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Modeling laser pulses as δ kicks: Reevaluating the impulsive limit in molecular rotational dynamics
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The impulsive limit (the “sudden approximation”) has been widely employed to describe the interaction
between molecules and short, far-off-resonant laser pulses. This approximation assumes that the timescale of the
laser-molecule interaction is significantly shorter than the internal rotational period of the molecule, resulting
in the rotational motion being instantaneously “frozen” during the interaction. This simplified description of
the laser-molecule interaction is incorporated in various theoretical models predicting rotational dynamics of
molecules driven by short laser pulses. In this theoretical work, we develop an effective theory for ultrashort laser
pulses by examining the full time-evolution operator and solving the time-dependent Schrödinger equation at the
operator level. Our findings reveal a critical angular momentum, lcrit , at which the impulsive limit breaks down.
In other words, the validity of the sudden approximation depends not only on the pulse duration but also on
its intensity, since the latter determines how many angular momentum states are populated. We explore both
ultrashort multicycle (Gaussian) pulses and the somewhat less studied half-cycle pulses, which produce distinct
effective potentials. We discuss the limitations of the impulsive limit and propose a method that rescales the
effective matrix elements, enabling an improved and more accurate description of laser-molecule interactions.
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I. INTRODUCTION

The control and manipulation of molecules with laser
pulses is of paramount importance in diverse fields such as
spectroscopy, chemistry, materials science, quantum optics,
and even biology [1]. A comprehensive understanding of the
postpulse rotational dynamics of molecules is vital for the
development of new technologies, including ultrafast spec-
troscopy and laser-induced chemistry [2–4]. Additionally, the
rotational degrees of freedom of a molecule have the potential
to serve as a new platform for qubits, the fundamental building
blocks of quantum computing and quantum memory [5,6].

Since the Born-Oppenheimer approximation (separation of
the electronic, vibrational, and rotational timescales) works
well for many of the small molecules, at low energies they
can be reliably described as quantized rigid rotors [7]. For
off-resonant ultrashort laser pulses (usually with infrared fre-
quencies far detuned from any transitions), the rotational
motion is generally considered to be slow compared to the
laser modes, leading to the “frozen” rotational motion as-
sumption during the laser-molecule interaction [8–15]. This
justifies the impulsive limit, which adapts a semiclassical
approach by neglecting the accumulation of quantum phases
during the pulse duration.

For quantum rotors, however, the energy splittings grow
linearly with the angular momentum l , which causes the cor-
responding change of the relevant timescales. Therefore, the
applicability of the sudden approximation does not solely rely
on the duration of the laser pulse, but also on its intensity
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which determines how many l states are populated during the
laser excitation. For example, for a molecule with a rotational
period τrot (l ), for the impulsive limit to be valid, only states
with l satisfying τrot (l ) � τL should be occupied, where τL

represents the pulse duration of the laser. Additionally, the
specific shape of the laser pulse is an important factor to con-
sider. It is not immediately evident which values of τrot (l ) are
large enough or how different laser shapes affect this relation-
ship. Despite the widespread adoption of the impulsive limit
as a theoretical framework to describe molecular rotational
response to a laser pulse, a comprehensive analysis of the
specific states for which this approximation is valid remains
unexplored.

In this work, we aim to develop an effective theory for
ultrashort laser pulses by analyzing the full time evolution of
linear rotors during and after an off-resonant, linearly polar-
ized laser pulse illumination. A lot of work has been done
during the last decades employing the impulsive limit for very
short pulses, providing analytic expressions in the τL → 0
limit with applications to molecular alignment and orienta-
tion [8–10,16–18], controlling molecular vibrational states
[19,20], and studying the dynamics of atoms [21], semicon-
ductor nanostructures [22], and low-dimensional electronic
systems driven by pulses [23]. Our approach goes beyond
these efforts by illustrating how deviations occur from the
sudden approximation, providing some understanding of the
specific conditions that cause these deviations. Our approach
can be extended to more complex molecules with higher-order
polarizability terms and other laser polarization schemes.
While the sudden limit for multicycle pulses is well estab-
lished [24–26], we also investigate the effects of half-cycle
pulses, which can generate unipolar fields [27–30]. Using
a theoretical method accounting for the full time-evolution
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operator, we demonstrate that the validity of the sudden limit
can be understood in terms of a critical angular momen-
tum threshold, lcrit . We propose a method involving rescaling
of matrix elements, resulting in an effective theory that ac-
counts for deviations from the standard impulsive limit when
encountering extended pulse durations. Our findings hold
significant implications for experimentalists working with ul-
trashort lasers and theorists who employ the sudden limit
within their models.

