.02 a.u., (b)
Ep = 0.25 a.u., (c) Ep = 0.53 a.u., (d) Ep = 1.1 a.u., (e) Ep = 2.24
a.u., and (f) Ep = 4.52 a.u. Note the very different color codes in the
various panels.

ratios of electrons emitted with different energies. Comparing
the emission rates at energies of 2 and 10 a.u., the ratio is
about 107 for the first-order interaction (blue dashed line in
Fig. 5), while it is 103 with four additional interactions (red
solid line). The latter value is in much better agreement with
experimental data. The additional strong enhancement of the
very-low-energy part of the spectrum deserves special analy-
sis, which is beyond the scope of the present paper.

Next we continue our analysis of the electron momentum
correlation distributions by calculating the sixth-order term
for various different energies Ep = p2/2 of the first-ionized
electron preceding its interaction with the second electron.
The solid angle of the momentum p is integrated over in
Eq. (7) and the results are presented in Fig. 6. When this
energy is very low (as low as 0.02 a.u.) according to Fig. 6(a)
the momentum distribution is almost entirely located in the
first and third quadrants with its maxima at relatively high
momenta close to the diagonal. As the energy Ep increases,
the momentum distribution shifts towards lower parallel mo-
menta and starts spilling into the second and fourth quadrants.
At Ep = 1.1 a.u., as shown in Fig. 6(d), the distribution has
essentially moved to the second and fourth quadrants, with
the momenta very close to the origin. However, as the energy
Ep continues to increase, the distribution expands again to
occupy a much wider region with its maxima remaining in
the second and fourth quadrants. It is crucial to note that
the lowest energy (Ep = 0.02 a.u.) makes by far the greatest
contribution. With increasing Ep, the contribution to the mo-
mentum distribution quickly decreases (cf. the color code of

023105-7



JIA, GUO, HAO, BECKER, AND CHEN PHYSICAL REVIEW A 109, 023105 (2024)

FIG. 7. NSDI rate according to the sixth-order term as a function
of m, which is the photon number in excess of the minimum needed
to be absorbed for double ionization, for different emitted energies Ep

of the first-ionized electron without the interaction with the second
electron: (a) Ep = 0.02 a.u., (b) Ep = 0.25 a.u., (c) Ep = 0.53 a.u.,
(d) Ep = 1.1 a.u., (e) Ep = 2.24 a.u., and (f) Ep = 4.52 a.u. Note the
different scales of the NSDI rates in the various panels.

the various panels). It is for this reason that the momentum
distribution that incorporates all the energies Ep [cf. Fig. 2(e)]
is very similar to the one that only contains the lowest energy
[cf. Fig. 6(a)]. We conclude that the change of the momentum
correlation when going to higher and higher orders in the
S-matrix can be attributed to the significant enhancement of
the very-low-energy part of the ATI photoelectron spectrum
(cf. the inset of Fig. 5) with increasing order, which is due to
the interaction between the ionic Coulomb potential and the
first-ionized electron.

Figure 6 shows that the NSDI yield is highest and the
momenta of the final electrons are largest for the case when
the corresponding ATI electron has very low energy Ep at the
detector. For an explanation, in Fig. 7 we plot the NSDI rate
calculated for the sixth-order term as a function of the ab-
sorbed photon number m = 1, 2, . . . in excess of the minimal
number required for double ionization, which was introduced
below Eq. (13). The panels are for various energies Ep as
given in the caption, ranging from very low (Ep = 0.02 a.u.) to
moderately high (Ep = 4.52 a.u. = 1.96Up). In all cases, the
NSDI rate first increases and then decreases as a function of m.
However, the position of its maximum decreases from m = 23
to m = 3 when Ep increases from 0.02 a.u. to 1.1 a.u., while
it again increases from m = 16 to m = 57 when Ep increases
from 2.24 a.u. to 4.52 a.u. This allows us to understand the
behavior of the momentum distributions in Fig. 6, which with
increasing energy Ep first contract towards the origin and then
expand again. If the NSDI rate in Fig. 7 peaks at a large photon
number m, the total number of absorbed photons for double

ionization is relatively large, and the energy left over after both
electrons have been liberated is still relatively large, resulting
in higher parallel momenta of the two electrons. Conversely,
if the NSDI rate peaks at low photon numbers m, little energy
is left for the two freed electrons. In particular, as shown in
Fig. 7(d), for Ep = 1.1 a.u., the position of the maximum of
the NSDI rate drops to m = 3, so the momenta are concen-
trated very close to the origin. With Ep again increasing, the
NSDI rate peaks at larger m and the electrons’ final momenta
increase again.

