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Microwave transitions in atomic sodium: Radiometry and polarimetry using the sodium layer
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We calculate, via variational techniques, single- and two-photon Rydberg microwave transitions, as well
as scalar and tensor polarizabilities of the sodium atom using the parametric one-electron valence potential,
including the spin-orbit coupling. The trial function is expanded in a basis set of optimized Slater-type orbitals,
resulting in highly accurate and converged eigenenergies up to n = 60. We focus our studies on the microwave
band 90–150 GHz due to its relevance to laser excitation in the Earth’s upper-atmospheric sodium layer
for wavelength-dependent radiometry and polarimetry, as precise microwave polarimetry in this band is an
important source of systematic uncertainty in searches for signatures of primordial gravitational waves within
the anisotropic polarization pattern of photons from the cosmic microwave background. We present the most
efficient transition coefficients in this range, as well as the scalar and tensor polarizabilities compared with
available experimental and theoretical data.
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I. INTRODUCTION

The frequency domain in the MHz–THz range is a pre-
ferred band for sensing and metrology in the radio to
millimeter wavelengths, as well as for establishing measure-
ment standards. One of the most promising and sensitive
recent developments in this field is with the use of Rydberg
atom electric-field sensing [1–14]. This appealing aspect al-
lows for amplitude sensing of RF fields [12] and for imaging
with subwavelength spatial resolution [4,11].

A major source of uncertainty in searches for signatures of
primordial gravitational waves within the polarization pattern
of the cosmic microwave background (CMB), and a source
that is growing in relative importance as the precision of such
searches improves, is the lack of microwave sources of pre-
cisely known polarization in the sky to use for calibration [15].
Recently, excitations with lasers in the Earth’s sodium layer
were shown to dramatically improve photometric systematics
via a laser photometric ratio star (LPRS) in the visible and
near-infrared frequencies [16–18]. It may be possible to ex-
tend the LPRS to precise calibration of microwave telescopes,
such as the BICEP-Keck Array, which measure the polariza-
tion anisotropy of the CMB, and future enlarged and improved
microwave observatories such as CMB-S4 [19,20]. Polar-
ized microwave and millimeter-wave radiation from Rydberg
excited atoms in the sodium layer could be used for pre-
cise relative radiometric and polarimetric calibrations of such
ground-based microwave and millimeter-wave telescopes.

*teomar@chem.umk.pl

Precise measurements and calculations of atomic polar-
izability play an essential role not only in metrology, but
for quantum information processing, optical trapping and
cooling, and interparticle collision studies. The Einstein A
coefficients are especially required for applications in atmo-
spheric physics and astrophysics. There is a great need to
know these quantities with high accuracy over a wide range
of frequencies.

The primary source of recommended data for atomic pa-
rameters of the sodium atom is the report of NIST [21,22].
Kelleher and Podobedova [21] compiled frequencies and
spontaneous emission coefficients (Einstein A coefficients) for
transitions in Na up to n = 11 and angular momentum 0 �
l � 3. It is worth noting that Gallagher et al. [23] made radio-
frequency resonance measurements of the nP and nD series
for n = 16–19 and n = 15–17, respectively. Fabre, Haroche,
and Goy [24] observed more highly excited states of Na and
measured the microwave resonance frequencies between S, P,
D, and F states for n = 23–41 as well as the polarizabilities
of nS and nP levels.

In this article, we extend the previous data on Ein-
stein coefficients and scalar and tensor polarizabilities of
Rydberg states of the sodium atom to include higher principal
quantum numbers. Based on an accurate variational approach
[25,26], transition frequencies, spontaneous and stimulated
emission coefficients, and polarizabilities for the Na(n � 60,
l � 3) atom are calculated. We particularly focus on the
prominent lines in the 90–150 GHz range, of interest for pre-
cision microwave relative radiometric and polarimetric laser
excitation of the sodium layer [16–18]. Rydberg transitions
within Earth’s mesosphere can offer precise sources of relative
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FIG. 1. The nP1/2 ↔ n′S1/2 and nD3/2 ↔ n′P1/2 electron transi-
tions in the highly excited Na atom. The green area indicates the
microwave frequency band of 90 to 150 GHz. The spectrum for
the nP3/2 ↔ n′S1/2 and nD3/2,5/2 ↔ n′P3/2 electron transitions looks
essentially the same.

radiometry and polarimetry in the microwave, with the use
of free-space lasers [27]. The green area in Fig. 1 shows
the microwave band under consideration within the calcu-
lated transition spectrum of Na. One can see the abundance
of atomic electron transitions we will concentrate on in this
article.

II. THEORY AND COMPUTATION

A. Hamiltonian terms

We consider a system comprised of the valence electron
interacting with a closed alkali-metal positive-ion core. The
Hamilton operator can be written as (in a.u.)

Ĥ = − 1
2∇2 + Vl (r) + VLS(r), (1)

where Vl (r) is the one-dimensional effective model potential
[28] and VLS(r) is the spin-orbit coupling [29]. The form of
Vl (r) depends on the nuclear charge (Z) of the atom, five
parameters (a(l )

k , k = 1, 2, 3, 4, and r (l )
c ), and the static dipole

polarizability (αc) of the singly charged core

Vl (r) = −1

r
− (Z − 1)

r
exp

[ − a(l )
1 r

]
+ (

a(l )
3 + a(l )

4 r
)

exp
[−a(l )

2 r
]

− αc

2r4

(
1 − exp

[ − (
r/r (l )

c

)6])
. (2)

All the parameters for the sodium atom are given in Ref. [28].
The spin-orbit interaction potential may be expressed as (in
a.u.)