II. METHOD

Ultrashort laser pulses

Here we focus on time dependence of the full time-
evolution operator instead of time-evolving a single initial
state with respect to a given laser envelope, as commonly
used to describe the dynamics of rotational wave packets.. The
advantage is that we not only learn about the time evolution of
a particular initial state but also learn about the time evolution
of all possible superpositions. The rigid rotor Hamiltonian can
be written as H0 = BL̂2 with the squared angular momen-
tum operator L̂2. The potential energy of a polar rotor in an
electromagnetic field is given by V (t ) = −μ · E (t ), with μ

being the (total) dipole moment and E (t ) being the laser field
amplitude. Strong fields can give rise to an induced dipole
moment of μi = (μ0)i + 1

2

∑
j αi j E j (t ) + O[E2(t )], with μ0

being the permanent dipole moment of the molecule and αi j

being the polarizability tensor. The interaction of a linear
molecule with an ultrashort, off-resonant linearly polarized
laser pulse is given by [11,31]

Ĥ (t ) = Ĥ0 − μ0E (t ) cos(θ̂ ) − 1
4E

2(t )�α cos2(θ̂ ) (1)

with the angle between field polarization and molecular axis
θ ∈ [0, π ], the electric field in the Z direction E (t ), and the
difference between parallel and perpendicular polarizability
�α.

In the far-field limit1 the electric field of the laser pulse has
to integrate to zero [32–34]:∫ ∞

−∞
E (t )dt = 0. (2)

For a laser pulse with many cycles one often assumes that only
the part with E (t )2 is relevant, since the linear term averages
out. In that case, one can assume a purely positive Gaussian
envelope2 for the laser field amplitude with kick strength P2,
peak position t0, and width σt . In the sudden approximation,
the time-evolution propagator (for t � t0) takes the simple
form

Ûsudd,Gaussian = e−iĤ0(t−t0 )/h̄e+iP2 cos2 (θ̂ )e−iĤ0t0/h̄. (3)

Note that the kick strength is dimensionless and can be calcu-
lated as [12]

P2 = −�α

4h̄

∫ ∞

−∞
E2(t )dt . (4)

1In the broader context, and not strictly in the far-field limit,
this condition may not always hold true, as demonstrated, e.g., by
[32,35].

2Typically, for fast optical oscillations the slow envelope approxi-
mation is used.
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FIG. 1. Parametrization of a half-cycle pulse as given by Eq. (5)
in units of the pulse position tp. E1 determines the pulse maximum,
E2 determines the minimum, and the ratio ξ = E2/E1 determines the
decay time (see the text). The laser pulse duration τL includes the
negative tail up to some degree depending on the field strength. In
the Gaussian approximation, the pulse width is approximately given
by τL ≈ tp.

Although it is possible to replace pulses with kicks, for few-
and half-cycle pulses one has to take into account the full
spatial dependence of the laser field. Here, we analyze the
half-cycle pulse as an exemplary and experimentally impor-
tant case, but this analysis can be extended straightforwardly
to few-cycle pulses. We consider the following parametriza-
tion from Ref. [34]:

E (t ) =
⎧⎨
⎩

0 (t � 0),
E1 cos2[ωL(t − tp)/2] sin[ωL(t − tp)] (0 � t < tp),
E2(1 − e−(t−tp)/τ1 )e−(t−tp)/τ2 (t � tp),

(5)
with electric field amplitudes E1, E2 > 0, the laser frequency
ωL, the pulse duration of the first part of the laser pulse tp =
π/ωL (in the following referred to as positive pulse duration),
and the switch-on and switch-off times τ1 and τ2. The ratio

ξ ≡ E2/E1 (6)

determines the width of the first peak relatively to the negative
tail. The pulse defined by Eq. (5) satisfies the condition (2) and
is shown in Fig. 1 for various values of ξ (note the logarithmic
time axis). The condition that the electric field is smooth at
t = tp further leads to τ1 = E2

ωLE1
= ξ/ωL and Eq. (2) leads to

τ2 = (2ω2
Lτ1)−1 +

√
(2ωLτ1)−2 + (ωL )−2

= (2ωLξ )−1 +
√

(2ξ )−2 + (ωL )−2
(7)

(see Ref. [34]). The decay time is determined by τ2. The
sudden limit for this potential follows as

Ûsudd,half−cycle = e−iĤ0(t−t0 )/h̄e+iP1 cos (θ̂ )e−iĤ0t0/h̄ (8)

with the estimated peak position t0 and the kick strength P1.
Observe that t0 does not have to match with tp, as the pulse’s
peak (i.e., the pulse position) occurs for t0 < tp. Furthermore,
the duration tp might not align with the laser duration τL based
on the value of ξ , since it would disregard the negative tail of
the pulse. Still P1 is frequently approximated in the literature
as [11]