It must be emphasized that the velocity gauge is adopted
in the present theory and the transition matrix is calculated in
the frequency domain. Usually, in the context of length gauge,
the time domain is applicable. If, in addition, the saddle-point
evaluation is utilized, a transparent physical picture emerges,
which allows one to follow the electron dynamics along
(quantum) trajectories. In that description, the first electron
just preceding the recollision has sufficient kinetic energy to
overcome the ionization potential of the second electron and
to dislodge it [5,6]. In contrast, in the frequency domain of
the velocity-gauge theory, we have no control of the tempo-
ral evolution of the double-ionization process. However, we
can state that the dominant contribution to double ionization
comes from those first-ionized electrons that, had they not
interacted with the second electron, would have reached the
continuum with very low energy.

The comparison of Figs. 2(e) and 6 suggests the best agree-
ment for the very lowest energy of the first-ionized electron
[Fig. 6(a)], which also quantitatively makes the dominant con-
tribution. In the first-electron ATI spectrum of Fig. 5, for all
energies and especially for very low energy the contribution of
four Coulomb interactions (represented by the red solid line)
is by far dominant, in agreement with Fig. 2. When the ATI
energy of the first-ionized electron is low, the extra energy of
the absorbed photons after overcoming the ionization poten-
tial tends to be shared equally by the two electrons, leading to
maxima close to the diagonal in the correlation distributions
shown in Figs. 6(a)–6(c). In contrast, when the ATI energy is
high, the extra energy tends to be acquired unequally, resulting
in maxima located far away from the diagonal, even located
in the second and fourth quadrants as shown in Figs. 6(e)
and 6(f). These are features typical of a Coulomb collision.
They have also been observed in the time-domain treatment
of NSDI [40,68].

Finally, in Fig. 8 we analyze how the various terms in-
cluded in the transition amplitude (7) affect the dependence
of the NSDI rate on the number m of excess photons. Ac-
cording to Eqs. (7)–(12), the NSDI rate is determined by the
Bessel function JN−M (α · (p1 + p2 − p),− z

2 ) and the three
factors Vp2p1, jp, Vj,i, and T (M )(p). Except for the factor Vj,i,
the other two factors and the Bessel function all depend on
the photon number m. In the following, we will analyze this
dependence.

First, to study the effect of m on the Bessel function, we
set the values of the other two factors to one. In Fig. 8(a) we
plot the NSDI rate considering only the effect of the Bessel
function as a function of m for different Ep. As m increases,
the NSDI rate first increases and then becomes flat for all
values of Ep. The smaller the Ep, the slower the increase of the
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FIG. 8. Calculated NSDI rate as a function of m, for different
emitted energies Ep of the first-ionized electron, considering the
individual effects of three contributing factors (see the text for further
details): (a) the Bessel function JN−M (α · (p1 + p2 − p), − z

2 ), (b) the
electron-electron collision factor Vp2p1, jp, and (c) the factor of the
fourth-return-collision single ionization T (M )

6 (p).

NSDI with m. The value of m where the curve becomes flat de-
creases from 24 to 13 to 6 to 4 for Ep = 0.02, 0.25, 0.53, and
1.1 a.u., respectively, which is consistent with Figs. 7(a)–7(d).
When Ep continues to increase, this value of m remains almost
unchanged. Second, in Fig. 8(b) we consider the effect of only
the electron-electron collision factor Vp2p1, jp. We find that the
NSDI rate first increases and then decreases as m increases.
The peak position of the curve moves towards larger m with
increasing Ep. Third, in Fig. 8(c) we consider the effect of only
the factor T (M )

