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Two-body P-state energies at order α6
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We present an analytical calculation of the complete α6 correction to energies of nP levels of two-body
systems consisting of the spin-0 or -1/2 extended-size particles with arbitrary masses and magnetic moments.
The obtained results apply to a wide class of two-body systems such as hydrogen, positronium, muonium, and
pionic or aniprotonic helium ion. We found an additional α6 correction for nP levels of positronium, which
was previously overlooked. Our results are also relevant for light muonic atoms, whose accurate theoretical
predictions are required for extracting the nuclear charge radii.
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I. INTRODUCTION

Two-body systems, such as hydrogen and hydrogen-like
ions [1], muonic hydrogen [2], muonic helium ion [3], positro-
nium [4], and muonium [5], play a crucial role in testing
quantum electrodynamics (QED), determining fundamental
constants, and searching for physics beyond the Standard
Model. All these tasks require accurate theoretical predic-
tions for energy levels of these systems. If the mass ratio
of the two constituent particles is small, as, e.g., in hy-
drogen, one can use the Dirac equation as a starting point
and use the QED perturbation theory to account for the re-
coil and QED corrections. For systems like positronium and
light muonic or antiprotonic atoms, however, the masses of
the particles are equal or comparable, and the Dirac equa-
tion is no longer a good approximation. Thus, one has to
rely on the QED formalism from the very beginning in their
description.

The QED theory of light atomic systems is based on an
expansion in the fine structure constant α and the derivation
of the expansion coefficients as expectation values of various
effective Hamiltonians with the nonrelativistic wave function.
Specifically, the energy of a bound system of two particles
with masses m1, m2, charges e1, e2, spins s1, s2, and g-factors
g1, g2 can be expressed as an expansion

E (α) = E (0) + E (2) + E (4) + E (5) + E (6) + O(α7), (1)

where the individual terms E ( j) ≡ (Z α) j E ( j) are of the order
α j . Here, we assume that E (i) are real and neglect the radiative
decay, which induces imaginary corrections to energies. This
effect should be taken into account separately if needed. Fur-
thermore, we will exclude from our consideration the vacuum
polarization, which is either negligible or needs to be taken
into account separately, depending on the masses of particles
1 and 2. If one of the particles is an electron, then the electron
vacuum polarization starts at order α7 for P-states and thus is
not relevant for the present study. If both particles are heavier
than the electron, then the electron vacuum polarization starts

at order α (Z α)2 for P-states and needs to be accounted for
separately, as was done for muonic atoms in Ref. [6]. The
vacuum polarization with heavier particles in the loop (muons,
hadrons) starts at order α7 for P-states and is negligible for the
present study.

Regarding expansion in α, the g-factor of a particle a de-
fined as

�μa = ea ga

2 ma
�sa, (2)

where �μ is the magnetic moment, is obtained from experi-
ments. In consequence, the ga factors are not expanded in α.
As a digression we note that this definition in Eq. (2) differs
from the convention sometimes used in the literature. Specif-
ically, the electron g-factor is positive, g = 2 + O(α), and
differs by the sign from the definition of Ref. [1]. Returning
to Eq. (1), the first term of the expansion in α is just

E (0) = m1 + m2. (3)

The next term, E (2), is the eigenvalue of the nonrelativis-
tic two-body Hamiltonian H0 ≡ H (2) in the center-of-mass
frame,

H0 = p2

2 μ
+ e1 e2

4 π

1

r
, (4)

where �p = �p1 = −�p2, �r = �r1 − �r2, and μ = m1 m2/(m1 +
m2) is the reduced mass. If we set e1 = −e, e2 = Z e, the
nonrelativistic binding energy becomes

E (2) ≡ E0 = − (Z α)2 μ

2 n2
, (5)

where n is the principal quantum number of the reference
state. The next expansion coefficient, E (4), is the leading
relativistic correction. It is given by the expectation value
of the Breit Hamiltonian H (4) [7] with the nonrelativistic
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wave function, E (4) = 〈H (4)〉,

H (4) = − �p4

8 m3
1

− �p4

8 m3
2

+ e1 e2

4 π

{
1

2 m1 m2
pi

(
δi j

r
+ ri r j

r3

)
pj + g1 g2

4 m1 m2

si
1 s j

2

r3

(
δi j − 3

ri r j

r2

)

− �r × �p
2 r3

·
[

g1

m1 m2
�s1 + g2

m1 m2
�s2 + (g2 − 1)

m2
2

�s2 + (g1 − 1)

m2
1

�s1

]}
, (6)

where we assume that the orbital angular-momentum quantum number l of the reference state is positive, l > 0, and the spin
s of the constituent particles is 0 or 1/2. Let us note that Hamiltonian (6) does not account for any annihilation effects, which
are present, e.g., in positronium. It also does not include any strong-interaction effects, which are present for hadronic particles.
Such effects, if present, should be evaluated and accounted for separately. The result for the leading relativistic correction E (4)

for a state with the principal quantum number n and the orbital angular momentum l = 1 is

E (4) = μ3(Zα)4

{
1

8 n4

(
3

μ2
− 1

m1 m2

)
+ 1

6 n3

[
− 2

μ2
+ �L · �s1

(
g1 − 1

m2
1

+ g1

m1 m2

)

+ �L · �s2

(
g2 − 1

m2
2

+ g2

m1 m2

)
− 3 g1 g2

5 m1m2
si

1s j
2(LiL j )(2)

]}
, (7)

where the symmetric traceless tensor (LiL j )(2) is defined as

(LiL j )(2) = 1

2
(LiL j + L jLi ) − δi j

3
�L2. (8)

The QED correction of order α5 is denoted by E (5) and given by (for states with l > 0) [8]

E (5) = − 14 (Z α)2

3 m1 m2

〈
1

4 π

1

r3

〉
− 2 α

3 π

(
1

m1
+ Z

m2

)2〈
�p (H0 − E0) ln

[
2 (H0 − E0)

μ(Z α)2

]
�p
〉
. (9)

The matrix element in the second term is related to the so-called Bethe logarithm ln[k0(n, l )] by

ln[k0(n, l )] ≡ n3

2μ3(Zα)4

〈
φ

∣∣∣∣ �p (H0 − E0) ln

[
2(H0 − E0)

μ(Zα)2

]
�p
∣∣∣∣φ

〉
, (10)

which is tabulated for many hydrogenic states in Ref. [9]. The final result for E (5) for states with l > 0 is [10]

E (5) = − 7

3π

(Zα)5μ3

m1m2

1

l (l + 1)(2l + 1) n3
− 4

3π

(
1

m1
+ Z

m2

)2
α(Zα)4μ3

n3
ln[k0(n, l )]. (11)

E (5) is the complete α5 QED correction, provided that the previous-order correction E (4) is calculated with the physical values
of g-factors.