P1 ≈ μ0

h̄

∫ tp

−∞
E (t )dt, (9)
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i.e., by the integral over the positive part of the field ampli-
tude. This is a good approximation when the half-cycle pulse
looks similar to a Gaussian pulse, which we demonstrate be-
low. Approximately, the integral over the positive peak scales
as P1 ∝ E1tp (the negative tail compensates for exactly this
value). Molecular rotation sets the timescale of the Hamilto-
nian, thereby justifying the representation of time in units of
the rotational revival time τB = π h̄/B, denoted as t̃ = t/τB.
In an effort to render the Hamiltonian dimensionless, we can
conveniently incorporate the h̄−1 prefactor of the time evo-
lution into the coupling constants, resulting in the following
expression:3

H̃ (t̃ ) = π L̂2 − E (t̃ )/Eμ cos(θ̂ ) − E2(t̃ )/E2
�α cos2(θ̂ ). (10)

This includes the constants

Eμ = B

πμ
, E�α =

√
4B

π�α
, (11)

which depend on the particular molecule under study (see
Sec. IV for an illustrative example of a time evolution for the
molecule OCS). Moving forward, we omit the tilde on t and
H , keeping in mind that all expressions are now unitless.

In order to study the validity of the sudden approximation,
we numerically integrate the differential equation of the time-
evolution operator Ûfull (t ) as

i∂tÛfull (t ) = Ĥ (t )Ûfull (t ) (12)

for a reasonable cutoff l < lmax and various parameters.4

As mentioned in the Introduction, each angular momentum
eigenstate |l, m〉 oscillates with the frequency

ωrot (l ) = π l (l + 1)/τB, (13)

corresponding to the rotational periods

τrot (l ) = τB/[l (l + 1)], (14)

which provides a natural cutoff scale; the approximation can
only succeed for states with 〈l|ψ〉 ≈ 0 for l with τL > τrot (l ).
The eigenstates l with τL > τrot (l ) oscillate with a frequency
equal or higher than the pulse duration and a separation of
timescales is not possible. The matrix elements for the poten-
tials are

〈l ′m′| cos(θ )|lm〉 = −δmm′Cl ′m
lm10Cl0

l ′010, (15)

〈l ′m′| cos2(θ )|lm〉 = +δmm′
(

2
3Cl ′m

lm20Cl0
l ′020 + 1

3δll ′
)
, (16)

with the Clebsch-Gordan coefficients CLM
lml ′m′ [36]. Henceforth,

our analysis will concentrate exclusively on linearly polarized
laser fields that drive molecules at low temperatures for which

3Note that we do not employ the common units of H/B, since we
are interested in expressing time in units of τB, which leads to an
additional factor of π in front of L̂2.

4For each calculation we increase the cutoff scale until the results
we are interested in are converged. This typically depends on the
timescale (since high l correspond to high frequency) and the field
strength (which determines how many l states are occupied).

different m sectors are independent5 and we can assume m =
0. Following the definitions for the sudden limit in Eqs. (3)
and (8), the effective potential of the full time evolution can
be calculated as

V̂eff (t ) = −i ln
[
e+iĤ0(t−t0 )Ûfull (t )e+iĤ0t0

]
, (17)

where one has to use the correct branch cut of the logarithm.6

For times t � t0 it converges to a constant, time-independent
potential V̂eff ≡ V̂eff (t = ∞). This is the potential an instan-
taneous laser pulse at t0 exerts upon the molecule, after the
full time evolution. We want to know if the effective matrix
elements resemble the ones given in Eqs. (15) and (16). For
perfect agreement the off-diagonal matrix elements

v
(s)
l = 〈l ± s|V̂eff |l〉, with s ∈ {1, 2}, (18)

should resemble Ps〈l ± s| coss(θ̂ )|l〉, where Ps depends on the
field E (t ). In that case, we can find the strength by Ps =
v

(s)
l /〈l ± s| coss(θ̂ )|l〉, which should be the same for all l .

However, in a realistic case the matrix elements deviate from
that obtained in the sudden limit. This implies that the kick
strength coefficients

p(s)
l ≡ v

(s)
l /〈l ± s| coss(θ̂ )|l〉 (19)

depend on l . In many cases, we are only interested in the
convergence up to some experimentally relevant lav. We define
the average of a matrix element Al as Ā ≡ 1

lav+1

∑lav
l=0 Al and

estimate the strength Ps,eff and its error by

Ps,eff ≡ p(s), δPs,eff ≡
√

(p(s) )2 − p(s)
2
. (20)

Clearly, if the sudden approximation was exact we would find
δPs,eff = 0. For the case, where the sudden approximation is
applicable, this value should be sufficiently small. However,
for small kick strengths, this error becomes small as well;
therefore, it is necessary to consider the relative error

rs ≡ δPs,eff/Ps,eff . (21)