6 (p), which takes into account four interactions
between the first-ionized electron and the core. Initially, with
increasing m the NSDI rate increases rapidly and then more
and more slowly. Considering these three factors, the posi-
tions of the maxima of the NSDI rates in Fig. 7 are mainly
determined by the first two factors. When Ep is relatively
small, the contribution of the Bessel function increases more
slowly than that of the electron-electron collision factor at
small m as shown in Figs. 8(a) and 8(b). Therefore, for small
Ep the position of the maximum of the NSDI rate is mainly
determined by the Bessel function. In contrast, when Ep is

relatively large, the electron-electron collision factor increases
more slowly than the Bessel function at small m. As a result,
for large Ep the position of the maximum of the NSDI rate is
mainly determined by the electron-electron collision factor.
In addition, one can find that the distribution in Fig. 6 is
also mainly determined by the first two factors (the Bessel
function and the electron-electron collision factor). Since the
maximum of the Bessel function increases with increasing
Ep [see Fig. 8(a)] while the electron-electron collision factor
decreases and this behavior is more or less the same regardless
of the value of Ep, the contributions of different Ep to the
NSDI rate are of the same order if only these two factors
are considered. Therefore, the dominant role of very low Ep

mainly comes from the significant enhancement of very low
electron energy in the ATI spectrum shown in Fig. 5. In the
time domain, this enhancement can be attributed to multiple
collisions between the electron and the ionic Coulomb poten-
tial, which can be understood as the Coulomb focusing effect,
which enhances the multiple-return trajectories.

The question remains of what will happen if one goes to
higher and higher order in the S-matrix expansion. In princi-
ple, the infinite series needs to be summed up to fully take
into account the effect of the ionic Coulomb potential on the
dynamics of the first-ionized electron. Convergence problems
then arise both for each individual term and for the sum since,
for the long-range Coulomb potential, the higher-order terms
are larger than the lower-order terms (see the PESs in Figs. 2
and 5). This is an open question, which remains beyond the
scope of the present paper. However, one may argue that in
practice only the highest-order term (the sixth-order term in
this paper) is needed to calculate the correlation distribution,
that is, terms of still higher orders will not noticeably change
the shape of the distribution. For higher-order terms, e.g., the
seventh-order term, the very-low-energy region of the PES
of the first electron will be even larger than that for the
sixth-order term; however, this will affect only the absolute
magnitude of the NSDI rate but not the distribution.

IV. CONCLUSION

We have extended the analysis of nonsequential double
ionization based on a Feynman-diagram expansion of the
S matrix by including higher-order diagrams that describe
up to four Coulomb interactions between the first-ionized
electron and the core, the second electron still being bound.
While this is only a subset of all of the contributing Feyn-
man diagrams, it reveals a remarkable tendency: With an
increasing number of Coulomb interactions, the distribution
of the momentum components parallel to the laser field dras-
tically changes. The lowest order, i.e., the customary diagram,
which does not incorporate any such interaction, yields a
distribution populating all four quadrants and mostly con-
centrated in the second and fourth quadrants rather close to
the origin. Including more and more Coulomb interactions
has the effect of shifting the distribution into the first and
third quadrants, to larger momenta, and closer to the diago-
nal. This tendency is most pronounced for the highest-order
term that we considered, which allowed for four Coulomb
interactions between the first-ionized electron and the core.
The resulting momentum-momentum correlation diagram is
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similar to the results of the semiclassical rescattering model
and to experimental observations. Performing a correspond-
ing S-matrix expansion for above-threshold ionization, we
observed a strong enhancement of the total ionization yield
and especially of the yield of electrons with very low en-
ergy. We showed that these two effects in ATI and in NSDI
are related: The dominance of first-ionized electrons having
very low energy before their final interaction with the second
electron is responsible for the shift towards relatively high
parallel final momenta of the liberated electrons in NSDI. We
have shown that higher orders of the S-matrix expansion do
lead to pronounced effects that very noticeably change the

agreement or disagreement between theory and experiment.
This is an important insight for intense-laser-atom physics in
general.
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APPENDIX: THE S-MATRIX EXPANSION FOR SINGLE IONIZATION

In the single-active-electron approximation, the S-matrix expansion for ionization into a continuum state with momentum
p is

(S − 1) f i = T (1) + T (2) + T (3) + · · ·

= − i
∫ ∞

−∞
dt1

〈
ψ (V )

p (r, t1)
∣∣VL(t1)

∣∣φi(r, t1)
〉 + (−i)2

×
∫ ∞

−∞
dt2

∫ t2

−∞
dt1

∫
d3p′〈ψ (V )

p (r, t2)
∣∣VC

∣∣ψ (V )
p′ (r, t2)

〉〈
ψ

(V )
p′ (r, t1)

∣∣VL(t1)
∣∣φi(r, t1)