VLS(r) = L · S
α2

2

1

r

dVl (r)

dr

(
1 − α2

2
Vl (r)

)−2

, (3)

where 〈L · S〉 = 1
2 [ j( j + 1) − l (l + 1) − 3

4 ] and α stands for
the fine-structure constant. As usual, j and l are the total and
orbital angular momentum quantum numbers, respectively,
where j = l ± 1

2 .
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FIG. 2. Convergence of nS1/2, nP1/2, nD3/2, and nF5/2 energy
levels with basis-set size, for different n.

We compute the eigenspectra of the time-independent
Schrödinger equation with the Hamiltonian (1) for Na(l � 3,
j) by applying the Ritz variational method in a trial space
spanned by 650 optimized Slater-type orbitals (STOs). Tech-
nical details of the calculations are described in Secs. II of
Ref. [25] and II.B of Ref. [26]. The calculations are carried out
in quadruple precision. According to the variational principle
for excited states, the lowest kth eigenenergy (Ek ) is the upper
bound for the respective exact energy of the kth state of Na.
Any increase in the size of the basis set gives an improved
approximation (i.e., lower energy) Ek for the kth exact energy
level. The convergence of selected energies with respect to
the size of the basis set is displayed in Fig. 2. Saturation of
the obtained results is visible when the trial space is enlarged.
However, the higher the energy level, the slower the conver-
gence to the exact solution. The variational method with 650
STOs enables us to compute the energy spectrum for any (l, j)
series up to n = 60 with accuracy not less than four significant
digits (for the worst case), and the accuracy increases with
decreasing n.

B. Polarizabilities

The polarizability of an atom is a measure of the atomic
orbital distortion, exposed to an applied electric field. In the
case of linearly polarized electric field F , the interaction with
an atom in a state described by the quantum numbers j (total
angular momentum) and mj (the projection of j on the axis of
propagation of the electromagnetic wave) is written as [30]

VF = −1

2

(
α0 + α2

3m2
j − j( j + 1)

j(2 j − 1)

)
F 2. (4)

We calculate the scalar and tensor polarizabilities, a0 and a2,
respectively, of Na(n, l, j) states as follows [31,32]:

a0 = −2

3

∑
n′,l ′, j′

(2 j′ + 1)

{
l j 1/2
j′ l ′ 1

}2

× max(l, l ′)
|〈nl|r|n′l ′〉|2

En,l, j − En′,l ′, j′
, (5)
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TABLE I. The convergence of the scalar and tensor polarizabilities (in a.u.), for the lowest states and some of the sodium Rydberg states
with respect to n′, in the sums of Eqs. (5) and (6). The notation (x) denotes ×10x . The closed interval [a, b] is defined by {n′ ∈ N : a � n′ � b}.

n n′ α0(S1/2) α0(P3/2) α0(D5/2) α2(P3/2) α2(D5/2)

3 � 60 1.66919(2) 3.56032(2) 6.38605(3) −8.45922(1) −5.07481(3)
� 50 1.66919(2) 3.56023(2) 6.38596(3) −8.45900(1) −5.07478(3)
� 40 1.66919(2) 3.56005(2) 6.38580(3) −8.45859(1) −5.07474(3)
� 30 1.66919(2) 3.55966(2) 6.38544(3) −8.45768(1) −5.07463(3)
� 20 1.66918(2) 3.55853(2) 6.38439(3) −8.45501(1) −5.07434(3)
� 10 1.66914(2) 3.55191(2) 6.37784(3) −8.43823(1) −5.07246(3)

30 � 60 6.78051(9) −9.70554(10) 1.62196(12) 9.81951(9) −5.16578(11)
� 50 6.78048(9) −9.70555(10) 1.62196(12) 9.81954(9) −5.16578(11)
� 40 6.78031(9) −9.70562(10) 1.62196(12) 9.81972(9) −5.16578(11)
� 35 6.77951(9) −9.70593(10) 1.62196(12) 9.82066(9) −5.16576(11)

[10,60] 6.78051(9) −9.70554(10) 1.62196(12) 9.81951(9) −5.16578(11)
[20,60] 6.78052(9) −9.70554(10) 1.62196(12) 9.81951(9) −5.16578(11)
[25,60] 6.78091(9) −9.70552(10) 1.62196(12) 9.81945(9) −5.16578(11)

50 � 60 1.94641(11) −3.85495(12) 5.82569(13) 3.98254(11) −1.85504(13)
� 55 1.94615(11) −3.85504(12) 5.82568(13) 3.98282(11) −1.85503(13)