Only the size of rs poses a sufficient criterion of whether the
sudden limit approximation is valid or not. Until now we have
assumed that we are looking at the impulsive limit in the
form of Eqs. (3) and (8). However, there is a more generic
possibility of

Ûsudd,generic = e−iĤ0(t−t0 )e+iV̂eff e−iĤ0t0 , (22)

5It is important to note that when m = 0, molecular rotations occur
within the plane of the electric field. This characteristic simplifies the
rationale for comparing the field’s duration to the rotational period,
given the changing relative angle as the molecule rotates. Conversely,
for situations where |m| ≈ l and l is significantly large, the molecular
orientation tends to be nearly orthogonal to the electric field. In such
cases, the angle between the molecule’s axis and the field’s polar-
ization remains relatively unchanged throughout its rotational phase.
Thus, in such extreme scenarios, there’s potential for deviations from
the findings presented in our analysis.

6For values of the effective kick strength smaller than P ≈ π the
logarithm is straightforward to calculate. For larger values one has
to resort an algorithm that guarantees a smooth transition of the
operator eigenvalues in order to choose the correct branch cut.
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with V̂eff as defined in Eq. (17). In that case, since V̂eff is de-
rived from the full Schrödinger equation, Ûsudd,generic = Ûfull.
However, in many cases one is interested in situations where
V̂eff assumes a simpler form or when we can suitably approxi-
mate the effective potential. In particular, as we will see later,
the numerically estimated effective potentials will often have
the same off-diagonal structure as the generating potentials
V̂ (t ). Therefore, it is possible to use rescaled matrix elements
v

(s)
l that originate from finite time pulses or pulses that are

not Gaussian, such as half-cycle pulses. A rescaled potential
will have the form v

(s)
l → v

(s)
l f (s)

l with some function f (s)
l that

depends on the laser shape. For Gaussian pulses we can find
f (2)
l straightforwardly by

f (2)
l = p(2)

l /P2, (23)

with the error factor

δl = 1 − f (2)
l (24)

that gives a good indication of how much rescaling is
necessary. For half-cycle pulses such a simple expression is
not possible, since one has to infer additionally the effective
strength P1. We introduce the usual interaction picture of a
Hermitian operator Â by

ÂI (t ) = e+iĤ0t Âe−iĤ0t (25)

and the time-evolution operator (with t0 = 0) with UI (t ) =
e+iĤ0tÛ (t ). The Schrödinger equation then reads

i∂tÛI (t ) = V̂I (t )ÛI (t ). (26)

In the following we resort to numerical integration of Eq. (26)
and use Eq. (17) to calculate the effective potential directly.
The scaling functions exhibit a continuous behavior over a
wide regime and offer a more streamlined approach compared
to managing the entire potential. Admittedly, while obtaining
these functions requires solving the Schrödinger equation,
one can envisage scenarios where exploring a comprehensive
parameter set is of interest. In such situations, interpolating
coefficients of the scaling function across a grid might be more
efficient than interpolating the entire potential. Thus, while
this method does not entirely replace the simplicity of the
conventional sudden approximation, it provides an alternative
strategy to navigate the intricacies associated with finite-width
pulses.

III. RESULTS

In this section, we scrutinize the application of the sudden
approximation to multicycle pulses. Following this, we turn
our attention to the analysis of half-cycle pulses. Notwith-
standing the disparities in laser frequencies between these
pulse types—optical frequencies for multicycle pulses and
terahertz frequencies for half-cycle pulses—similar impacts
are discerned in their interaction with rotors.

A. Gaussian pulses

We seek to analyze the impact of pulses with a defined
width that significantly exceeds the duration of a single optical

cycle. By leveraging the slow-envelope approximation, we by-
pass the complexities of each cycle, focusing primarily on the
Gaussian envelope. Consequently, our representation of multi-
cycle pulses is based on the Gaussian functions, E2(t )/E2

�α =
e−(t−t0 )2/2σ 2

t /(σt

√
2π ) with the squared field strength E2(t ),

μ0 = 0, and P2 = 1, which we denote as Gaussian pulses
in what follows. Hence, the pulse width of the laser can be
directly inferred from τL ≈ σt , depending on the definition of
τL.

Figure 2 provides an illustration of the results calculated
for a range of σt . As one would intuitively expect, we observe
that as the ratio σt/τB becomes increasingly small the approx-
imation aligns more closely with the sudden limit. However,
with an increase in the value of σt , the effective potential
begins to display noticeable deviations from the sudden limit.
This divergence is prominently displayed in the off-diagonal
matrix elements.