II. NONRELATIVISTIC QED HAMILTONIAN FOR THE α6 CORRECTION

The correction to energy of order α6 can be represented as

E (6) = 〈H (6)〉 + 〈H (4) 1

(E0 − H0)′
H (4)〉, (12)

where the prime in 1/(E0 − H0)′ means the exclusion of the reference state from the resolvent, and H (4) is the Breit-Pauli
Hamiltonian given by Eq. (6). The effective Hamiltonian H (6) can be derived within the framework of nonrelativistic QED
(NRQED) [11]. The starting point of the derivation is the NRQED Hamiltonian for an arbitrary-spin (s = 0, 1/2) particle, given
by [12]

H = eA0 + �π 2

2m
− e g

2 m
�s · �B − e (g − 1)

4 m2 �s · ( �E × �π − �π × �E ) − e

6

(
r2

E + s (s + 1)

m2

)
�∇ �E − e

120
r4

EE∇2 �∇ �E

− �π 4

8 m3
+ e

8 m3
(2 { �π 2, �s · �B} + (g − 2) { �π · �B, �π · �s}) − e

12 m

(
gr2

M + 3 (g − 2)

4 m2

)
�s · ∇2 �B

+ �π 6

16 m5
+ e (g − 1/2)

24 m4
s(s + 1){ �π 2, �∇ �E} + ie

32m4

(
1 + s(s + 1)

3

)
[�π 2, �π �E + �E �π ]

− e

12 m

[
r2

E − g − 2

2 m2
s (s + 1)

]
{ �π, ∂t �E − �∇ × �B} + e (g − 1/2)

16m4 �s { �π 2, �E × �π − �π × �E}

− e

24 m2

(
gr2

M − r2
E + 3 (g − 2)

4 m2

)
�s (∇2 �E × �π − �π × ∇2 �E ) − e2

2

(
αE − s (s + 1)

3 m2

)
�E 2, (13)
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where [X,Y ] ≡ X Y − Y X denotes the commutator of two
operators, and {X, Y } ≡ X Y + Y X is the anticommutator,
�π = �p − e �A. In comparison to the original work [12] we have
redefined the following constants:

αE |old = αE − s (s + 1)

3 m2
, (14)

r2
E |old = r2

E + s (s + 1)

m2
, (15)

r2
M |old = g

2

(
r2

M + 3

4 m2

)
, (16)

to bring them in accordance with the standard definitions
of the electric dipole polarizability e2 αE , the mean square
charge radius r2

E ≡ 〈r2〉, and the mean square magnetic radius
r2

M . Furthermore, r4
EE ≡ 〈r4〉 is the mean fourth power of the

charge radius. For the point (scalar or Dirac) particle the
parameters are given by

r2
E = r4

EE = r2
M = αE = g − 2 = 0, (17)

whereas for a Dirac particle with the magnetic moment
anomaly κ , they are

g = 2 (1 + κ ), r2
E = 3 κ

2 m2
, (18)

r2
M = r4

EE = 0, αE = −κ (1 + κ )

4 m3
. (19)

For extended-size particles, the parameters rE , rM , and αE can
be in general arbitrary, but we will assume that rE and rM are
significantly smaller than the electron Compton wavelength.

III. DERIVATION OF H (6)

Using the NRQED Hamiltonian in Eq. (13), one can derive
the effective operator H (6) for the bound system of two spin-
less particles, one spinless and one spin-1/2 particle, and two
spin-1/2 particles. The derivation follows Ref. [10], which
in turn is based on two former works [11,13] and extends
the previous calculations of H (6) to states with l = 1, where
contact terms contribute. As we will show below, the contact
terms have previously been accounted for incorrectly for the
positronium P-states [13–15].

The typical one-photon exchange contribution between
particles a and b is given by

〈φ|�(E0)|φ〉 = ea eb

∫
d4k

(2 π )4 i
Gμν (k)

{〈
φ

∣∣∣∣jμ
a (k) ei �k·�ra

× 1

E0 − H0 − k0 + i ε
j ν

b (−k) e−i �k·�rb

∣∣∣∣φ
〉

+
〈
φ

∣∣∣∣jμ

b (k) ei �k·�rb
1

E0 − H0 − k0 + i ε
j ν

a (−k)

× e−i �k·�ra

∣∣∣∣φ
〉}

, (20)

where Gμν (k) is the photon propagator, which is in Feynman
gauge GF

μν = gμν/k2, in Coulomb gauge

GC
μν (k) =

⎧⎨
⎩

− 1
�k2

μ = ν = 0,

−1
k2

0−�k2+i ε

(
δi j − kik j

�k2

)
μ = i, ν = j,

(21)

and in temporal gauge

GA
μν (k) =

{
0 μ = ν = 0,

−1
k2

0−�k2+i ε

(
δi j − kik j

k2
0

)
μ = i, ν = j. (22)

The state φ in Eq. (20) is an eigenstate of H0, and jμ
a is the

electromagnetic current operator for particle a. The explicit
expression for jμ(k) is obtained from the NRQED Hamilto-
nian in Eq. (13) as the coefficient multiplying the polarization
vector εμ of the electromagnetic potential

Aμ(�r, t ) ∼ ε
μ
λ ei �k·�r−i k0 t . (23)

The first terms of the nonrelativistic expansion of the j 0 com-
ponent are

j 0(k) = 1 + i (g − 1)

2 m
�s · �k × �p

− 1

6

(
r2

E + s (s + 1)

m2

)
�k 2 + · · · (24)

and those of the �j component are

�j (k) = �p
m

+ i g

2 m
�s × �k + · · · . (25)

Most of the calculation is performed in the Coulomb gauge in
the so-called nonretardation approximation, in which one sets
k0 = 0 in the photon propagator Gμν (k) and in j (k). The re-
tardation corrections are considered separately. Applying the
nonretardation approximation and symmetrizing k0 ↔ −k0,
the k0 integral in Eq. (20) is evaluated as

1

2

∫
d k0

2 π i

[
1

−�E − k0 + i ε
+ 1

−�E + k0 + i ε

]
= −1

2
,

(26)

where we have assumed that �E is positive, which is the case
when φ is the ground state. For excited states, the integration
contour is deformed in such a way that all poles from the
electron propagator lie on the same side. Therefore, the result
of the k0 integration for excited states is the same as for the
ground state, yielding

〈φ|�(E0)|φ〉 = −e2
∫

d3k

(2 π )3
Gμν (�k)

× 〈
φ
∣∣jμ

a (�k) ei �k·(�ra−�rb) j ν
b (−�k)

∣∣φ〉
. (27)

The �k integral is the Fourier transform of the photon propaga-
tor in the nonretardation approximation

Gμν (�r) =
∫

d3k

(2 π )3
Gμν (�k) ei �k·�r

= 1

4 π

{− 1
r μ = ν = 0,

1
2 r

(
δi j + rir j

�r 2

)
μ = i, ν = j.