[10,60] 1.94641(11) −3.85495(12) 5.82569(13) 3.98254(11) −1.85504(13)
[20,60] 1.94641(11) −3.85495(12) 5.82569(13) 3.98254(11) −1.85504(13)
[30,60] 1.94641(11) −3.85495(12) 5.82569(13) 3.98254(11) −1.85504(13)
[40,60] 1.94642(11) −3.85495(12) 5.82569(13) 3.98254(11) −1.85504(13)
[45,60] 1.94665(11) −3.85494(12) 5.82570(13) 3.98250(11) −1.85504(13)

a2 = −2

[
10 j(2 j − 1)(2 j + 1)

3( j + 1)(2 j + 3)

]1/2 ∑
n′,l ′, j′

(−1) j+ j′ (2 j′ + 1)

× max(l, l ′)
{

l j 1/2
j′ l ′ 1

}2{
j j′ 1
1 2 j

}

× |〈nl|r|n′l ′〉|2
En,l, j − En′,l ′, j′

. (6)

The curly brackets, { : : : }, refer to a Wigner 6 j symbol. In the-
ory, the summations should be carried out over all bound and
continuum states, but in practice, only the neighboring states
contribute significantly [32]. Obviously, the dipole-allowed
transitions are for l ′ = l ± 1. Since we successfully calculated
the Na(nS1/2, nP1/2,3/2, nD3/2,5/2, nF5/2,7/2) energy levels up
to n = 60, we were able to determine the polarizabilities for
nS1/2, nP1/2,3/2, and nD3/2,5/2 series with n � 58 with high ac-
curacy. Note that the radial dipole matrix elements, 〈nl|r|n′l ′〉,
do not depend on j, i.e., the wave functions describe the (n, l )
states, where spin-orbit coupling is not incorporated. In turn,
energy levels in the above equations include the fine-structure
splitting due to the spin-orbit interaction.

The quality of the polarizability computations in the range
we are interested in is quite satisfactory. Table I shows the
convergence of polarizabilities with respect to the number
of terms in evaluating Eqs. (5) and (6) for selected states. It
is plainly seen that the polarizabilities are contributed to by
the most adjacent intermediate states. Let us take a closer
look at the results for α0(P3/2) as an example. The scalar
polarizability for 3P3/2 is equal to 355.191 a.u. when the
summation in Eq. (5) is over neighboring states (n′ � 10),
and 356.032 a.u. when more states are taken into account
(n′ � 60). The relative error is less than 0.24%. Moreover,

one can see in Table I how the results saturate when the upper
limit of the summation systematically increases (from 10 to 60
with step 10). The convergence of the scalar polarizability for
excited states is even better. The relative error of α0(50P3/2)
when 45 � n′ � 60 compared to the case with n′ � 60 is less
than 0.0003%. Similar observations can be made for other
polarizabilities presented in Table I.

C. Einstein coefficients

The Einstein coefficients for atom-photon reactions are
intrinsic properties of any atom that do not depend on the
nature of the external electromagnetic radiation.

The Einstein A coefficient corresponds to the rate of
spontaneous emission from a higher-energy state (k) to
a lower-energy state (i), Ak,i ≡ A[(n, l, j) → (n′, l ′, j′)]. Us-
ing this notation, we have (in a.u.) [33]

Ak,i = 4

3(2 j + 1)
α3E3

k,i|〈nl j||D(r)||n′l ′ j′〉|2, (7)

where Ek,i is the energy of the transition, Ek,i = Ek − Ei =
En,l, j − En′,l ′, j′ = h̄ωk,i. The square of the matrix element of
the transition dipole operator, D(r), is given by [33,34]

|〈nl j||D(r)||n′l ′ j′〉|2

= (2 j + 1)(2 j′ + 1)

{
l j 1/2
j′ l ′ 1

}2

× max(l, l ′)|〈nl|r|n′l ′〉|2. (8)

The Einstein B coefficient describes the rate of stimulated
emission and absorption per time and energy density of the
incident radiation. Stimulated emission can be related to
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TABLE II. Selected scalar (given by α0) and tensor (given by α2) polarizabilities of the nS, nP, and nD states of Na in a.u. The notation
(x) denotes ×10x .

n α0(S1/2) α0(P1/2) α0(P3/2) α0(D3/2) α0(D5/2) α2(P3/2) α2(D3/2) α2(D5/2)

3 1.669(2) 3.556(2) 3.560(2) 6.399(3) 6.386(3) −8.459(1) −3.565(3) −5.075(3)
1.655(2)a 3.607(2)b 6.396(3)b −8.789(1)b −5.073(3)b

1.673(2)c 3.449(2)c 3.462(2)c 6.646(3)c 6.622(3)c −9.966(1)c −3.723(3)c −5.285(3)c

1.627(2)d 3.597(2)e 3.614(2)e −8.80(1)e

1.59(2)f 3.49(2)g −1.13(2)g

4 3.132(3) −4.517(3) −4.486(3) 6.112(5) 6.113(5) −1.361(2) −1.443(5) −2.060(5)
3.309(3)c −4.694(3)c −4.628(3)c 6.365(5)c 6.358(5)c −3.565(2)c −1.501(5)c −2.140(5)c

3.110(3)b 6.109(5)h 6.107(5)h −1.432(5)h −2.052(5)h

6.241(5)i 6.273(5)i −1.547(5)i −2.138(5)i

5 2.191(4) −5.867(4) −5.839(4) 4.009(6) 4.010(6) 2.674(3) −9.174(5) −1.310(6)
2.352(4)c −5.990(4)c −5.933(4)c 4.065(6)c 4.060(6)c 1.387(3)c −9.317(5)c −1.328(6)c