〉 + (−i)3

×
∫ ∞

−∞
dt3

∫ t3

−∞
dt2

∫ t2

−∞
dt1

∫
d3p′

∫
d3p′′〈ψ (V )

p (r, t3)
∣∣VC

∣∣ψ (V )
p′ (r, t3)

〉〈
ψ

(V )
p′ (r, t2)

∣∣VC

∣∣ψ (V )
p′′ (r, t2)

〉

× 〈ψ (V )
p′′ (r, t1)|VL(t1)|φi(r, t1)〉 + · · · , (A1)

where VL(t ) and VC are the laser-atom interaction and the electron–parent-ion Coulomb interaction (with Zeff = √
2Ip1 ),

respectively, as defined in the main text. The atomic ground state is |φi(r, t )〉 and |ψ (V )
p (r, t )〉 is the Volkov state with the

final electron momentum p. The first term on the right-hand side of the second equality in (A1) of this expansion describes the
direct electrons, which do not interact with the binding potential after they have been liberated. The second term allows for just
one such rescattering interaction, and each subsequent higher-order term contains one additional interaction VC , with propagation
in the presence of the laser field (Volkov propagation) in between.

For the evaluation, we analytically perform the time integral for each term and obtain, as an example, the third term as

T (3) =
∞∑

n,n′,n′′

∫
p′d�′

∫
p′′d�′′ Jn((p − p′) · α)

(p − p′)2 + κ2

Jn′ ((p′ − p′′) · α)
(p′ − p′′)2 + κ2

Jn′′

(
p′′ · α,− z

2

)
(n′′ω − Up)φi(p′′), (A2)

where

p′′2

2
= n′′ω − Up − Ip,

p′2

2
= (n′ + n′′)ω − Up − Ip,

p2

2
= (n + n′ + n′′)ω − Up − Ip. (A3)

To obtain Eqs. (A2) and (A3), we adopted the pole approximation, as described in the main text in connection with Eq. (14).
Moreover, to ensure convergence, a screening parameter κ was introduced in Eq. (A2).
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J. Phys. B 47, 204022 (2014).

[53] L. Guo, S. S. Han, X. Liu, Y. Cheng, Z. Z. Xu, J. Fan, J. Chen,
S. G. Chen, W. Becker, C. I. Blaga, A. D. DiChiara, E. Sistrunk,
P. Agostini, and L. F. DiMauro, Phys. Rev. Lett. 110, 013001
(2013).

023105-11

https://doi.org/10.1080/09500340.2010.543958
https://doi.org/10.1103/PhysRevLett.69.2642
https://doi.org/10.1103/PhysRevLett.71.1994
https://doi.org/10.1088/0953-4075/28/23/016
https://doi.org/10.1088/0953-4075/29/6/005
https://doi.org/10.1088/0953-4075/30/13/006
https://doi.org/10.1103/PhysRevLett.84.443
https://doi.org/10.1103/PhysRevLett.84.447
https://doi.org/10.1088/0953-4075/33/4/104
https://doi.org/10.1088/0953-4075/37/8/L03
https://doi.org/10.1038/35015033
https://doi.org/10.1103/PhysRevLett.87.043003
https://doi.org/10.1088/0953-4075/34/14/104
https://doi.org/10.1103/PhysRevA.65.035401
https://doi.org/10.1088/0953-4075/36/6/101
https://doi.org/10.1103/PhysRevLett.85.3781
https://doi.org/10.1103/PhysRevLett.99.263002
https://doi.org/10.1103/PhysRevLett.99.263003
https://doi.org/10.1103/PhysRevA.69.021402
https://doi.org/10.1103/PhysRevLett.101.113001
https://doi.org/10.1103/PhysRevLett.101.233003
https://doi.org/10.1103/PhysRevLett.104.253201
https://doi.org/10.1103/PhysRevLett.89.023001
https://doi.org/10.1103/PhysRevLett.112.073002
https://doi.org/10.1103/PhysRevLett.116.143001
https://doi.org/10.1103/PhysRevA.96.032511
https://doi.org/10.1038/s42005-022-00809-2
https://doi.org/10.1088/0953-4075/34/3/103
https://doi.org/10.1103/PhysRevA.63.011404
https://doi.org/10.1103/PhysRevA.63.043416
https://doi.org/10.1103/PhysRevA.80.023408
https://doi.org/10.1103/PhysRevLett.89.113001
https://doi.org/10.1103/PhysRevLett.84.3546
https://doi.org/10.1103/PhysRevLett.89.193003
https://doi.org/10.1103/PhysRevA.69.043405
https://doi.org/10.1103/PhysRevA.78.043407
https://doi.org/10.1016/S1049-250X(02)80006-4
https://doi.org/10.1103/PhysRevA.22.1786
https://doi.org/10.1088/0022-3700/6/4/011
https://doi.org/10.1103/PhysRevLett.91.113002
https://doi.org/10.1038/nphys1228
https://doi.org/10.1103/PhysRevA.66.053415
https://doi.org/10.1103/PhysRevLett.103.093001
https://doi.org/10.1103/PhysRevLett.109.043001
https://doi.org/10.1038/srep02675
https://doi.org/10.1088/0953-4075/47/20/204022
https://doi.org/10.1103/PhysRevLett.110.013001