(28)

One easily recognizes that G00 is the Coulomb interaction.
Next-order terms resulting from j 0 and �j lead to the Breit
Pauli-Hamiltonian, Eq. (6). Below we derive the higher-order
terms in the nonrelativistic expansion, namely, the effective
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Hamiltonian H (6). It is expressed as a sum of various contri-
butions

H (6) =
∑
i=0,9

δHi. (29)

We will follow a similar derivation presented in
Refs. [10,11,13] for point particles, and use similar notations,
namely, �r = �r1 − �r2, e1 = −e, e2 = Z e, and the static fields
A0, �A, and �E defined as

e1 A0
1 = e2 A0

2 = −Z α

r
, (30)

e1Ai
1 = − Zα

2 r

(
δi j + rir j

r2

)
pj

2

m2
− Z α g2

2 m2

(�s2 × �r)i

r3
, (31)

e2Ai
2 = − Zα

2 r

(
δi j + rir j

r2

)
pj

1

m1
+ Z α g1

2 m1

(�s1 × �r)i

r3
, (32)

e1 �E1 = − Z α
�r
r3

, e2 �E2 = Z α
�r
r3

. (33)

We now examine the individual contributions δEi ≡ 〈δHi〉.
δE0 is a correction to the kinetic energy,

δE0 =
〈

p6

16 m5
1

+ p6

16 m5
2

〉
. (34)

δE1 is a correction to the Coulomb interaction, where one of
the particles interacts by δH ,

δH = − e

120
r4

EE ∇2 �∇ �E + e (g − 1/2)

24 m4
s(s + 1){ �π 2, �∇ �E} + ie

32m4

(
1 + s(s + 1)

3

)
[�π 2, �π �E + �E �π ]

+ e (g − 1/2)

16m4 �s { �π 2, �E × �π − �π × �E} − e

24 m2

(
gr2

M − r2
E + 3 (g − 2)

4 m2

)
�s (∇2 �E × �π − �π × ∇2 �E ), (35)

and the other one by e A0. Here, we can use the static Coulomb approximation, obtaining

δE1 =
∑

a

〈
− Z α

8 m4
a

(
ga − 1

2

)
�L · �sa

{
p2,

1

r3

}
+ 1

32m4
a

(
1 + sa(sa + 1)

3

)[
p2,

[
p2,−Z α

r

]]

+ Zα

120
r4

EEa 4π ∇2δ3(r) + i
Zα

12 m2
a

(
ga r2

Ma − r2
Ea + 3 (ga − 2)

4 m2
a

)
�sa · �p × 4π δ3(r) �p

〉
, (36)

where the second term in Eq. (35) vanishes for the l = 1 state. δE2 is a correction to Coulomb interaction when both vertices are

δH = − e (g − 1)

4m2 �s · ( �E × �π − �π × �E ) − e

6

(
r2

E + s (s + 1)

m2

)
�∇ �E . (37)

It can also be evaluated in the nonretardation approximation, with the result

δE2 =
〈

Zα

4 m2
1m2

2

(g1 − 1)(g2 − 1) (�s2 × �p)i

(
δi j

r3
− 3

rir j

r5
+ δi j

3
4 π δ3(r)

)
(�s1 × �p) j

+ Zα

36

(
r2

E1 + s1 (s1 + 1)

m2
1

) (
r2

E2 + s2 (s2 + 1)

m2
2

)
4π ∇2 δ3(r)

+ i
Zα

12

[(
r2

E1 + s1 (s1 + 1)

m2
1

)
(g2 − 1)

m2
2

�s2 +
(

r2
E2 + s2 (s2 + 1)

m2
2

)
(g1 − 1)

m2
1

�s1

]
· �p × 4πδ3(r) �p

〉
. (38)

δE3 is the relativistic correction to the transverse photon exchange. The first particle is coupled to �A by the nonrelativistic term

δH = − e

m
�p · �A − e g

2 m
�s · �B, (39)

and the second one by the relativistic correction

δH = e

8 m3
[(g − 2) { �π · �B, �π · �s} + 2 { �π 2, �s · �B}] − e

12 m

(
gr2

M + 3 (g − 2)

4 m2

)
�s · ∇2 �B − �π 4

8 m3
. (40)

It is sufficient to calculate it in the nonretardation approximation, which yields

δE3 =
∑

a

〈
1

4 m3
a

({p2, �sa · �∇a × ea �Aa} + {p2, �pa · ea �Aa}) + ea (ga − 2)

8 m3
a

{ �pa · �∇a × �Aa, �pa · �sa}
〉

+
〈

Zα

12 m1 m2

(
g1 r2

M1 + 3 (g1 − 2)

4 m2
1

)
[i �s1 · �p × 4π δ3(r) �p + g2 �s2 × �p 4π δ3(r) �s1 × �p] + (1 ↔ 2)

〉
. (41)
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δE4 comes from the seagull-like coupling

δH = e2

2 m
�A 2. (42)

Again, the nonretardation approximation yields

δE4 =
∑

a

〈
e2

a

2 ma

�A2
a

〉
. (43)

δE5 is a seagull-like term that comes from the coupling

δH = − e2

2

(
αE − s (s + 1)

3 m2

)
�E 2, (44)

while the second particle is coupled through e A0. It can be
obtained in the nonretardation approximation as

δE5 = − 1

2

∑
a

(
αEa − sa(sa + 1)

3 m3
a

) 〈
Z2α2

r4

〉
. (45)

δE6 is a seagull-like term that comes from

δH = −e (g − 1)

4 m2 �s · ( �E × �π − �π × �E ). (46)

Once more the nonretardation approximation can be used,
yielding

δE6 =
∑

a

e2
a (ga − 1)

2 m2
a

〈
�sa · �Ea × �Aa

〉
. (47)

δE7 is a retardation correction to the single transverse ex-
change

δE7 = δEA
7 + δEB

7 + δEC
7 , (48)

where

δEA
7 = Zα

16 m1 m2

〈
2Z2α2

r3
+ iZαri

r3

[
p2

2 m2
,

rir j − 3δi j r2

r

]
pj

− pi

[
rir j − 3δi j r2

r
,

p2

2 m1

]
iZαr j

r3

− pi

[
p2

2 m2
,

[
rir j − 3δi j r2

r
,

p2

2 m1

]]
pj

〉
+ (1 ↔ 2),

(49)

