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Kato’s theorem and ultralong-range Rydberg molecules
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We consider nonadiabatic coupling in the “trilobite”-like long-range Rydberg molecules created by perturbing
degenerate high-� Rydberg states with a ground-state atom. Due to the flexibility granted by the high Rydberg
level density, the avoided crossings between relevant potential energy curves can become extremely narrow,
leading to highly singular nonadiabatic coupling. We find that the gap between the trilobite potential curve
and neighboring “butterfly” or “dragonfly” potential curves can even vanish, as in a conical intersection, if the
gap closes at an internuclear distance which matches a node of the s-wave radial wave function. This is an
unanticipated outcome of Kato’s theorem.
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I. INTRODUCTION

Nonadiabatic physics in the context of ultracold Ryd-
berg atoms has garnered increased interest in recent years.
In long-range Rydberg molecules, the coupling between po-
tential wells capable of supporting vibrational levels and
dissociative potential curves has been investigated as a pos-
sible decay mechanism [1–4]. Theoretical and experimental
work has shown that nonadiabatic coupling can become
strong enough to induce nonperturbative shifts in vibrational
binding energies [5–7]. In cold or ultracold Rydberg colli-
sions, the available chemical reaction pathways for molecular
formation, state-changing collisions, or ionization are often
determined by the strength of nonadiabatic coupling param-
eters [4,8–10]. Interacting Rydberg ions [11,12] and Rydberg
aggregates [13–16] have been proposed as systems with which
to probe and control dynamics through conical intersections.

An ultralong-range Rydberg molecule consists of a Ryd-
berg atom with principal quantum number n and a distant
(located R ∼ n2 a0 away) “perturber” atom in its elec-
tronic ground state. Nonadiabatic physics are a particularly
interesting aspect of this system due to the close connec-
tion between the potential energy curves and the Rydberg
wave functions [17–20]. Additionally, the large size of the
molecules makes them an ideal laboratory to explore beyond
Born-Oppenheimer physics on exaggerated scales, and the
flexibility provided by Rydberg state parameters allows for
controllable enhancement or suppression of nonadiabatic ef-
fects and the possibility to steer ultracold chemical reactions.
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In this article we show how the nodal positions of
the Rydberg wave functions can be linked to very strong,
even singular, vibronic coupling between the “high-�” or
“trilobite”-like states of a ultralong-range Rydberg molecule.
This effort extends previous work [8] which showed that
singular nonadiabatic coupling can arise in apparent contra-
diction of the von Neumann–Wigner no-crossing rule [21].
We find an unexpected connection between these conical in-
tersections and the spatial generalization of Kato’s theorem
[22] derived by March [23]. Kato’s theorem first emerged
in the context of density functional theory and quantum
chemistry [24–27]. It relates the total electron density at
the origin to its spatial derivative through ∂ρ(r)/∂r|r=0 =
−2ρ(0). March showed that this cusp condition is a limiting
case of a general expression ∂ρ(r)/∂r = −2ρs(r), valid for
a bare Coulomb potential, where ρs(r) is the s-state density
at any position r. This was also discovered in the calculation
of electron transfer in charged particle collisions [28–30].
In the following we prove that the coupling between some
of the adiabatic potential curves of a Rydberg molecule is
proportional to ∂ρ/∂r, and thus Kato’s theorem guarantees
that this coupling can sometimes vanish.

II. THEORY

The interaction between the two atoms composing a
Rydberg molecule is mediated by the rapidly moving
Rydberg electron (at position r), which only encounters
the short-ranged forces from the perturber (at position
R) inside of a small volume centered on it. Across this
region the Coulomb potential is essentially flat, and the
electron-perturber interaction potential V̂ (r, R) is spherically
symmetric with respect to the perturber. It is therefore
conveniently described by an expansion into partial waves L
defined with respect to the perturber. The S-wave contribution
to this interaction is the well-known Fermi pseudopotential
[31]. The contribution of each partial wave is determined
by the electron-perturber scattering phase shift δL(k), which
depends on the internuclear distance through the semiclassical
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momentum k ≡ k(R, n) =
√

2/|R| − 1/n2 (here, and
throughout, we use atomic units). These phase shifts scale
as δL(k) ∼ k2

L3 for L � 2 and, since k � 1, the importance of
higher-order partial waves decreases rapidly [32–34]. Hence,
in the general theory developed below for the adiabatic
potential energy curves UK (R), we give particular expressions
only for the N = 3 most relevant partial waves, L = 0, 1, 2
[35]. The molecular states are denoted “trilobite,” “butterfly,”
and “dragonfly,” respectively [33,35]. To keep the algebra
transparent, we assume 0 < δL(k) < π .1

