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Retardation effects in atom-wall interactions
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The onset of retardation effects in atom-wall interactions is studied. It is shown that the transition range from
the 1/z3 short-range (van der Waals) interaction to the 1/z4 long-range (Casimir) retarded interaction critically
depends on the atomic properties and on the dielectric function of the material. For simple non-alkali-metal
atoms (e.g., ground-state hydrogen and ground-state helium) interacting with typical dielectric materials such
as intrinsic silicon, the transition to the retarded regime is shown to proceed at a distance of about 10 nm
(200 Bohr radii). This is much shorter than typical characteristic absorption wavelengths of solids. Larger
transition regimes are obtained for atoms with a large static polarizability such as metastable helium. We present
a simple estimate for the critical distance, zcr = 137

√
α(0)/Z atomic units, where α(0) is the static polarizability

(expressed in atomic units) and Z is the number of electrons of the atom.
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I. INTRODUCTION

Dispersion forces between spatially well-separated mi-
croscopic systems are important for phenomena such as
atom-surface scattering, physisorption, the structure of soft
matter and two-dimensional layered materials, and many
applications [1,2]. In this context, it is well known that atom-
atom interactions undergo a transition from a short-range van
der Waals (1/R6) to a retarded long-range (1/R7) behavior,
where R is the interatomic distance (see Ref. [3] and Chaps.
4 and 11 of Ref. [4]). For atom-wall interactions, the asymp-
totic behavior changes from 1/z3 for short-range to 1/z4 in
the long-range limit (see, e.g., Ref. [5]), due to a process
called retardation. The interpolating formula has been given
in Eqs. (18) and (21) of Ref. [6] (see also Ref. [7]). However,
the precise nature of this transition is less well characterized
in the literature. From Fig. 3 of Ref. [6], it is evident that
the interaction of 87Rb atoms with a sapphire surface starts to
substantially deviate from the 1/z3 short-range asymptotics in
the range z ∼ 30 nm ≈ 600 a0, where a0 is the Bohr radius.
For the example of metastable helium (in the triplet state)
interacting with a gold surface, estimates for the transition
region to the retarded regime have been indicated in the range
of z � 150 nm ≈ 3000 a0 in the text following Eq. (3) in
Sec. III of Ref. [8], and in Secs. 16.3.4 and 16.4.2 of Ref. [9].
Here, we concentrate on metastable helium in the triplet 2 3S1

state, which has a radiative lifetime of about 7800 s and is thus
sufficiently long-lived to probe atom-surface interactions in
detail, including quantum reflection studies [10]. By contrast,
while the 2 1S0 state also is metastable (dipole decay to the
ground state is not allowed), its lifetime is much shorter, of
the order of only 2 × 10−2 s. In this paper, we aim to provide
clarity and give both simple estimates and precise numerical
results that show the onset and spatial range of the transition
regime between van der Waals and Casimir-Polder interac-
tions. The dependence of the transition region on the atomic
species and on the dielectric function of the surface is also
studied.

Intuitively, we can understand the onset of retardation as
follows: Atom-wall interactions happen due to the exchange
of virtual photons. If an exchange photon picks up a non-
negligible phase (of order unity) on its way from the atom
to the wall and back, retardation needs to be taken into ac-
count (Chap. 5 of Ref. [4]). The phase of a characteristic
photon is given as �φ = kchz, where kch is the wave vector
corresponding to a characteristic resonance excitation of the
atom (or solid). The condition �φ ∼ 1 leads to z ∼ 1/kch =
λch/(2π ), where λch is the characteristic wavelength. For sim-
ple atomic systems such as (atomic) hydrogen or helium (in
their ground states), the characteristic excitation wavelength is
λch = h̄c/Eh, where Eh = α2mc2 is the Hartree energy (where
α is the fine-structure constant, m is the electron mass, c is
the speed of light, and the subscript h stands for Hartree).
Hence, a priori, we can expect retardation effects to become
important when the atom-wall distance is of the order of a
Hartree wavelength λh,

z ∼ λh = h̄c

Eh
= a0

α
= 7.25 nm = 137 a.u., (1)

where a0 is the Bohr radius, which is the unit of length in
the atomic unit system. Throughout this article, we use the
abbreviation a.u. for quantities given in atomic units. We note
that λh is, purely parametrically, of the same order as optical
wavelengths, but typical optical wavelengths in the visible
spectrum are longer than λh; the ultraviolet spectrum ends
at about 400 nm. Hence, one might ask whether or not large
prefactors could shift the parametric estimate (1).

Here, we demonstrate that an extended distance scale for
the nonretarded interaction may be observed for special atoms
with an excessively large static polarizability, but that retar-
dation sets in at much shorter length scales commensurate
with Eq. (1) (in typical cases, about 10 nm ≈ 200 a.u.) for
many simple atomic systems. For example, we demonstrate by
explicit numerical calculations that the atom-wall interaction
of ground-state helium atoms undergoes a transition to the
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retarded regime much earlier, at length scales commensurate
with z ∼ λh. Variations of the onset of the retarded regime
with the atomic system are also discussed.