2.33(4)h

2.1(4)i

10 4.137(6) −2.476(7) −2.467(7) 6.900(8) 6.902(8) 2.167(6) −1.545(8) −2.207(8)
−2.1(8)j

−2.8(8)k

11 8.069(6) −5.262(7) −5.243(7) 1.364(9) 1.365(9) 4.719(6) −3.053(8) −4.360(8)
−4.22(8)j

−4.82(8)k

12 1.475(7) −1.038(8) −1.034(8) 2.536(9) 2.537(9) 9.486(6) −5.671(8) −8.099(8)
−7.84(8)j

−8.24(8)k

15 6.767(7) −5.749(8) −5.728(8) 1.234(10) 1.234(10) 5.451(7) −2.756(9) −3.936(9)
1.19(10)l −3.8(9)l

−4.26(9)m

16 1.046(8) −9.367(8) −9.333(8) 1.947(10) 1.948(10) 8.958(7) −4.348(9) −6.210(9)
−9.00(8)l 1.89(10)l 7.96(7)l −5.99(9)l

8.8(7)m −5.91(9)m

17 1.572(8) −1.478(9) −1.473(9) 2.987(10) 2.988(10) 1.424(8) −6.669(9) −9.524(9)
−1.40(9)l 2.88(10)l 1.26(8)l −9.20(9)l

1.3(8)m −1.12(10)m

18 2.305(8) −2.268(9) −2.260(9) 4.470(10) 4.471(10) 2.198(8) −9.978(9) −1.425(10)
−2.18(9)l 1.97(8)l

2.0(8)m

19 3.307(8) −3.394(9) −3.382(9) 6.543(10) 6.544(10) 3.309(8) −1.460(10) −2.085(10)
−3.25(9)l 2.98(8)l

3.0(8)m

20 4.653(8) −4.969(9) −4.952(9) 9.389(10) 9.391(10) 4.868(8) −2.095(10) −2.992(10)
23 1.176(9) −1.396(10) −1.391(10) 2.509(11) 2.510(11) 1.383(9) −5.599(10) −7.996(10)

(*) −1.4(10)n 1.4(9)n

(**) −1.7(10)o 1.8(9)o

24 1.558(9) −1.908(10) −1.902(10) 3.384(11) 3.385(11) 1.897(9) −7.551(10) −1.078(11)
25 2.040(9) −2.575(10) −2.566(10) 4.509(11) 4.509(11) 2.567(9) −1.006(11) −1.436(11)
30 6.781(9) −9.740(10) −9.706(10) 1.622(12) 1.622(12) 9.820(9) −3.617(11) −5.166(11)
32 1.036(10) −1.556(11) −1.551(11) 2.550(12) 2.551(12) 1.574(10) −5.689(11) −8.124(11)

−1.6(11)n 1.6(10)n

−1.55(11)o 1.5(10)o

34 1.544(10) −2.414(11) −2.406(11) 3.902(12) 3.903(12) 2.449(10) −8.703(11) −1.243(12)
−2.6(11)n 2.6(10)n

−3.03(11)o 3.3(10)o

35 1.868(10) −2.977(11) −2.967(11) 4.782(12) 4.782(12) 3.024(10) −1.066(12) −1.523(12)
40 4.490(10) −7.799(11) −7.772(11) 1.219(13) 1.220(13) 7.968(10) −2.720(12) −3.884(12)
41 5.281(10) −9.316(11) −9.283(11) 1.450(13) 1.450(13) 9.527(10) −3.233(12) −4.618(12)
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TABLE II. (Continued.)

n α0(S1/2) α0(P1/2) α0(P3/2) α0(D3/2) α0(D5/2) α2(P3/2) α2(D3/2) α2(D5/2)

−1.05(12)n

−1.31(12)o

45 9.735(10) −1.818(12) −1.812(12) 2.784(13) 2.784(13) 1.866(11) −6.208(12) −8.866(12)
50 1.946(11) −3.869(12) −3.855(12) 5.824(13) 5.826(13) 3.983(11) −1.299(13) −1.855(13)
55 3.645(11) −7.647(12) −7.620(12) 1.136(14) 1.136(14) 7.894(11) −2.533(13) −3.617(13)

(∗) α0(24S1/2) − α0(23S1/2) = 0.37(9) Ref. [24] (theo.); (∗∗) α0(24S1/2) − α0(23S1/2) = 0.40(9) Ref. [24] (exp.); aRef. [40]; bRef. [41];
cRef. [42]; dRef. [43]; eRef. [44]; fRef. [45]; gRef. [46]; hRef. [47] (theo.); iRef. [47] (exp.); jRef. [48] (theo.); kRef. [48] (exp.); lRef. [23]
(theo.); mRef. [23] (exp.); nRef. [24] (theo.); oRef. [24] (exp.).

spontaneous emission by the inverse cube of the transition
frequency from the initial (upper) to the final (lower) state by
(in a.u.) [35,36]

Bk,i = c3π2

ω3
k,i

Ak,i. (9)

Incorporating Eqs. (7) and (8) into Eq. (9), we get a final equa-
tion for Bk,i, which does not depend directly on the energy
level difference (in a.u.)