A detailed look at these matrix elements reveals a sig-
nificant decrease for higher values of l . This contrasts with
the matrix elements of the pure sudden pulse, which remains
constant. One of the primary features of the perfect δ kick is
its ability to transfer angular momentum even for states with
high l values. However, this feature is absent in the case of
pulses of finite width. Here, the transfer of angular momentum
may cease altogether for high l values. This can occur when
the rotational periods τrot (l ) are comparable or smaller than
the laser pulse duration τL. We assume that such parity leads
to destructive interference, inhibiting the laser’s capacity to
transfer energy to the molecule coherently.

The phenomenon is more clearly depicted in Fig. 3, where
the scaling factor, fl , and its error, δl ≡ 1 − fl , are showcased
for different values of σt . When the values of fl or δl are equal
to 1 or 0, respectively, it indicates an agreement with a δ kick.
However, if δl diverges from 0, it signals a deviation from a δ

kick. As per our findings, the sudden limit holds true until a
certain critical value, lcrit ∝ σ−1

t . Once this point is surpassed,
the sudden limit no longer applies, leading to decay in matrix
elements and rapid growth in deviations. Henceforth, the time
evolution of a wave packet that is driven by a Gaussian-shaped
pulse can be captured by the sudden approximation when the
wave packet has only occupations for l < lcrit (σt ). In that case,
the sudden approximation is valid and it is not necessary to
integrate the Schrödinger equation fully. Another possibility
is to rescale the effective potential to

〈l ′m′|V̂rescaled|lm〉 = δmm′
(

f (2)
l

2
3Cl ′m

lm20C
l0
l ′020 + 1

3δll ′
)

(27)

with the rescaling function fl . This way we can capture the
deviations that arise due to the nonzero pulse width. However,
this rescaling is not possible in all cases, as we demonstrate
in Sec. IV. These findings are expected to be useful in under-
standing the behavior of half-cycle pulses, which we will be
exploring in our subsequent analysis.

B. Half-cycle pulses

In this section, we shift our focus to half-cycle pulses. For
simplicity we focus only on the dominant term, the permanent
dipole term with finite μ0 > 0. For many linear molecules
this is a good approximation since the specific constants (11)
satisfy Eμ  E�α . As previously mentioned, in the case of
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FIG. 2. Results for a Gaussian pulse with the cos2(θ̂ ) term and μ0 = 0. The full time evolution was integrated numerically and V̂eff was
calculated using Eq. (17). (a) The field strength squared after the peak. (b) The diagonal matrix element. (c) The second off-diagonal matrix
element. Other matrix elements are close to zero. We observe that the diagonal matrix elements (b) coincide perfectly with the sudden limit
(red dashed line), but the second off-diagonal matrix elements (c) show large deviations. For increasing σt , the deviations set in for lower l . It
becomes clear that only for l < lcrit with some lcrit (P, σt ) is the sudden limit with Veff = P cos2(θ̂ ) a valid approximation.

half-cycle pulses, there is a positive peak followed by a po-
tentially long negative tail. While it is possible to fine-tune the
sudden pulse position t0, we choose for simplicity t0 ≡ tp from
now on and note that fine-tuning this parameter only leads
to minor improvements (which could be important in specific
situations which are not considered here). The 〈l| cos(θ̂ )|l ′〉
matrix element is only nonzero for l = l ′ ± 1. In many cases,
this is also true for V̂eff . Specifically, in the limit where the
ratio ξ → 0 from Eq. (6), which we refer to as the Gaussian
limit, the behavior converges to the Gaussian pulse discussed
earlier, since the depth of the negative tail is minimal and it
requires an infinite amount of time to satisfy Eq. (2). In Fig. 4,
we illustrate the shape of the potential for very small values of
ξ . As expected, the effective potential matrix elements diverge
from the cos(θ ) potential for increasing tp, exhibiting similar
behavior to that of Gaussian pulses (cf. Fig. 3). For half-cycle
pulses, the positive pulse duration tp plays a role analogous to
the width σt for Gaussian pulses.

In Fig. 5 we find that the critical positive pulse width scales
as tp,crit/τB ∝ l−1, which is similar to the critical pulse width
for Gaussian pulses in Fig. 3. The primary difference arises
from the fact that tp = π/ωL (only for half-cycle pulses) with
the laser frequency ωL, corresponding to exactly half a cycle,
while the variable σt of the Gaussian pulses corresponds to
the width of one standard deviation, or approximately 68% of
the nominal pulse area. We note that in the Gaussian limit, we
do not observe a dependency of the relative error on the kick
strength P1,eff . However, when leaving the Gaussian limit, i.e.,

when ξ is not small, it plays an important role in how the
potential deviates from the impulsive limit.