δEB
7 = Zα

8 m1 m2

〈
g1

[(
�s1 × �r

r

)i

,
p2

2 m1

]
iZαri

r3

− g2
iZαri

r3

[
p2

2 m2
,

(
�s2 × �r

r

)i]

+ g1

[
p2

2 m2
,

[(
�s1 × �r

r

)i

,
p2

2 m1

]]
pi

+ g2 pi

[
p2

2 m2
,

[(
�s2 × �r

r

)i

,
p2

2 m1

]]〉
+ (1 ↔ 2),

(50)

δEC
7 = − Z α g1 g2

16 m2
1 m2

2

〈[
p2,

[
p2, �s1�s2

2

3 r

+ si
1 s j

2

1

2 r

(
rir j

r2
− δi j

3

)]]〉
. (51)

δE8 is a retardation correction in a single transverse photon
exchange, where one vertex is nonrelativistic, Eq. (39), and
the second one is

δH = −e (g − 1)

4 m2 �s · ( �E × �p − �p × �E ). (52)

The result is

δE8 =
∑

a

〈
e2

a (ga − 1)

2 m2
a

�sa · �Ea × �Aa + iea (ga − 1)

8 m3
a

× [ �Aa · ( �pa × �sa) + ( �pa × �sa) · �Aa, p2
a

]〉
. (53)

The δE9 contribution arises when one vertex is

δH = − e

12 m

[
r2

E − g − 2

2 m2
s (s + 1)

]
{ �π, ∂t �E − �∇ × �B},

(54)

and the second vertex is nonrelativistic, Eq. (39). The corre-
sponding current operators are

�j(k) = �p
m

+ g

2 m
i �s × �k, (55)

δ j j (k) = 1

6 m

[
r2

E − g − 2

2 m2
s (s + 1)

]
pi [(ω2 − �k2)δi j + ki k j].

(56)

For this term we employ the temporal gauge, rather than the
Coulomb gauge, and obtain

δE9 = −e1e2

∫
d3k

(2 π )3

〈
1

4

{
ji
1(k),

{
Gi j

A δ j j
2 (−k), ei �k·�r}}〉

+ (1 ↔ 2), (57)

where

Gi j
A δ j j (k) = − 1

6 m

[
r2

E − g − 2

2 m2
s (s + 1)

]
pi. (58)

The result is

δE9 = e1 e2

6 m

[
r2

E2 − g2 − 2

2 m2
2

s2 (s2 + 1)

] 〈
1

4

{
pi

1

m1
,

{
pi

2

m2
, δ3(r)

}}
+ g1

4 m1
(�s1 × �∇1)i

{
pi

2

m2
, δ3(r)

}〉
+ (1 ↔ 2)

= Z α

12 m1 m2

[
r2

E2 − g2 − 2

2 m2
2

s2 (s2 + 1)

] 〈
2 π �∇2δ3(r) + i g1 �s1 · �p × 4 π δ3(r) �p

〉
+ (1 ↔ 2). (59)
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This concludes our derivation of all effective operators to
order α6 for P-states. Explicit formulas for matrix elements
of elementary and contact operators are presented in Ap-
pendix A. Matrix elements of other operators can be found
in Ref. [10]. We mention here that the original work of
Khriplovich [16,17] contained a computational mistake re-
lated to a matrix element in δE2, which was not corrected
in subsequent works [14,15]. This will be described in more
detail in Sec. VI.

The last part of E (6) to be evaluated is the second-order
iteration of the Breit Hamiltonian H (4) in Eq. (12). It has
already been derived for arbitrary l > 0 in Ref. [10] by the
method developed in Ref. [13], and the result is valid also
for the case l = 1 investigated here. Since the derivation and
the final expressions are quite long, we refer the reader to
Ref. [10] for the corresponding formulas.

Adding together all contributions, we arrive at our final
result for the α6 correction for nP states. It is written as

E (6) = (Z α)6 E (6),

E (6) = ENS + �s1 · �s2 ESS + �L · �s1 EL1 + �L · �s2 EL2

+ (Li L j )(2) si
1 s j

2 ELL, (60)

where

ENS = ES0 + 4
3 s1 (s1 + 1) ES1 + 4

3 s2 (s2 + 1) ES2

+ 16
9 s1 (s1 + 1) s2 (s2 + 2) ES12, (61)

EL1 = ELN1 + 4
3 s2(s2 + 1) ELS1, (62)

EL2 = ELN2 + 4
3 s1 (s1 + 1) ELS2, (63)

with the individual terms given by

ES0 = μ

(
− 5

16 n6
+ 1

2 n5
− 1

6 n4
− 1

27 n3

)
+ μ3

m1 m2

(
3

16 n6
− 13

30 n5
+ 2

5 n3

)
− μ5

m2
1 m2

2

1

16 n6

+ μ5

(
1

n3
− 1

n5

)(
2

27
r2

E1 r2
E2 + r2

E1 + r2
E2

9 m1 m2
+ r4

EE1 + r4
EE2

45

)
− μ4 αE1 + αE2

5

(
1

n3
− 2

3 n5

)
, (64)

ES2 = μ3

m2
2

g2
2

24

(
1

5 n5
− 1

2 n4
− 119

180 n3

)
+ μ5

m4
2

[
g2

24

(
1

n3
− 1

n5

)
+ 7

60 n5
− 1

48 n4
− 641

4320 n3

]

+ μ4

m3
2

[
− g2

2

40

(
1

n3
− 2

3 n5

)
+ g2

24

(
− 1

5 n5
+ 1

n4
+ 137

90 n3

)
− 7

60 n5
+ 2

15 n3

]
+ μ5

m2
2

r2
E1

18

(
1

n3
− 1

n5

)
, (65)

ES12 = μ5

m2
1 m2

2

[
−

(
1

n4
+ 137

90 n3

)
g2

1 g2
2

640
+ 1

24

(
1

n3
− 1

n5

)]
, (66)

ELN2 = μ2

m2
g2

(
− 1

3 n5
+ 1

6 n4
+ 13

108 n3

)
+ μ3

m2
2

[
g2

2

(
− 1

40 n5
+ 1

48 n4
+ 227

4320 n3

)
+ g2

(
3

10 n5
− 1

5 n3

)

+ 5

12 n5
− 1

6 n4
− 13

108 n3

]
+ μ4

m3
2

[
g2

(
− 1

6 n5
− 1

24 n4
+ 5

432 n3

)
− 5

12 n5
+ 1

6 n3

]

+ μ5

m4
2

[
1

4 n5
+ 1

48 n4
− 41

864 n3

]
+ 1

9

(
1

n3
− 1

n5

)[(
− μ4

m2
g2 + μ5

m2
2

)
r2

E1 + μ5

m2
2

r2
E2 − μ4

m2
g2 r2

M2

]
, (67)