We obtain the set of adiabatic potentials UK (R) by solving
the electronic Schrödinger equation:

[Ĥe(r) + V̂ (r, R)]χK (r; R) = UK (R)χK (r; R). (1)

Although V̂ (r, R) is described using electronic partial waves
L defined with respect to the perturber, a natural basis to
expand χK (r; R) into is the eigenstates of Ĥe(r). These are
the Rydberg states φn�m(r) = un�(r)

r Y�m(r̂) with angular mo-
mentum 0 � � � n − 1 relative to the ionic core. As the
diatomic system possesses cylindrical symmetry, each m can
be treated individually and we consider just m = 0 below.
The adiabatic eigenstates are therefore written χK (r; R) =∑

� ψK
� (R)φn�0(r) in this basis.

As our focus here lies on the high-� states, we neglect
the quantum defects μ� = δ�/π caused by deviations from
a pure Coulomb potential in a nonhydrogenic atom. We ad-
ditionally neglect coupling to additional n levels. Both of
these assumptions2 are well justified here [20,36] and permit
the replacement of Ĥe(r) by the number En = −1/(2n2) and
the development of analytic expressions. In the following we
define all such energies relative to En. The adiabatic potential
curves UK (R) are obtained by diagonalizing V̂ , whose matrix
elements in the degenerate � subspace of a given n are3

V��′ = −
N−1∑
L=0

W †
�LWL�′ . (2)

V��′ shows how the interaction with the perturber causes an
incoming Rydberg electron with angular momentum � (rel-
ative to the ionic core) to scatter, via each partial wave L
(relative to the perturber), into a state �′. The first three rows
of the rectangular matrix WL� are given in Appendix A. We
solve the eigenvalue problem

∑
�′ V��′ψK

�′ (R) = UK (R)ψK
� (R)

to obtain the adiabatic potential curves.

1In all alkali atoms, this condition holds everywhere except small
R. This assumption can be relaxed at the expense of more careful
algebra involving the imaginary square roots in the βL terms defined
in Appendix A.

2An exception occurs when one of the low-� states lies energet-
ically close to the bottom of the trilobite potential. This occurs,
for example, in Cs, which has an s-state quantum defect of 4.05.
For Rb, the most commonly used alkali atom in Rydberg molecule
experiments, the inclusion of quantum defects has a very small effect
on the size of the avoided crossing.

3Throughout, although in principle all variables defined here de-
pend on n, we keep this dependence implicit except at the level of
the hydrogen wave functions or energies.

III. NONADIABATIC COUPLING

The strength of the nonadiabatic coupling between adia-
batic states K and K ′, quantified by the derivative coupling
matrix 〈χK |∂RχK ′ 〉, is inversely proportional to the energy
gap UK (R) − UK ′ (R). After diagonalizing V̂ , regions in the
potential curves where nonadiabatic coupling becomes large
can be identified by searching for small gaps. As pointed out
in Ref. [8], these can become arbitrarily small when they
occur at a discrete n value close to the position of a conical
intersection in the potential surfaces defined as functions of R
and n, where n is taken to be a continuous variable.

To predict the positions (R0, n0) of such conical intersec-
tions, it proves essential to represent the interaction operator
in a different basis, namely, the perturber spherical basis
composed of the nonorthogonal states:

φ̃L(r; R) =
∑

L′
[W W †]−1/2

LL′
∑

�

WL′�φn�0(r). (3)

The transformation from the Rydberg basis to this one is
accomplished using the left-inverse matrix S satisfying

S = (W W †)−1/2W , S S† = 1N×N . (4)

Using these definitions, it is straightforward to show that V =
S†S V S†S [36], and thus the eigenvalue equation determining
the potential energy curves is written∑

L′
ṼLL′ (R)ψ̃K

L′ (R) = UK (R)ψ̃K
L (R), (5)

where ψ̃K
L = ∑̂

�SL�ψ
k
� , ṼLL′ = ∑

�,�′ SL�V��′S†
�′L′ =

−∑
� WL�W

†
�L′ , and χK (r; R) = ∑

L ψ̃K
L (R)φ̃L(r; R) in this

representation. The matrix element ṼLL′ is proportional to
the overlap 〈φ̃L|φ̃L′ 〉, computed explicitly in Appendix A.
Clearly, rather than dealing with the n × n matrix V of
Eq. (2), it suffices to study the conditions necessary to
obtain degenerate eigenvalues of the N × N matrix Ṽ .
A semiclassical approximation for the elements ṼLL, first
derived by Borodin and Kazansky (BK) [37,38], is