JIA, GUO, HAO, BECKER, AND CHEN PHYSICAL REVIEW A 109, 023105 (2024)

[54] B. Wolter, C. Lemell, M. Baudisch, M. G. Pullen, X.-M. Tong,
M. Hemmer, A. Senftleben, C. D. Schröter, J. Ullrich, R.
Moshammer, J. Biegert, and J. Burgdörfer, Phys. Rev. A 90,
063424 (2014).

[55] W. Quan, X. L. Hao, Y. J. Chen, S. G. Yu, S. P. Xu,
Y. L. Wang, R. P. Sun, X. Y. Lai, C. Y. Wu, Q. H. Gong,
X. T. He, X. J. Liu, and J. Chen, Sci. Rep. 6, 27108
(2016).

[56] L. Guo, J. Chen, J. Liu, and Y. Q. Gu, Phys. Rev. A 77, 033413
(2008).

[57] C. Liu and K. Z. Hatsagortsyan, Phys. Rev. Lett. 105, 113003
(2010).

[58] T. M. Yan, S. V. Popruzhenko, M. J. J. Vrakking,
and D. Bauer, Phys. Rev. Lett. 105, 253002
(2010).

[59] A. Kästner, U. Saalmann, and J. M. Rost, Phys. Rev. Lett. 108,
033201 (2012).

[60] X. Y. Jia, X. L. Hao, D. H. Fan, W. D. Li, S. L. Hu, and J. Chen,
J. Phys. B 52, 065601 (2019).

[61] T. Brabec, M. Y. Ivanov, and P. B. Corkum, Phys. Rev. A 54,
R2551(R) (1996).

[62] S. A. Kelvich, W. Becker, and S. P. Goreslavski, Phys. Rev. A
93, 033411 (2016); 96, 023427 (2017).

[63] L. Guo, X. Y. Jia, W. Becker, and J. Chen (unpublished).
[64] C. Figueira de Morisson Faria and A. S. Maxwell, Rep. Prog.

Phys. 83, 034401 (2020).
[65] V. I. Usachenko, V. A. Pazdzersky, and J. K. McIver, Phys. Rev.

A 69, 013406 (2004).
[66] C. Figueira de Morisson Faria and M. Lewenstein, J. Phys. B

38, 3251 (2005).
[67] S. P. Goreslavskii, S. V. Popruzhenko, R. Kopold, and W.

Becker, Phys. Rev. A 64, 053402 (2001).
[68] X. Y. Jia, X. L. Hao, D. H. Fan, W. D. Li, and J. Chen, Phys.

Rev. A 88, 033402 (2013).

023105-12

https://doi.org/10.1103/PhysRevA.90.063424
https://doi.org/10.1038/srep27108
https://doi.org/10.1103/PhysRevA.77.033413
https://doi.org/10.1103/PhysRevLett.105.113003
https://doi.org/10.1103/PhysRevLett.105.253002
https://doi.org/10.1103/PhysRevLett.108.033201
https://doi.org/10.1088/1361-6455/aafbd6
https://doi.org/10.1103/PhysRevA.54.R2551
https://doi.org/10.1103/PhysRevA.93.033411
https://doi.org/10.1103/PhysRevA.96.023427
https://doi.org/10.1088/1361-6633/ab5c91
https://doi.org/10.1103/PhysRevA.69.013406
https://doi.org/10.1088/0953-4075/38/17/014
https://doi.org/10.1103/PhysRevA.64.053402
https://doi.org/10.1103/PhysRevA.88.033402