ELS2 = μ4

m2
1 m2

g2

12

[
1

n5
− 1

n3
− g1

(
7

20 n5
+ 1

8 n4
− 133

720 n3

)
+ g2

1

(
− 3

20 n5
+ 1

8 n4
+ 227

720 n3

)]

+ μ5

m2
1 m2

2

1

12

[
1

n3
− 1

n5
+ g1 g2

(
7

20 n5
+ 1

8 n4
− 133

720 n3

)
+ g2

1 g2
2

(
3

80 n5
+ 9

320 n4
− 13

3200 n3

)]
, (68)

ESS = − μ3

m1 m2
g1 g2

(
1

60 n5
+ 1

18 n4
+ 47

1620 n3

)
+ μ4

m1 m2

(
g1

m2
+ g2

m1

)(
1

18 n5
+ 1

18 n4
− 5

324 n3

)

+ μ5

m2
1 m2

2

[
− g2

1 g2
2

480

(
1

n4
+ 137

90 n3

)
+ 1

30 n5
− 1

18 n4
− 191

1620 n3

]
+ 2

27

(
1

n3
− 1

n5

)
μ5

m1 m2
g1 g2

(
r2

M1 + r2
M2

)
, (69)
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ELL = μ3

m1 m2

g1 g2

4

(
51

50 n5
− 7

12 n4
− 3697

5400 n3

)
+ μ4

m1 m2

[(
g1

m1
+ g2

m2

)
g1 g2

(
9

200 n5
− 3

80 n4
− 227

2400 n3

)

+
(

g1

m2
+ g2

m1

) (
− 19

150 n5
+ 1

12 n4
+ 1171

5400 n3

)]
+ μ5

m2
1 m2

2

[
g2

1 g2
2

200

(
− 3

n5
− 7

8 n4
+ 1291

720 n3

)

+ g1 g2

(
− 6

25 n5
− 3

40 n4
+ 37

1200 n3

)
− g1 + g2

10

(
1

n3
− 1

n5

)
+ 2

25 n5
− 1

12 n4
− 1063

5400 n3

]

+ μ5

m1 m2

g1 g2

9

(
1

n3
− 1

n5

) (
r2

M1 + r2
M2

)
. (70)

We remind the reader that E (6) is the complete α6 QED
correction, provided that the lower-order correction E (4) is
calculated with the physical values of g-factors.

We now turn to the comparison of the obtained formulas
for the l = 1 states with the general l > 0 result of Ref. [10]
derived with the omission of contact terms. The contact terms
vanish in the l > 1 case but are present for l = 1 (even for the
point particles). We will consider separately the cases of two
spinless particles, of one spinless and one spin-1/2 particle,
and of two spin-1/2 particles.

IV. SPIN s1 = s2 = 0

For a system consisting of two spinless particles, s1 =
s2 = 0, E (6) = ES0. This result differs from the general re-
sult E (6)

G from Ref. [10] by the finite-size terms only, as it
should,

E (6) − E (6)
G

∣∣
l=1 = μ5

9

(
1

n3
− 1

n5

)(
2

3
r2

E1 r2
E2

+ r2
E1 + r2

E2

m1 m2
+ r4

EE1 + r4
EE2

5

)
. (71)

In the infinite-mass limit of one of the particles (and only in
this limit), E (6) corresponds to a solution of the Klein-Gordon
equation. For an arbitrary mass ratio there is no fundamental
equation and energy levels can be obtained only from the QED
theory.

An example of a bound system of two scalar particles is
the pionic helium atom investigated by Masaki Hori [18,19].
However, in this case the short-range interactions are domi-
nated by strong forces, and the above formula thus has limited
applicability.

V. SPIN s1 = 0, s2 = 1/2

For a system consisting of particles with s1 = 0 and
s2 = 1/2, the binding energy at the order α6 is

E (6) = ES0 + ES2 + �L · �s2 ELN2. (72)

The difference of E (6) and the general result EG from
Ref. [10] is

E (6) − E (6)
G

∣∣
l=1 =

[
r2

E1 + r̃2
E2

m1 m2
+ 2

3
r2

E1

(
r2

E2 + 3

4 m2
2

)

+ r4
EE1 + r4

EE2

5
+ �L · �s2

(
− g2

(
r̃2

M2 + r2
E1

)
m1 m2

+ r2
E2 − g2 r̃2

M2 − (g2 − 1) r2
E1

m2
2

)]

× μ5

9

(
1

n3
− 1

n5

)
, (73)

where

g r̃2
M = gr2

M + 3 (g − 2)

4 m2
, (74)

r̃2
E = r2

E − 3 (g − 2)

8 m2
. (75)

With the rotational angular momentum l = 1 coupled to the
spin s2 = 1/2, the total angular momentum J can be either
J = 1/2 or 3/2. The corresponding energies are

E (6)|J=1/2 = ES0 + ES2 − ELN2, (76)

E (6)|J=3/2 = ES0 + ES2 + 1
2ELN2. (77)

The explicit formulas for E (6) are quite long. However,
their expansion for a small mass ratio m2/m1 is quite compact.
Specifically, assuming that particle 2 is point-like (κ2 = r2

E2 =
r2

M2 = r4
EE2 = 0) and neglecting the polarizabilities (αE1 =

αE2 = 0), we obtain E (6) = E (6,0) + E (6,1) + · · · ,

E (6,0)|J=1/2 = m2

[(
− 5

16 n6
+ 3

4 n5
− 3

8 n4
− 1

8 n3

)
+ 1

6

(
1

n3
− 1

n5

)
m2

2 r2
E1 + 1

45

(
1

n3
− 1

n5

)
m4

2 r4
EE1

]
, (78)

E (6,1)|J=1/2 = m2
2

m1

[(
1

2 n6
− 19

15 n5
+ 3

8 n4
+ 21

40 n3

)
− 1

2

(
1

n3
− 1

n5

)
m2

2 r2
E1 − 1

9

(
1

n3
− 1

n5

)
m4

2 r4
EE1

]
, (79)
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E (6,0)|J=3/2 = m2

[(
− 5

16 n6
+ 3

8 n5
− 3

32 n4
− 1

64 n3

)
+ 1

45

(
1

n3
− 1

n5

)
m4

2 r4
EE1

]
, (80)

E (6,1)
∣∣
J=3/2 = m2

2

m1

[(
1

2 n6
− 23

30 n5
+ 3

32 n4
+ 133

320 n3

)
− 1

9

(
1

n3
− 1

n5

)
m4

2 r4
EE1

]
. (81)

In the point-nucleus limit, these formulas are in agreement with the literature results [1]. Furthermore, the finite-size corrections
in the nonrecoil limit agree with those derived in Ref. [20]. The finite-size recoil corrections given by Eqs. (79) and (81) have
not been previously calculated. We have verified them by comparing with numerical calculations performed to all orders in Zα

in Sec. VIII.