ṼLL(R) ≈ U BK
L ≡ 1

2n2
− 1

2(n − δL(k)/π )2
. (6)

IV. TRILOBITE-BUTTERFLY SUBSPACE

We first consider the subspace with L � 1, correspond-
ing to the trilobite and butterfly states. The 2 × 2 matrix Ṽ
possesses degenerate eigenvalues if Ṽ00 = Ṽ11 simultaneously
as 〈φ̃0|φ̃1〉 = 0. That the latter condition can be met is not
guaranteed a priori: the overlaps determining the diagonal
elements, for example, are nodeless [see Eqs. (B1) and (B2)].
However, employing the spatial generalization of Kato’s cusp
theorem [27], we obtain

〈φ̃0|φ̃1〉 = −|φn00(R)|2. (7)

This result, that the coupling between trilobite and butterfly
states is determined by the hydrogenic s-wave probability
density alone, shows that the coupling vanishes when

un0(R) = 0, (8)
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FIG. 1. Crossings of the adiabatic potential energy curves at principal quantum numbers n = 42 (a) and n = 43 (b). The solid curves (1M)
show the numerical eigenvalues of V��′ , which involves a single manifold of Rydberg states. The dashed curves (GF) show potential curves
obtained via the Green’s function method, which includes contributions from all n levels. The two methods agree very closely, especially
regarding the size of the avoided crossing. Energies are measured with respect to En. The thin gray curves (BK) show the semiclassical
potentials U BK

L . As discussed in the text, the very narrow avoided crossing in panel (a) occurs very close to the intersection of these curves.
(c) Nodes of the Rydberg � = 0 orbital. The plotted curve is n3|un0(r0)|2, where r0 is obtained by solving k2 = 2/r0 − 1/n2 for the k value
where δS (k) = δP(k). When this function is zero, a conical intersection occurs. Narrow avoided crossings appear when a conical intersection
occurs very close to an integer n.

and therefore degenerate eigenvalues are possible. Using the
semiclassical result of Eq. (6), we find the first condition, that
the diagonal elements are equal, to occur when

δL(k) = δL′ (k) (9)

for arbitrary L and L′. For S and P partial waves, if Eqs. (7)
and (8) hold at the same (R, n) tuplet, the two partial waves
locally decouple and the potential surfaces will cross in a
conical intersection. Remarkably, inserting Eq. (8) into the
quantum formulas for the diagonal energies [Eqs. (A2), (B1),
and (B2)] shows that Eq. (9) holds for the fully quantum
calculation as well. That the semiclassical condition perfectly
matches the quantum one is another surprising conclusion
stemming from Kato’s theorem.

Figure 1 shows two extreme examples of the curve crossing
between S and P states, using Rb as a perturber and H as the
Rydberg atom. The adiabatic potential curves obtained from
diagonalizing V̂ are shown as solid lines; since this calculation
involves only states from a single Rydberg manifold, we label
them “1M”. For n = 42 [Fig. 1(a)] the R value where Eq. (9)
holds lies almost perfectly at a node of u42,0(R) [compare
Fig. 1(c)]. For n = 43 [Fig. 1(b)] this point lies nearly at an
antinode of the n = 43 wave function. Therefore the former
case exhibits an extremely narrow crossing (on the sub-MHz
level) while the latter case possesses a pronounced avoided
crossing. To confirm that this behavior is not exaggerated by
or an artifact of the single-manifold approximation, we per-
formed a numerical Green’s function (GF) calculation as well
[33,39,40] (dashed curves), which includes contributions from
the entire Rydberg spectrum [41]. These two methods agree
almost perfectly, especially regarding the existence and size
of the narrow avoided crossing, validating the single-manifold
approximation, which is at the core of the analytical formulas
we derived. We also show the semiclassical curves of Eq. (6),
highlighting the fact that these intersect extremely close to the
avoided crossing in panel (a).

V. DRAGONFLY CONTRIBUTIONS

We now include the effect of L = 2 partial waves. The
coupling between S and D,

〈φ̃0|φ̃2〉 ∝ un0(R)

4πR3
[2un0(R) − Ru′

n0(R)], (10)

is also oscillatory. It vanishes when un0(R) = 0 or
d

dR ln un0(R) = 2
R . When the former condition holds, the

S partial wave decouples from both P and D waves
simultaneously. Unfortunately, the algebra of higher L
values becomes very tedious [32,42]. We speculate that this
decoupling of the S state persists even for higher L values, but
further effort is needed to make this generalization rigorous.
A degeneracy in the 2 × 2 subspace of S and D levels is
also possible, occurring when the expression in Eq. (10)
vanishes simultaneously as δ2(k) = δ0(k). This semiclassical
condition, unlike the SP case, coincides with the quantum
condition only in the large-R limit [Eq. (B4)].