Bk,i = 4

3
π2(2 j′ + 1)

{
l j 1/2
j′ l ′ 1

}2

× max(l, l ′)|〈nl|r|n′l ′〉|2. (10)

The stimulated absorption rate coefficient, Bi,k , is proportional
to Bk,i by the ratio of the statistical weights [35,36]

Bi,k = gk

gi
Bk,i. (11)

D. Two-photon transitions

The probability per second to emit two photons, one at
frequency ω1 and the other at ω2, in the transition nS1/2 →
n′Pj′ → n′′S1/2, j′ = 1

2 , 3
2 , is (in a.u.) [37–39]

A(y)dy = 8

27π
α6ω7

n,n′′y3(1 − y)3
∣∣Mj′

∣∣2
dy, (12)

where y = ω1/ωn,n′′ , ωn,n′′ = ω1 + ω2, and

Mj′ = M (1)
j′ + M (2)

j′ =
∑

n′
〈nS|r|n′P〉〈n′P|r|n′′S〉

×
(

1

En′Pj′ − EnS1/2 + y(EnS1/2 − En′′S1/2 )

+ 1

En′Pj′ − EnS1/2 + (1 − y)(EnS1/2 − En′′S1/2 )

)
.

(13)

In the above, h̄ωn,n′′ is the transition energy from an upper
state (n, l, j) to a lower state (n′′, l ′′, j′′), En,l, j − En′′,l ′′, j′′ ,
and the sum is performed over all intermediate dipole-allowed
atomic states n′.

The total probability for the two-photon emission is

At = 1

2

∫ 1

0
A(y)dy. (14)

The factor in front of the integral avoids double counting of
photons. Consequently, the mean life time is τ = A−1

t .

III. RESULTS AND DISCUSSION

A. Rydberg energy levels

We calculate the energy levels for the nS1/2, nP1/2, nP3/2,
nD3/2, nD5/2, nF5/2, and nF7/2 series for n � 60. Figure 1
presents energy level differences between two states in the
0–300 GHz range as a function of the principal quantum
number. The green area marks the 90–150 GHz microwave
band. It is easy to determine between which two adja-
cent Rydberg states there is an atomic electron transition in

TABLE III. Determined expansion coefficients of Eq. (15) for the scalar and tensor polarizabilities of low- and high-lying states of Na.
The notation (x) denotes ×10x .

α
(n,l, j)
0,2 A(l, j)

0,2 B(l, j)
0,2 C (l, j)

0,2 δ
(l, j)
0,2

α0(nS1/2) 1.21500(−1) 7.26440(1) 4.30899(1) 1.43461
α0(nP1/2) −5.77239 −4.09439 3.53175 4.87711(−1)
α0(nP3/2) −5.75251 −2.45217 −9.71749(−1) 7.22962(−1)
α2(nP3/2) 6.11501(−1) 7.99240 2.26122(1) 2.40946
α0(nD3/2) 7.47735(1) 7.89515 1.92152(1) 1.12710
α2(nD3/2) −1.66751(1) 7.56835(−2) −7.35366 1.07230(−2)
α0(nD5/2) 7.47878(1) −6.94563 1.30233(1) −9.93368(−1)
α2(nD5/2) −2.38141(1) 9.20926(−2) −7.36304 1.30110(−2)
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FIG. 3. The largest Einstein A (left panels) and B (right panels) coefficients for the nP1/2 ↔ n′S1/2 (upper panels) and nP3/2 ↔ n′S1/2 (lower
panels) microwave transitions among highly excited states in sodium. Each point correlates to a specific principal quantum number, provided
for some of the transitions noted in the legends.

a specific frequency range; for example, the transition fre-
quency of nP1/2 → nS1/2 is about 150 GHz for n = 29 and
90 GHz for n = 34. Figure 1 reveals that, in general, the
one-photon transition for |n − n′| � 2 within the microwave
band occurs when the principal quantum number is less
than 60.

B. Static polarizabilities of Rydberg states

The scalar and tensor polarizabilities for excited states
of Na, an excellent test of the quality of the eigenfunctions
and eigenvalues, are presented in Table II. The results are
in good accord with theoretical [23,24,40–42,44,47,48] as
well as experimental [23,24,43,45–48] findings. Although our
basis set was optimized for excited energy levels, the calcu-
lated values for the lower-lying levels are in good agreement
with the observed values. Several different techniques have
been employed to determine α0 and α2 for the ground state
and the first low-lying S, P, and D states; for example,
Maroulis [40] used the coupled cluster method with singles,
doubles, and perturbative triples [CCSD(T)], whereas Zhu
et al. [44] applied relativistic many-body perturbation theory.
Kamenski and Ovsiannikov [42] performed numerical com-
putations with the Fues’ model potential. In turn, Zhang and
Mitroy [41] combined the nonrelativistic configuration inter-
action technique with the semiempirical core potential. The

reference measurement of the ground-state polarizability of
Na was done with an atom interferometer by Pritchard and
coworkers [43]. Our value of α0(S1/2) is in agreement to
better than ±3% with the experimental finding and better than
±1% with the results of Maroulis [40] and of Kamenski and
Ovsiannikov [42]. It is interesting to point out that α2(P3/2)
for n = 4, determined by the two latter authors, differs signif-
icantly from the result presented here by more than a factor of
two. Moreover, all the values of Kamenski and Ovsiannikov
[42] for α2(P3/2) appear to be underestimated. A less-accurate
experimental result for α0(S1/2) comes from the work of
Molof et al. [45] using the E -H-gradient balance technique.
In this case, the deviation is less than ±5%.