VI. SPIN s1 = s2 = 1/2

The most complicated case considered here is when both particles have spin s = 1/2. The binding energy E (6) can then be
expressed as

E (6) = ES0 + ES1 + ES2 + ES12 + �s1 · �s2 ESS + �L · �s1 (ELN1 + ELS1) + �L · �s2 (ELN2 + ELS2) + (Li L j )(2) si
1 s j

2 ELL. (82)

It differs from the general result EG from Ref. [10] by

E (6) − E (6)
G

∣∣
l=1 = μ5

9

(
1

n3
− 1

n5

){
r̃2

E1 + r̃2
E2

m1 m2
+ 2

3

(
r2

E1 + 3

4 m2
1

) (
r2

E2 + 3

4 m2
2

)
+ r4

EE1 + r4
EE2

5

+ �L · �s1

[
− g1

(
r̃2

M1 + r̃2
E2

)
m1 m2

− g1 r̃2
M1

m2
1

+ r2
E1

m2
1

− g1 − 1

m2
1

(
r2

E2 + 3

4 m2
2

)]

+ �L · �s2

[
− g2

(
r̃2

M2 + r̃2
E1

)
m1 m2

− g2 r̃2
M2

m2
2

+ r2
E2

m2
2

− g2 − 1

m2
2

(
r2

E1 + 3

4 m2
1

)]

+ �s1 · �s2

[
2

3

g1 g2

m1 m2

(
r̃2

M1 + r̃2
M2

) − 1

4 m1 m2

(
g2

g1 − 2

m2
1

+ g1
g2 − 2

m2
2

)
+ (g1 − 1) (g2 − 1)

2 m2
1 m2

2

]

+ (Li L j )(2) si
1 s j

2

[
g1 g2

m1 m2

(
r̃2

M1 + r̃2
M2

) + 3

10 m1 m2

(
g2

g1 − 2

m2
1

+ g1
g2 − 2

m2
2

)
+ 3 (g1 − 1) (g2 − 1)

m2
1 m2

2

]}
.

(83)

The above difference does not vanish in the point-particle
limit, which indicates a disagreement not only with Ref. [10]
but also with previous calculations [13–15] since Ref. [10]
was claimed to agree with them in the limit m1 = m2.

We now examine this discrepancy in detail. For the positro-
nium atom, the difference (83) becomes

δEpos = E (6) − E (6)
G

∣∣
l=1,m1=m2

= m (Zα)6

32

(
1

n3
− 1

n5

)(
1

24
− �L · (�s1 + �s2)

12

+ �s1 · �s2

18
+ (LiL j )(2) si

1s j
2

3

)
. (84)

Evaluating explicitly the spin-angular dependence in the
above formula, we obtain

δEpos(s = 0, j = 1) = 0, (85)

δEpos(s = 1, j = 0) = m (Zα)6

64

(
1

n3
− 1

n5

)
, (86)

δEpos(s = 1, j = 1) = 0, (87)

δEpos(s = 1, j = 2) = 0. (88)

We thus find an additional α6 correction for the orthopositro-
nium j = 0 state, given by Eq. (86).

On closer inspection, we relate this discrepancy to the
δE2 = 〈δH2〉 contribution. Zatorski calculates it for point
particles [13], Eq. (94), separately for the l = 1 case [13],
Eq. (99) and for the l > 1 case [13], Eq. (103), closely follow-
ing the original calculation of Khriplovich [16,17]. Later he
writes that “...the correction δE2 for l = 1 still can be obtained
from Eq. (103),” which we find to be incorrect. The difference
between Eqs. (103) and (99) of Ref. [13] is exactly equal to
Eq. (86) in the above. Moreover, our calculation of δE2 is
in agreement with Ref. [13], Eq. (99) in the point particle
limit. This means that the original approach of Khriplovich
[16,17] is valid for l > 1 but not for l = 1. The subsequent
works [14,15] followed the original Khriplovich calculations
and thus reproduced the incorrect result for the l = 1 lev-
els, although they agreed between themselves. Furthermore,
Zatorski in Ref. [13], Eq. (204) presented the result for the
positronium l = 1 levels employing Ref. [13], Eq. (103) in-
stead of Ref. [13], Eq. (99) and claimed agreement with the
previous result of Ref. [15].

We thus conclude that the previous result for the positron-
ium P-levels repeatedly reported in the literature [13–15] was
incorrect. The corrected formula for the positronium P-levels
is presented in Appendix B. The additional correction found
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in this work shifts the previous theoretical predictions of the
j = 0 level of positronium, but the corresponding numerical
value is too small to affect the comparison with the (much less
accurate) experimental result [21].

Returning to Eq. (82), we present formulas for its ex-
pansion in the small mass ratio m2/m1, for the case of the
point-like second particle (κ2 = r2

E2 = r2
M2 = r4

EE2 = 0) and
negligible polarizabilities (αE1 = αE2 = 0). The results are

E (6,0) = m2

{(
− 5

16 n6
+ 1

2 n5
− 3

16 n4
− 5

96 n3

)
+ �L · �s2

(
− 1

4 n5
+ 3

16 n4
+ 7

96 n3

)

+ 1

9

(
1

n3
− 1

n5

)[(
1

2
− �L · �s2

)
m2

2 r2
E1 + 1

5
m4

2 r4
EE1

]}
, (89)

E (6,1) = m2
2

m1

{(
1

2 n6
− 14

15 n5
+ 3

16 n4
+ 217

480 n3

)
+ �L · �s2

(
1

3 n5
− 3

16 n4
− 7

96 n3

)

+ g1 �L · �s1

(
− 43

120 n5
+ 3

16 n4
+ 83

480 n3

)
+ g1 �s1 · �s2

(
1

45 n5
− 1

18 n4
− 119

1620 n3

)

+ g1 (Li L j )(2) si
1 s j

2

(
169

300 n5
− 43

120 n4
− 5441

10800 n3

)
+ 1

9

(
1

n3
− 1

n5

)[
− m4

2 r4
EE1

− 3

(
1

2
− �L · �s2

)
m2

2 r2
E1 +

(
4

3
�s1 · �s2 − �L · �s1 + 2 (Li L j )(2) si

1 s j
2

)
m2

2 g1 r2
M1

]}
. (90)

The above expression for E (6,0) agrees with that for the s1 =
0, s2 = 1/2 case, as it should. Similarly, E (6,1) agrees with
the s1 = 0, s2 = 1/2 case up to the terms with �s1. The �s1-
dependent terms are responsible for the hyperfine structure at
the α6 order and for mixing of the P1/2,F=1 and P3/2,F=1 states.