Now we look at the opposite limit ξ = 1, which we de-
note the oscillating limit, since the negative tail cannot be
integrated out, like we did effectively for the Gaussian limit.
Also in that limit we find that it is possible to approximate
the full time evolution with the impulsive limit (see Fig. 6).
The main difference is that, for a given tp, the sudden ap-
proximation breaks down for smaller l , which implies that
one has to choose smaller widths tp/τB than in the Gaussian
limit to achieve the same accuracy. Further, it is important to
note that, unlike the Gaussian case, the diagonal elements are
not vanishing completely. While we confirm the relationship
P1,eff ∝ E1/Eμ, the dependency on tp is more complicated
than in the ξ → 0 case and we find ∂P1,eff/∂ (E1/Eμ) ∝ t2

p ,
displaying a strong deviation from the generally accepted
result (9).

Finally, we turn our focus to the case involving arbitrary ξ .
Our compiled results are presented in Fig. 7. This consolidates
our previous analyses for the two limiting scenarios: ξ → 0
and ξ = 1. Additionally, it provides an understanding of how
the Gaussian and oscillating limits respectively cease to hold
for midrange values of ξ , where the error δl grows large al-
ready for small l . Evidently, in the scenario of ξ → 1, a small
tp/τB ratio is necessary to maintain the sudden approximation,
as has been demonstrated in Fig. 6. Contrarily, we discover
that in the opposing extreme where ξ ≈ 0, a larger tp proves
beneficial, at least for the relative error.
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FIG. 3. (a) The scaling factor fl , Eq. (23), for different pulse widths σt as indicated by the color. (b) The deviation δl , Eq. (24), for a
Gaussian pulse with P2 = 1. In the region with fl ≈ 1 or low error δl (black), the sudden limit is a good approximation, i.e., for l  lcrit .
Approximately above the dashed white line (i.e., the nonblack region) with σt ∝ l−1, there are large deviations from a δ cos2(θ ) potential (see
Fig. 2 for examples). (c) The relative error r2, see Eq. (20). This figure demonstrates that the goodness of the approximation is independent of
P2, i.e., the integral of the pulse: it is only sensitive to the width σt .
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peak width and hence also the strength P1. (a) The field strength E (t )/Eμ for E1/Eμ = 30 and E2/Eμ = 0.03. (b) The first off-diagonal matrix
element of the effective potential defined in Eq. (17). Note that we divide by 〈0|Veff |1〉 to bring the potentials on top of each other since each
potential corresponds to a different P1. Similar to the multicycle pulses of Fig. 2, we observe that for small tp the matrix elements coincide
perfectly with the sudden limit (red dashed line).

IV. WAVE-PACKET TIME EVOLUTION OF OCS

We executed a series of numerical simulations, aiming to
examine the dynamics of an OCS molecule’s wave packet un-
der illumination of different half-cycle pulses. In Figs. 8–11,
we present the results using τB ≈ 80 ps, �α ≈ 4.67 Å3, and
μ ≈ 0.66 D [37]. By using rescaled units (10), we obtain the
specific field constants Eμ ≈ 6 kV/cm and E�α ≈ 1 MV/cm.
Since Eμ  E�α , we neglect the influence of the �α term in
what follows. In a study by Fleischer et al. [38], they reported
the use of half-cycle pulses with an average field strength of
approximately 22 kV/cm up to 1 MV/cm when applied to
OCS molecules, which is the regime we are examining here.
Note that, as can be inferred from Fig. 5, the relative field
strength E/E�α should be on the order of 100–1000 in order
to see a visible effect on the molecule.

The time-dependent wave-packet evolution of a molecule
(with m = 0) is controlled by

∂tCl (t ) = −i
∑
l ′=0

〈l ′|V̂I (t )|l〉Cl ′ (t ), (28)

with the potential in the interaction picture defined in Eq. (25),
and the solution for the wave function

〈l|ψ (t )〉 = Cl (t )e−iπ l (l+1)t (29)

in units of rotational time τB.
In Fig. 8, the molecule is exposed to a half-cycle pulse in

the Gaussian regime, with ξ = 10−3, whose profile is shown

in Fig. 8(a). The pulse has a width tp significantly shorter
than the molecule’s rotational period. The wave packet in the
initial condition is in a pure l = 4 angular momentum state,
i.e., 〈l|ψ〉 = δl,4. During the pulse illumination, the pulse
performs akin to a Gaussian pulse, with both lower and higher
angular momentum states being occupied. Notably, the angu-
lar momentum states stay well below the critical value, which
can be read off from Fig. 5(a) with tp/τB ≈ 1.25 × 10−3.
Postillumination, a decrease in the occupation probability for
state l = 4 is evident, possibly due to destructive interference.
We use the sudden approximation, defined by Eq. (20), to
estimate the effective kick strength of an instantaneous δ

pulse. This approximation mirrors the final state of the wave
packet with high precision, demonstrating a fidelity of 97%,
and it accurately predicts the dip in the l = 4 state. The sudden
approximation’s agreement with the full time evolution is
further confirmed by the effective matrix elements (17) [see
Fig. 8(d)]. The small relative error (21) of r1 ≈ 2% under-
scores the appropriateness of the sudden approximation in this
context.