The typical experimental determination of polarizability
is with Stark shift measurements of resonance transitions.
However, the number of measurements for highly excited
Rydberg states is relatively scarce. We contrasted our re-
sults with those of Fabre and Haroche [48] for n = 10–12,
Gallagher et al. [23] for n = 15–19, and Fabre et al. [24]
for n = 23–41. When a weak electric field is applied, the
tensor polarizability of an atom with one valence electron can
be effectively obtained from the difference in polarizabilities
between two proper magnetic sublevels. Assuming that the
fine-structure splitting is small in comparison to the energy
distance for l = l ′ ± 1, Eqs. (5) and (6) simplify, which con-
sequently leads to α0(P1/2) = α0(P3/2), α0(D3/2) = α0(D5/2),
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FIG. 4. The largest Einstein A (left panels) and B (right panels) coefficients for the nD3/2 ↔ n′P1/2 (upper panels), nD3/2 ↔ n′P3/2 (middle
panels), and nD5/2 ↔ n′P3/2 (lower panels) microwave transitions among highly excited states in sodium. Each point correlates to a specific
principal quantum number, provided for some of the transitions noted in the legends.

and α2(D3/2) = 7
10α2(D5/2). Note that α2(P1/2) is always

equal to zero. Our results show that this is quite a reason-
able approximation for the sodium atom, especially for the
highly excited states. A smaller, but still significant, difference
between α2(F5/2) and α2(F7/2) also exists. This is because
the spin-orbit splitting decreases with increasing l . Based on
the above mentioned approximation, α2(F5/2) will be equal
to 6

7α2(F7/2). One can see in Table II, the striking agree-
ment between our scalar and tensor polarizabilities for n = 32

with the experimental values of Fabre et al. [24]. The agree-
ment is less impressive for higher excited states (n = 34 and
n = 41). The polarizabilities were also determined theoreti-
cally, based on the Coulomb approximation for those states in
Ref. [24].

The Rydberg polarizabilities scale as n7 [49]. To cover the
entire space of bound states with the values of α0 and α2 for
the sodium atom, we may expand the polarizability in terms
of a power series of the effective principal quantum number
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TABLE IV. Einstein A coefficients (105 s−1) for spontaneous
emission to the Na(3P3/2) state.

nS1/2 → 3P3/2 nD3/2 → 3P3/2

n Other works This work Other works This work

3 85.76a 85.59
84.95b

85.7c

4 178.0a 175.0 20.23a 20.50
176c 20.15b

20.2c

5 50.75a 49.50 8.147a 8.298
49.8c 8.109b

8.15c

6 23.15a 22.51 4.159a 4.244
22.7c 4.129b

4.14c

7 12.63a 12.24 2.429a 2.484
12.3c 2.44c

8 7.662a 7.414 1.550a 1.587
7.50c 1.95c

9 5.000a 4.834 1.141a 1.079
5.61c

10 3.444a 3.328 0.7498a 0.7688
6.50c

11 2.473a 2.390 0.5535a 0.5678
12 1.836a 1.774 0.4200a 0.4317
13 1.401a 1.353 0.3262a 0.3362
14 1.094a 1.055 0.2587a 0.2670
15 0.8700a 0.8391 0.2088a 0.2157
16 0.7032a 0.6782 0.1710a 0.1768
17 0.5764a 0.5560 0.1418a 0.1467
18 0.4783a 0.4615 0.1189a 0.1231
19 0.4012a 0.3872 0.1008a 0.1044
20 0.3398a 0.3281 0.08616a 0.08925
21 0.2904a 0.2804 0.07426a 0.07692
22 0.2500a 0.2416 0.06446a 0.06677
23 0.2169a 0.2096 0.05630a 0.05833
24 0.1894a 0.1830 0.04946a 0.05126
25 0.1663a 0.1607 0.04369a 0.04529
26 0.1469a 0.1419 0.03879a 0.04021
27 0.1304a 0.1259 0.03459a 0.03587
28 0.1162a 0.1123 0.03098a 0.03213
29 0.1041a 0.1005 0.02786a 0.02889
30 0.09356a 0.09035 0.02514a 0.02608
35 0.05775a 0.05574 0.01578a 0.01637
40 0.03811a 0.03678 0.01055a 0.01095
45 0.02646a 0.02553 0.007402a 0.007678
50 0.01911a 0.01844 0.005392a 0.005592
55 0.01375 0.004198
60 0.01052 0.003223

aRef. [33].
bRef. [50] (taken from Ref. [33]).
cRef. [21].

n∗ = n − δ(l, j), where δ(l, j) is the quantum defect, as follows:

α
(n,l, j)
0,2 = A(l, j)

0,2

(
n − δ

(l, j)
0,2

)7
×

⎛
⎝1 + B(l, j)