Surprisingly, the coupling between P and D states does
not oscillate [Eq. (B10)], and therefore these curves cannot
cross. It is intriguing that, just as Kato’s theorem shows the
special role played by the s-wave function (defined with the
origin at the Rydberg ion), it shows how the S-wave molecular
state, defined with the origin at the perturber, also behaves in
a nongeneric way.

VI. DISCUSSION

We showed that the L = 0 trilobite state decouples from
the L = 1, 2 partial waves whenever Eq. (8) is satisfied. This
is a direct result of Kato’s theorem. It is particularly intriguing
since the weight of the � = 0 state in the eigenstates |ψ̃0〉 and
|ψ̃1〉 is almost negligible. If the S and P-wave phase shifts are
equal when Eq. (8) holds, a conical intersection exists, and its
presence will be felt as a nearly exact crossing in the potential
curves of nearby integer n levels. Such a conical intersection
cannot occur between butterfly and dragonfly potential curves.
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It is interesting to contrast these results with what was
observed in Ref. [8] for the crossing of a trilobite state with
a “low-�” state having with angular momentum �0 and a
nonzero quantum defect μ�0 . Semiclassically, the relevant po-
tential curves become degenerate when

πμ�0 = δS (k), (11)

at the same (R0, n0) as un0�0 (R0) = 0. Equation (11) resem-
bles Eq. (9) but now requires the phase accumulated by the
scattering off of the nonhydrogenic core of the Rydberg atom
to match that accumulated from the scattering off of the
perturber. This is closely connected with the fact that the
R-dependent scattering phase shifts play the role of quantum
defects in the Rydberg formula given by Eq. (6). The sec-
ond condition is analogous to Eq. (8) but differs in a key
way which again illustrates the counterintuitive message of
Kato’s theorem. For a quantum defect state, it is that ra-
dial wave function which must possess a node. This carries
a certain degree of physical intuition, as this state is the
dominant component of one of the electronic states in the
system. On the other hand, for the trilobite and butterfly
state interaction, there is nothing in the scattering problem
or in the pure Coulomb interaction to single out a specific
�. However, because Kato’s theorem places fundamental im-
portance on � = 0, this is the state which matters in the end,
in what appears to be a surprising accident of the Coulomb
potential.

VII. OUTLOOK

The existence of extremely narrow avoided crossings at
serendipitous n values could play a crucial role in the be-
havior of Rydberg atoms in dense background gases, since
the various transition probabilities between electronic states
determines which decay pathways are available for different
collisions [4]. Recently it was proposed that a series of highly
diabatic transitions followed by a final adiabatic transition is
necessary for the surprising observation that a Rydberg impu-
rity creates a hole in the surrounding condensate density [43].
In both of these contexts, the fact that large deviations from
“generic” behavior can occur at anomalous n values should
certainly be considered. More broadly, Rydberg molecules
could provide a physical realization of the type of bound
state in the continuum predicted in Ref. [44]. It would be
interesting to see if similar physics can be discovered in long-
range Rydberg polyatomic molecules of the type considered
in Refs. [45–47], where the ground-state atom is replaced by
a dipolar molecule. Although the interaction between the elec-
tron and the molecule is very different from the atom-electron
potential, the resulting potential curves resemble those studied
here, suggesting there might exist similar behavior in their
avoided crossings. This would also address the more general
question of the importance of a zero-range potential, rather
than a finite-ranged potential, on the size of avoided cross-
ings. Finally, further exploration of the high-L states to test
our hypothesis that they all similarly decouple from the S
state would be interesting if the challenging algebra of high-L
pseudopotentials could be treated in an elegant way [32,42].