Figures 9–11 were created similarly to Fig. 8, albeit with
varied pulse parameters and widths. In Fig. 9, the pulse
is set in the intermediate regime, ξ = 0.1. The sudden ap-
proximation proves challenging to apply in this scenario, as
evident in the evolution of the representative wave packet.
The matrix elements of the effective potential begin to di-
verge for high l , failing to plateau like in the case of the
sudden approximation. Consequently, finding the correct kick
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FIG. 5. Outcomes for half-cycle pulses in the Gaussian limit. (a) The deviation error, denoted as δl = |1 − p(2)
l /p(2)

l=0|, for a half-cycle pulse
where ξ = 10−3 (corresponding to the Gaussian limit) and lmax = 250. Similar to the Gaussian pulse (refer to Fig. 3), a power-law dependence
on the critical pulse width is observed (indicated by the dashed white line, estimated visually). (b) The effective kick strength P1,eff , evaluated
up to lav = 50, as a function of field strength E1/Eμ for three distinct tp. Panel (c) confirms the anticipated linear relationship P1,eff ∝ tpE1, with
d2P1,eff
dE1dtp

≈ 0.287.
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FIG. 6. Results for half-cycle pulses for the oscillating limit with ξ = E2/E1 = 1 with the same parameters as in Fig. 5, i.e., δl = |1 −
p(2)

l /p(2)
l=0|, with lmax = 500. Again, a power-law dependence on the critical pulse width is observed (indicated by the dashed white line,

estimated visually). However, unlike for Gaussian pulses the breakdown of the sudden limit occurs for smaller lcrit . (b) The effective kick
strength P1,eff , evaluated up to lav = 50, as a function of field strength E1/Eμ for three distinct tp. In panel (c) we demonstrate that the slopes of
panel (b) are related to tp by ∂P1,eff/∂ (E1/Eμ) ∝ t2

p as long as tp is not large enough (note that deviations for tp ∼ 10−2τB). This result originates
from the non-Gaussian pulse shape, which does not allow for the simple estimation of P1, Eq. (9).
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FIG. 7. The behavior for an arbitrary value of ξ with E1/Eμ = 103 proves more intricate than the scenarios we have previously examined.
In panels (a) and (b), the relationship between angular momentum l and ξ for two positive pulse widths tp that incorporate a large cutoff at
lmax = 500. As ξ approaches either extreme of 1 or 0 for small tp, we recover the behavior δl → 0 from previous figures. However, within these
extremes, the error scaling is heavily influenced by the positive pulse width tp. This makes sense as the specific timescale exerts a significant
impact on how the rotational modes interact with the field. In panel (c) we can deduce the dependency of the relative error r1, as defined in
Eq. (21), on both tp and ξ (where we averaged up to a value of lav = 20). We observe that when ξ approaches 1, the condition of tp → 0
becomes critical. Interestingly, an increase in tp values not only allows but also appears to encourage higher ξ values when transitioning from
the ξ ≈ 0 limit. We have visually approximated this relationship as ξcrit ∝ (tp/τB )3/2, although the actual dependence can be more complex.
Nevertheless, it is noteworthy that increasing the ratio tp/τB permits the use of a greater ξ value for fixed E1.

FIG. 8. Numerical simulation of the wave-packet time evolution for an OCS molecule. The parameters characterizing the molecule [37]
are τB ≈ 80 ps, �α ≈ 4.67 Å3, and μ ≈ 0.66 Debye. Field constants specific to OCS, Eq. (11), are used. (a) The field profile of the half-cycle
laser pulse in the Gaussian regime, E1 = 6000 and ξ = 10−3, resulting in a peak intensity Emax ≈ 23 MV/cm. The inset show the long-time
behavior of the pulse. (b) The absolute value of the wave-packet components for a wave packet initialized with l = 4. (c) The converged wave
packet long after the pulse. (d) The effective matrix elements from the full time evolution and the sudden approximation for P1,eff ≈ 2.28,
as determined by Eq. (20). The relative error for this potential, calculated using Eq. (21), is a modest r1 ≈ 2%, indicating that the sudden
approximation is effective in this context.
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FIG. 9. Same as in Fig. 8, but in the intermediate regime with ξ = 0.1. Panel (b) shows that the negative tail now lowers the occupations
at high l values and panel (c) demonstrates the deviation from the sudden approximation. (d) The effective matrix elements for P1,eff ≈ 1.07,
calculated by Eq. (20) for matrix elements up to lav = 10. The substantial relative error of r1 ≈ 43% indicates the inadequacy of the sudden
approximation in this case.
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FIG. 10. Same as in Fig. 8, but with a significantly extended pulse duration of tp = 1 ps. (d) The effective matrix elements for P1,eff ≈ 1.2
as calculated by Eq. (20) for matrix elements up to lav = 10. A high relative error of 41% underscores the poor agreement with the sudden
approximation. This discrepancy is attributed to oscillations in the effective potential induced by the pulse width, which is comparable to the
rotational periods τrot (l ) of some nonzero angular momentum states.

strength that could reproduce the full time evolution results
is problematic. Therefore, we advise against using the sud-
den approximation in such a scenario due to the significant
deviations.