VII. 2P FINE STRUCTURE IN LIGHT MUONIC ATOMS

Accurate theoretical predictions of the fine and hyper-
fine structure of the 2P levels in muonic atoms are required
for the determination of the nuclear charge radii from ex-
perimental 2P-2S transition energies. QED calculations of
the 2P fine structure of μHe ions have been performed in
Refs. [22,23], neglecting higher-order terms in the mass ratio,
namely, (Z α)6 mμ (mμ/mN )(2+), where the subscripts μ and
N refer to the muon and the nucleus, respectively. In the
present work we obtain the result for the α6 contribution with
full dependence on the mass ratio mμ/mN .

The binding energy of a muonic atom can be decomposed
in terms of basic angular-momentum operators, similarly to

Eq. (60),

E = ENS + �L · �sμ ELμ + �L · �sN ELN

+ (Li L j )(2) si
N s j

μ ELL + �sN · �sμ ESS. (91)

Here, the spin-independent term ENS corresponds to the en-
ergy centroid, the second term is responsible for the fine
splitting, Efs ≡ 3/2 ELμ, whereas the remaining terms induce
the hyperfine splitting and mixing between the fine and hyper-
fine structure.

We are now interested in the fine structure of the 2P state.
The leading fine structure of order (Z α)4 is obtained from
Eq. (7), with the result

E (4)
fs = μ3(Zα)4

32

(
gμ − 1

m2
μ

+ gμ

mN mμ

)
. (92)

For the α6 correction, we set gμ = 2 because the magnetic-
moment anomaly is only a part of the α7 correction. Similarly,
we neglect QED corrections to r2

E and r2
M of the muon. We

obtain for the sN = 0 nucleus

E (6)
fs = 3

2
ELμ(n = 2, gμ = 2, sN = 0)

= μ
(Z α)6

64

[
5

4
+ 1

4

μ

mN
− 19

18

(
μ

mN

)2

− 3

4

(
μ

mN

)3

+ 11

36

(
μ

mN

)4

− μ2 r2
E

(
1 − μ2

m2
N

)]
, (93)

whereas for sN = 1/2

E (6)
fs = 3

2
ELμ(n = 2, gμ = 2, sN = 1/2)

= μ
(Z α)6

64

[
5

4
+ 1

4

μ

mN
+

(
− 19

18
+ 2729

3600
g2

N

) (
μ

mN

)2

+
(

− 3

4
+ 5

72
gN − 188

225
g2

N

) (
μ

mN

)3

+
(

11

36
− 5

72
gN + 31

400
g2

N

) (
μ

mN

)4

− μ2

(
r2

E + 3

4 m2
N

)(
1 − μ2

m2
N

)]
. (94)
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TABLE I. 2P fine structure of μHe ions, in meV. The root-mean-
square nuclear-charge radii are [3,6] rE (h) = 1.970 fm and rE (α) =
1.679 fm. Our uncertainty is due to higher order in α terms, mainly
due to the two-loop electron vacuum polarization. From the previous
results in Refs. [22,24] we have subtracted BP(tot) = 0.1947 meV
due to a different definition of the fine structure of μ3He used in
these works.

Contribution μ3He+ μ4He+

E (4)
fs 144.510 95 145.898 24

E (4)
fs,vp 0.269 81 0.275 65

E (6)
fs 0.004 05 0.007 64

Efs 144.785(3) 146.182(3)
Refs. [22,23] 144.785(5) 146.181(5)
Exp. [3,24] 144.763(114) 146.047(96)

It is worth mentioning that the spin-0 case can be obtained
from the spin-1/2 one by setting gN = 0 and redefining the
charge radius. We also note that the first two terms in powers
of μ/mN are universal and do not depend on the nuclear spin.

In addition to E (4)
fs and E (6)

fs , one needs to account for
the one-loop electron vacuum polarization correction to the
leading fine structure, which can be calculated as described in
Ref. [25]. Our numerical results for the 2P fine structure of
μHe+ are listed in Table I. They are in agreement with the
previous calculation of Karshenboim et al. [22,23] and with
available experimental results [3,24]. The observed agreement
supports the determination of the nuclear charge radii reported
in these works. This confirmation is important in view of a
significant discrepancy in the charge radii difference r2

E (h) −
r2

E (α) between the electronic- and muonic-spectroscopy de-
terminations [3,6,26].

VIII. NUCLEAR RECOIL IN LIGHT MUONIC ATOMS

In this section we examine the nuclear recoil correction for
muonic atoms, as obtained within two different approaches,

namely, the leading-order Zα expansion result given by
Eqs. (79) and (81) and the all-order (in Zα) approach. The
comparison of results of the two different methods will, first,
validate the formulas derived in the present work and, second,
give us an idea about the higher-order (in Zα) effects.

The general expression for the nuclear recoil correction in
electronic and muonic atoms valid to all orders in Zα was
derived in Refs. [27–29]. For a muonic atom, it reads

Erec = m2
μ

mN

i

2π

∫ ∞

−∞
dω

∑
n

1

εa + ω − εn(1 − i0)

× 〈a| �p − �D(ω)|n〉〈n| �p − �D(ω)|a〉, (95)

where �p is the momentum operator, D j (ω) =
−4πZα αi Di j

C (ω, �r), αi are the Dirac matrices, Di j
C is the

transverse part of the photon propagator in the Coulomb
gauge, and the summation over n is performed over the
complete Dirac spectrum of a bound muon. The photon
propagator Di j

C describing the interaction between a point-like
and an extended-size particle was derived in Ref. [30].

To separate out the contribution of order α6 and higher
from Erec, we subtract the contribution of previous orders.
Specifically, we introduce the higher-order remainder function
E (6+)

rec as follows:

E (6+)
rec = Erec − m2

μ

mN

[
(Zα)2

2n2
+ (Zα)4

2n3

( 1

j + 1/2
− 1

n

)

+ (Zα)5

πn3
D50

]
, (96)

where D50 is defined by Eq. (11),

D50(2p) = − 8
3 ln[k0(2p)] − 7

18 = −0.308 844 332 . . . .

(97)

FIG. 1. Nuclear-recoil point-nucleus and fns corrections E (6+)
rec for the 2p1/2 and 2p3/2 states of muonic atoms, as a function of the nuclear

charge number Z . Units are m2
μ/mN (Zα)6. The nonsmoothness of the fns plots is due to the irregular dependence of the nuclear charge radius

on Z .
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TABLE II. Nuclear-recoil point-nucleus and fns corrections E (6+)
rec for the 2p1/2 and 2p3/2 states of muonic atoms. Units are m2

μ/mN (Zα)6.

point fns

2p1/2 2p3/2 2p1/2 2p3/2

Z rE [fm] All-order Zα-exp. All-order Zα-exp. All-order Zα-exp. All-order Zα-exp.