APPENDIX A: MATRIX ELEMENTS OF Ṽ

The L � 2 matrix elements of the N × n rectangular matrix
W are

W0� = β0 φn�0(R) (A1a)

W1� = β1
∂

∂R
φn�0(R) (A1b)

W2� = β2

(
3

2

∂2

∂R2
+ k2

2

)
φn�0(R), (A1c)

where βL =
√

2(2L + 1)πk−(2L+1) tan δL(k). The matrix ele-
ments of Ṽ are

ṼLL′ = −βLβL′Q̃LL′ , (A2)

where
Q̃LL′ = QLL′, L, L′ � 1, (A3a)

Q̃L2 = 1
2 (3QL2 + k2QL0), L � 1, (A3b)

Q̃22 = 1
4 (9Q22 + 6k2Q20 + k4Q00). (A3c)

These formulas make use of the quantity

Qαβ =
n−1∑
�=0

m=�∑
m=−�

∂α

∂Rα
φ∗

n�m(R)
∂β

∂Rβ
φn�m(R). (A4)

APPENDIX B: COMPUTED Q VALUES

In Appendix A, the matrix Ṽ is defined in terms of the over-
lap matrix Q̃, which is in turn defined using Qαβ [Eq. (A4)] as
a sum over the degenerate � and m states. This summation can
be performed analytically, as described in [20,28,29]. In doing
so, all Q̃ terms can be defined in terms of only the s-wave
radial wave function and its derivative, as summarized below.
We use u ≡ un0(R) and u′ ≡ u′

n0(R) to shorten the notation:

Q̃00 = 1

4π
[k2u2 + u′2] (B1)

Q̃11 = k2

3
Q00 − 1

6πR2

(
2uu′ − u2

R

)
(B2)

Q̃22 = 1

20πn2R3

[
2n4(2R + 9) + R3 − 4n2R2

n2
u′2

+ 4(n2(2R − 9) − R2)

R
uu′ + 4(2 − 3R)u2

+ 6n2R4 − R5 + (18 + R(8R − 7))n6

n4R2
u2

]
. (B3)

For R � 1,

Q̃22 ∼ k2

20π

[
(ku′)2 + 4

R2
uu′ + (k2u)2

]
. (B4)

We note here that the expressions given for Q11 and a related
quantity in Ref. [20] are incorrect. We report the correct for-
mulas here for completeness:

ϒ33 = 4πR2k2Q00 − uu′ − u2/R

12πR2
(B5)

ϒ22 = Q11 (B6)

= ϒ33 − un0(R)

4πR3
(Ru′ − u). (B7)
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For large n values the missing term does not lead to noticeable
differences. The various off-diagonal couplings are

Q̃01 = −|φn00(R))|2 = − u2

4πR2
(B8)

Q̃02 = u

4πR3
[2u − Ru′] (B9)

Q̃12 = − 1

8πR2

[
3

(
u

R
− u′

)2

+ k2u2

]
. (B10)

For completeness, another useful result is

Q02 = −k2

3
Q00 + 1

6πR2

(
2u2

R
− uu′

)
. (B11)

APPENDIX C: GREEN’S FUNCTION

The closed-form Coulomb Green’s function [48] leads to a
transcendental equation [33,40]

0 = A0(A1 − A01), (C1)

where

A0 = 1 − v

tan δ0

k
(C2)

A1 = 1 + (vvv − 3uuv )
tan δ1

k3
(C3)

A01 = tan δ0/k

1 − v tan δ0/k
32

uv

tan δ1

k3
, (C4)

whose solutions give the potential energy curves V (R) =
− 1

2ν(R)
2
. Here, ν(R) is the R-dependent principal quantum

number whose noninteger part gives the deviation from the
unperturbed hydrogen levels caused by the perturber. The var-
ious x terms in Eq. (C1) relate to derivatives of the Coulomb

FIG. 2. S- and P-wave phase shifts used to compute Fig. 1, taken
from [49].

Green’s function. The zeros of A0 and A1, computed individu-
ally, give the L = 0 and L = 1 potential curves. A01 describes
the coupling between these terms and vanishes whenever

0 = uv = −ν�(1 − ν)

2R2
Mν,1/2

(
2R

ν

)
Wν,1/2

(
2R

ν

)
, (C5)

where M and W are Whittaker functions. When ν is an integer,
the nodes of Mν,1/2 and Wν,1/2 coincide with those of un0, and
hence we recover the result from diagonalization discussed in
the main text.

APPENDIX D: RUBIDIUM PHASE SHIFTS

The existence of narrow avoided crossings at a specific n
value does depend sensitively on the electronic phase shifts,
and in particular, on the energy where they are computed to
become identical. For reproducibility, we show in Fig. 2 the
electron-rubidium scattering phase shifts used in our calcula-
tions, which match those of Ref. [49]. For other sets of phase
shifts, whether they are computed using different methods or
measured experimentally, we would expect the n values where
conical intersections nearly occur to differ due to any change
in the intersection point.
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