0,2

n − δ
(l, j)
0,2

+ C(l, j)
0,2(

n − δ
(l, j)
0,2

)2 + · · ·
⎞
⎠. (15)

TABLE V. Lifetimes (in μs) of sodium Rydberg states, compared
with low-temperature measurements.

n nS1/2 nD3/2 nD5/2

17 5.203 4.508 4.512
4.46a

18 6.263 5.351 5.356
5.75a

19 7.459 6.294 6.299
7.42a 6.90a

20 8.800 7.340 7.346
8.9a 7.7a

21 10.29 8.496 8.503
11.3a 8.6a

22 11.94 9.768 9.776
12.2a 10.2a

23 13.76 11.16 11.17
14.5a 11.4a

24 15.76 12.68 12.69
16.6a 13.9a

25 17.94 14.33 14.34
18.6a 15.0a

26 20.32 16.12 16.13
21.2a 16.9a

27 22.89 18.05 18.06
23.8a 17.7a

28 25.67 20.12 20.14
24.9a

aRef. [51].

The fitted coefficients A(l, j)
0,2 , B(l, j)

0,2 , C(l, j)
0,2 , and δ

(l, j)
0,2 of cal-

culated α0 and α2 with the above expression, are presented
in Table III for the S1/2, P1/2,3/2, and D3/2,5/2 states. The
goodness of the fits is excellent. The three-term expansion
(15) with the coefficients, Table III, reproduces the scalar and
tensor polarizabilities to four significant figures, as shown in
Table II.

C. Einstein A and B coefficients

We determined the Einstein coefficients of the nP1/2,3/2 ↔
n′S1/2 and nD3/2,5/2 ↔ n′P1/2,3/2 microwave emissions in the
sodium Rydberg series. The upper left panel of Fig. 3 presents
the results of the A coefficients for the nP1/2 → nS1/2, (n +
1)P1/2 → nS1/2, (n + 2)P1/2 → nS1/2, (n + 1)S1/2 → nP1/2,
(n + 2)S1/2 → nP1/2, and (n + 3)S1/2 → nP1/2 transitions in
the 70–190 GHz frequency range. The two most dominant
A coefficients are for the nP1/2 → nS1/2 and (n + 1)S1/2 →
nP1/2 one-photon decay, with n = 34 at about 90 GHz and
n = 29 at about 150 GHz. The lower left panel of Fig. 3 is for
transitions emanating from and to P3/2. It is worth noting that
the A coefficient is about two times larger for nS1/2 → n′P3/2

than for nS1/2 → n′P1/2. The ratio A(nS1/2→n′P3/2 )
A(nS1/2→n′P1/2 ) = 2, but only

when one assumes En′P1/2 = En′P3/2 , i.e., when spin–orbit cou-
pling is neglected.

Figure 4 shows the Einstein A coefficients for the nD3/2 ↔
n′P1/2 (upper left panel), nD3/2 ↔ n′P3/2 (middle left panel),
and nD5/2 ↔ n′P3/2 (lower left panel) microwave transitions,
where |n − n′| � 3. Figures 3 and 4 allow an easy reading
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between exactly which states the transition occurs at a given
frequency: each point corresponds to a specific n. The largest
A coefficient among those investigated here is for the (n +
1)S1/2 → nP3/2 decay. An analogous situation occurs for the B
coefficients, which are displayed in the right panels in Figs. 3
and 4. It should be noted that as the frequency increases, each
of the curves for the B coefficients tends to trend lower.

The A coefficients for spontaneous emission from the low-
and high-lying nS1/2 and nD3/2 energy levels, where n � 60,
to the lowest P3/2 state are presented in Table IV. They are
compared with the theoretical results of Miculis and Meyer
[33] and the available NIST data [21]. The agreement is
excellent. Note that the report of Kelleher and Podobedova
from NIST [21] contains data for transitions from low-excited
states only. We would like to point out one particular transition
in the NIST report, i.e., the 10S1/2 → 3P3/2 transition. It is
almost double our result as well as the tranisiton of Miculis
and Meyer [33].

Additionally, we determined the radiative lifetimes of the
sodium nS1/2 and nD3/2,5/2 states for n = 17–28 and com-
pared them directly with low-temperature measurements of
Spencer et al. [51]. The lifetime (τk ) against spontaneous
emission of the upper state (k) is related to the sum of such
Einstein Ak,i coefficients over all allowed transitions to lower
states, τ−1

k = ∑
i Ak,i. Since the experiment was carried out

in a cooled environment, the effect of blackbody-induced
transfer can be neglected in the theoretical considerations. Our
results and the experimental values are presented in Table V.
One may notice the measurement data exhibit less smooth
behavior than the computed values; however, the agreement
between the results is good. The lifetime increases with in-
creasing n, varying between 4 and 26 µs.

D. Two-photon transitions

Dyubko and coworkers [52] measured the frequency of
the two-photon transition Na(29S1/2 → 30S1/2) and obtained
a value of 2 × 147542 MHz. Our calculated value is 2 ×
147528 MHz, helping to validate the accuracy of our results.
The fractional difference is less than 0.01%.