1 0.8409 0.057 66 0.057 29 0.040 98 0.041 67 −0.010 46 −0.010 57 −0.000 94 −0.001 07
2 1.6755 0.058 01 0.057 29 0.040 60 0.041 67 −0.053 27 −0.054 60 −0.015 70 −0.016 87
3 2.4440 0.058 31 0.057 29 0.040 28 0.041 67 −0.149 86 −0.156 65 −0.070 78 −0.076 37
5 2.4060 0.058 82 0.057 29 0.039 71 0.041 67 −0.139 89 −0.149 53 −0.063 72 −0.071 73
7 2.5582 0.059 28 0.057 29 0.039 25 0.041 67 −0.163 72 −0.179 63 −0.078 37 −0.091 68
10 3.005 0.059 92 0.057 29 0.038 66 0.041 67 −0.255 04 −0.296 06 −0.139 81 −0.174 66
14 3.1224 0.060 75 0.057 29 0.037 99 0.041 67 −0.272 41 −0.33449 −0.150 07 −0.203 46
20 3.4776 0.062 05 0.057 29 0.037 15 0.041 67 −0.345 84 −0.475 60 −0.199 83 −0.313 07
26 3.7377 0.063 50 0.057 29 0.036 43 0.041 67 −0.390 10 −0.605 53 −0.228 68 −0.417 78
32 4.0742 0.065 19 0.057 29 0.035 80 0.041 67 −0.447 58 −0.812 87 −0.268 46 −0.589 79
40 4.2694 0.067 95 0.057 29 0.035 05 0.041 67 −0.440 82 −0.956 17 −0.259 70 −0.711 21

We perform our numerical calculations of Erec by the ap-
proach described in detail in Ref. [31], for the exponential
model of the nuclear charge distribution. The total correction
is conveniently separated into the point-nucleus (point) and
the finite-nuclear-size (fns) parts. The results are presented
in Table II and Fig. 1. The numerical all-order results are
labeled as “all-order,” whereas the leading-order contributions
obtained with Eqs. (79) and (81) are labeled as “Zα-exp.” We
observe that the numerical all-order results rapidly converge
to the lowest-order analytical prediction as Z is decreased.
The higher-order in Zα corrections are quite small for the
point-nucleus contribution but become prominent for the fns
correction already for medium-Z ions; e.g., for Z = 40, the
lowest-order fns formula overestimates the corresponding all-
order result by a factor of about two. It is also interesting that
the fns part of Erec rapidly grows with the nuclear charge and
dominates over the point-nucleus contribution for Z > 10 for
the 2p1/2 state and Z > 20 for the 2p3/2 state.

IX. SUMMARY

We have derived the complete QED correction of order α6

to the binding energies of the nP states of two-body systems
consisting of the spin-0 or 1/2 extended-size particles of
arbitrary masses and magnetic moments. The derivation has
been verified by an all-order in Zα numerical calculation of
the first-order in m/M recoil contribution. We have corrected
the literature result for the positronium l = 1 energies [13–15]
and verified previous calculations of the 2P fine splitting in
light muonic atoms [22,23].

The obtained formulas for the l = 1 states extend the
previous l > 1 results of Ref. [10] and can be applied to a
wide class of two-body systems of immediate experimental
interest, such as hydrogen, hydrogen-like ions, muonic hydro-
gen, muonic helium ion, positronium, muonium, etc. In the
future, even more exotic two-body atomic systems may be-
come accessible for experimental studies, such as protonium
and other hydrogen-like hadronic atoms [32]. Comparisons of
theoretical predictions of these systems in highly rotational

states with accurate spectroscopic measurements would serve
as tests of the yet unexplored region of long-range interactions
between hadronic particles.

The current theoretical predictions of energies of the l >

0 levels of two-body systems can be improved further by a
calculation of the α7 correction, which is presently known in
the nonrecoil limit only [33], and by inclusion of the electron
vacuum polarization in a nonperturbative manner as was done
for muonic atoms [25].
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APPENDIX A: MATRIX ELEMENTS OF VARIOUS
OPERATORS FOR P-STATES

Here, we list results for matrix elements of various opera-
tors needed for our evaluation of E (6) for nP-states,〈

1

r

〉
= μ Zα

n2
, (A1)

〈
1

r2

〉
= 2 (μ Zα)2

3 n3
, (A2)

〈
1

r3

〉
= (μ Zα)3

3 n3
, (A3)

〈
1

r4

〉
= 2 (μ Zα)4

(
1

5 n3
− 2

15 n5

)
, (A4)

〈 �p 4π δ3(r) �p 〉 = 4 (μ Zα)5

3

(
1

n3
− 1

n5

)
, (A5)

〈 �p × 4π δ3(r) �p〉 = i
4 (μ Zα)5

3

(
1

n3
− 1

n5

)
�L, (A6)

〈(pi4π δ3(r)pj )(2)〉 = − 4 (μ Zα)5

3

(
1

n3
− 1

n5

)(
LiL j

)(2)
.

(A7)
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APPENDIX B: POSITRONIUM P-LEVELS
AT THE α6 ORDER

The complete α6 correction to the energy levels of the nP-
states of positronium is given by

E (6)
pos(n

1P1) = m α6

(
− 69

512 n6
+ 23

120 n5
− 1

12 n4

+ 163

4320 n3

)
, (B1)

E (6)
pos(n

3P0) = m α6

(
− 69

512 n6
+ 461

960 n5
− 1

3 n4

− 1531

8640 n3
− a2

1 + 6 a2

24 π2 n3

)
, (B2)

E (6)
pos(n

3P1) = m α6

(
− 69

512 n6
+ 77

320 n5
− 25

192 n4

+ 553

17 280 n3
+ a2

1 − 2 a2

48 π2 n3

)
, (B3)

E (6)
pos(n

3P2) = m α6

(
− 69

512 n6
+ 559

4800 n5
− 169

4800 n4

+ 17 977

432 000 n3
+ −a2

1 + 18 a2

240 π2 n3

)
, (B4)

where a1 and a2 are the expansion coefficients of the electron
magnetic-moment anomaly a,

a = α

π
a1 +

(
α

π

)2

a2 + · · · , (B5)

a1 = 1
2 , (B6)

a2 = 3

4
ζ (3) − π2

2
ln 2 + π2

12
+ 197

144
. (B7)

The presented formulas agree with Ref. [13], Eq. (204) for
all states except the n3P0 one. Note that in this section we
switched to the literature definition of E (6)

pos and included con-
tributions from the expansion of g-factors in α, originating
from E (4) in Eq. (7).
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