In Fig. 10, we adjust the pulse width to a longer duration
(tp = 1 ps), while staying within the same intermediate regime
(ξ = 0.1). This modification leads to noticeable oscillations
[see Fig. 10(d)] in the matrix elements of the effective poten-
tial, resulting from the compatibility of the pulse width with
the rotational periods of certain angular momentum states.
Evidently, in this regime, the laser’s timescale overlaps with
the molecule’s rotational oscillations, causing interference.
This interference hinders the application of the sudden ap-
proximation, corroborated by a poor agreement between the
wave functions of the sudden approximation and the full time
evolution (as low as 20%). An intriguing observation is the
absence of a depopulation in high angular momentum states,
likely attributable to the longer duration of the negative peak.

In the final scenario, as illustrated in Fig. 11, we look
into the oscillating limit by setting ξ = 1. We observe that
the pulse’s negative slope almost negates the positive peak,
leading to a markedly reduced effective kick strength. Nev-
ertheless, the agreement with the sudden approximation in
this regime is remarkably high, presenting a fidelity of 98%,
reinforcing our previous analysis of Fig. 6.

V. CONCLUSIONS

In summary, we have assessed the validity of the im-
pulsive limit by examining the full time-evolution operator
using a method that solves the time-dependent Schrödinger
equation at the operator level. Our findings demonstrate that
both Gaussian pulses and half-cycle pulses can be accurately
described by the sudden limit, provided that the angular

momentum is below the critical threshold lcrit , the pulse width
σt or tp is significantly smaller than the rotational period τB,
and for half-cycle pulse the pulse is in either the Gaussian
limit (ξ → 0) or the oscillating limit (ξ = 1).

This can be used to obtain experimental estimates to reli-
ably realize δ kicks for the cases where the laser parameters
fall within the sudden limit regime and the molecule’s angular
momentum is not excessively large. Under these constraints,
it becomes impossible to differentiate between a δ pulse and
a finite-width pulse when examining the matrix elements in
the long-time limit. However, outside this regime, we observe
substantial deviations that can be attributed to the time evolu-
tion within the pulse width.

Our approach, based on the effective potential (17) is sim-
ilar to approaches based on the Magnus expansion [39] and
to the technique presented in Ref. [23], which focuses on the
expansion of the time-evolution operator in terms of τL and
deriving related expressions (see, e.g., Eq. (16) of Ref. [23]).
However, our method provides insights for rotational states
and the off-diagonal matrix elements of specific molecule-
laser interactions. By analyzing the deviation from the sudden
approximation, we explicitly show how for increasing pulse
widths and laser strengths the behavior deviates from the
first-order Magnus expansion.

This research serves a dual purpose: elucidating the valid-
ity boundaries of the impulsive limit and pinpointing specific
circumstances under which deviations from the approxima-
tion manifest. Further studies may explore a broader range
of pulse shapes, such as, e.g., few-cycle pulses. Moreover,
the investigation could extend to quantum numbers other than
angular momentum l , more intricate polarization schemes,
or more complex molecules. Our findings could be applica-
ble to other applications involving terahertz pulses, such as
their interaction with electrons. The enhanced control over
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FIG. 11. Same as in Fig. 8, but under oscillating conditions, ξ = 1. Panel (b) highlights how the sharp negative slope of the pulse
counteracts the positive peak, leading to an almost complete negation of previously occupied angular momentum states. Despite this behavior,
the agreement with the sudden approximation is very high, as seen in panel (c) with the long-time result of the wave packet. (d) The effective
matrix elements for P1,eff ≈ 0.2, as calculated by Eq. (20) for matrix elements up to l = 5 with a relative error of 3%.

023101-8



MODELING LASER PULSES AS δ KICKS: … PHYSICAL REVIEW A 109, 023101 (2024)

molecular dynamics provided by our research might be valu-
able in fields like ultrafast spectroscopy, laser-induced chem-
istry, and material processing, where precision is vital for
realizing targeted results. The viewpoints and methodologies
proposed in this study could also inspire further research and
innovation in molecular rotational dynamics and related fields.
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