We calculated the full two-photon emission spectra for
transitions 35S1/2 to 34S1/2 and 30S1/2 to 29S1/2 via n′Pj′ .
The choice was dictated by the fact that E35S1/2 − E34S1/2 =
181 GHz (≈ 2 × 90 GHz) and E30S1/2 − E29S1/2 = 295 GHz
(≈ 2 × 150 GHz); moreover, as we mentioned earlier, the
highest values for the one-photon emission probabilities are
for the nPj → nS1/2 and (n + 1)S1/2 → nPj′ transitions. The
results are presented in Fig. 5. The black and red curves show
the transitions through the n′P1/2 and n′P3/2 states, respec-
tively. The sum of the two transitions, as the probability of
two-photon decay, is shown in blue. The sharp and nearly
Lorentzian peaks correspond to n′Pj′ resonances, shifted, due
to the spin-orbit interaction, as is clearly visible in the insets
of Fig. 5. Furthermore, one sees the black and red curves
suddenly drop to zero at certain frequencies. This behavior
is caused by a destructive interference, resulting in the full
cancellation of M (1)

j′ and M (2)
j′ terms, see Eq. (13), at specific

values of y. In experiments, due to inhomogeneity and broad-
ening, A(y) will never be zero, but in our calculations, there is
no other width than the natural linewidth.

FIG. 5. Two-photon emission spectra for the 35S1/2 → 34S1/2

(upper panel) and 30S1/2 → 29S1/2 (lower panel) transitions. The
corresponding frequencies ωn,n′′/2π are 181 and 295 GHz, respec-
tively. The variable y is the single-photon frequency ω1 with respect
to the two-photon transition frequency ωn,n′′ (= ω1 + ω2). The black
and red lines represent the transitions via n′P1/2 and n′P3/2, re-
spectively, whereas the blue line is the sum of these two. The
dotted-dashed, dashed, and dotted lines represent the nonresonant
spectra.

Interestingly, the probability of emission of two identical
photons is nonzero. The transition rate for (n + 1)S1/2 →
nS1/2 at y = 0.5 (ω1 = ω2 = ωn,n′′/2) is equal to 1.70 × 10−4,
1.20 × 10−4, 1.77 × 10−4, and 1.44 × 10−4 s−1, respectively,
for the pair of quantum numbers (n, j′): (34, 1

2 ), (34, 3
2 ),

(29, 1
2 ), and (29, 3

2 ).
We also investigated the nonresonant contribution to the

two-photon spectral distribution A(y), carrying out the sum-
mation in Eq. (13) over all states with energies En′ �
En and En′ � En′′ . One can identify, in Fig. 5, that it
is small on the absolute scale compared with the peaks.
However, the nonresonant terms noticeably increase the dis-
tant wings of the two-photon emission profiles (for about
y = 0 and y = 1). After numerical integration, we obtain
Anon-res.

t (35S1/2 → n′P1/2 → 34S1/2 and n′ �= 34) = 2.42 ×
10−13 s−1, Anon-res.

t (35S1/2 → n′P3/2 → 34S1/2 and n′ �=
34) = 2.39 × 10−13 s−1, Anon-res.

t (30S1/2 → n′P1/2 → 29S1/2

and n′ �= 29) = 1.06 × 10−12 s−1, and Anon-res.
t (30S1/2 →

n′P3/2 → 29S1/2 and n′ �= 29) = 1.05 × 10−12 s−1. Of course,
within the nonrelativistic treatment for the two-photon
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transition from (n + 1)S to nS of hydrogen-like atoms, only
nonresonant contributions to the total two-photon decay rate
matter because the energy levels of the same n but different l
are degenerate. There are no real intermediate states; conse-
quently, resonant contributions do not occur [53], in contrast
to our case.

IV. CONCLUSION

We accurately calculated the highly excited S, P, D, and
F Rydberg states of the sodium atom within the Ritz vari-
ational method. The positive core-electron interaction was
modeled by the parametric one-electron valence potential with
spin-orbit coupling. We determined the scalar and tensor po-
larizabilities for low and highly excited states and compared
them with available experimental and theoretical results. After
representing the polarizability as a series in powers of the
effective principal quantum number, we found the leading
expansion coefficients, allowing for rapid evaluation of α0 and
α2 for arbitrary n and l � 2. As recently shown, utilizing the
enormous polarizabilities of Rydberg states with the control
of long-range interaction enables one to image the dynamics

of ions embedded in a cold cloud of atoms [54]. We also
calculated the largest Einstein coefficients for spontaneous
and stimulated emission in the band of interest for photomet-
ric observations. From Figs. 3 and 4, one can immediately
determine between which states the transitions take place for
a given frequency. In general, the most probable Na transi-
tions occur from the (n, l, j) state to the (n, l − 1, j − 1) and
(n − 1, l + 1, j + 1) states. We also showed the emission of
photons due to two-photon transitions from 30S1/2 to 29S1/2

and from 35S1/2 to 34S1/2.
The emphasis in our studies was on transitions in the

microwave frequency range between 90 and 150 GHz. They
may be helpful in calculating the expected LPRS signal flux
density on Earth’s surface at various microwave frequencies
from the resulting laser-excited source in the sodium layer as
a function of power and other properties of the two lasers and
for precise relative radiometric and polarimetric calibration of
ground-based microwave and millimeter-wave telescopes.
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