This paper is organized as follows. We discuss the inter-
polating formula for the transition from the short-range to
the long-range regime in Sec. II, with a special emphasis
on interactions of hydrogen and helium with a silicon sur-
face. Other elements are discussed in Sec. III. Atomic units
are used throughout unless indicated otherwise [h̄ = e = 1,
ε0 = 1/(4π ), c = 1/α, where α is the fine-structure con-
stant]. We provide mini-reviews of applicable distance ranges
in Appendix A, parameters of our helium calculations in
Appendix B, and parameters of the dielectric function of
intrinsic silicon in Appendix C. A derivation of the Thomas-
Reiche-Kuhn (TRK) sum rule for metastable reference states
[11,12] is presented in Appendix D.

II. HYDROGEN AND HELIUM ON SILICON AND GOLD

We start from an interpolating expression for the atom-wall
interaction, which reduces to the 1/z3 short-range interaction
for small atom-wall distance and to the 1/z4 long-range inter-
action for a large distance. The relevant formula is given in
Eqs. (18) and (21) of Ref. [6],

E (z) = − α3

2π

∫ ∞

0
dω ω3 α(iω)

∫ ∞

1
d pe−2 α pω zH (ε(iω), p),

(2)

where

H (ε, p)=
√

ε − 1 + p2 − p√
ε − 1 + p2+p

+ (1 − 2p2)

√
ε−1 + p2−p ε√

ε − 1 + p2 + p ε
.

(3)

Here, α(iω) is the dynamic (dipole) polarizability of the atom
at imaginary driving frequency, and ε(iω) is the dielectric
function of the solid at imaginary angular frequency. For the
material of the solid (intrinsic silicon), we assume the interpo-
lating model of the temperature-dependent dielectric function
recently discussed in Ref. [13] for intrinsic silicon (with slight
modifications). The parameters are reviewed in Appendix C.
We also study gold, employing a simple plasma model for
its dielectric function for definiteness and a modified model
discussed in Eq. (13.46) of Ref. [9].

In the current section, we focus on atomic hydrogen and
helium. For hydrogen, we employ the following formula
for the dipole polarizability in the nonrecoil approximation
(infinite nuclear mass), which is sufficient for the accuracy
required in the current investigation,

αH(ω) = QH(ω) + QH(−ω), (4)

where

QH(ω) = 1

3
〈1S|�r 1

H − E1S + h̄ω
�r|1S〉, (5)

where E1S is the ground-state energy of hydrogen, H is the
Schrödinger-Coulomb Hamiltonian, and the scalar product
is understood for the two position operators. According to
Eq. (4.154) of Ref. [4], the dipole matrix element can be

expressed as follows,

Q(H)(ω) = 2t2 p(t )

3 (1 − t )5 (1 + t )4
+ 256 t9 f (t )

3 (1 + t )5 (1 − t )5
, (6)

where the photon energy is parametrized by the t variable, t =
t (ω) = (1 + 2ω)−1/2. The polynomial p(t ) incurred in Eq. (6)
is

p(t ) = 3 − 3t − 12t2 + 12t3 + 19t4 − 19t5 − 26t6 − 38t7.

(7)

The function f (t ) is a complete hypergeometric function,

f (t ) = 2F1(1,−t, 1 − t, ξ ), (8)

where ξ = (1 − t )2/(1 + t )2.
For helium, we use an approach based on a fully corre-

lated basis set, using exponential basis functions [14–16]. We
employ a Löwdin decomposition of the overlap matrix (see
Appendix J of Ref. [17]) and use extended-precision arith-
metic in the JULIA language [18–20] in order to avoid loss of
numerical precision in intermediate steps of the calculation.
The HTDQLS algorithm [21] is used to diagonalize the overlap
matrix in arbitrary precision. Trial functions for S states are of
the explicitly correlated form exp(−ar1 − br2 − cr12) with an
appropriate symmetrization for particle interchange (positive
sign for singlet states, negative sign for triplet states). Here, r1

and r2 are the distances of the two electrons from the helium
nucleus, and r12 is the interelectron distance. For P states, trial
functions are of the explicitly correlated form xi

1 exp(−ar1 −
br2 − cr12), where �r1 = ∑3

i=1 xiêi in the Cartesian basis, again
with an appropriate symmetrization for particle interchange.
For the calculation of the matrix elements of the Hamiltonian,
and the dipole transition matrix elements, one needs the mas-
ter integrals given in Chap. 13 of Ref. [4]. Further details are
relegated to Appendix B.

For the evaluation of the dynamic polarizability, two other
approaches have been discussed in the literature, namely,
the single-oscillator model [8,23] (henceforth referred to by
the acronym 1osc) and the few-oscillator model [13] (hence-
forth referred to by the acronym fosc). The single-oscillator
model, asymptotically matched to the static (ω → 0) and
ultraviolet (ω → ∞) limits, reads as follows (in atomic
units),

α1osc(iω) = Z

ω2 + Z/α(0)
= Z

ω2 + ω2
cr

. (9)

Here, α(0) is the static polarizability, Z is the number of
electrons, and the critical frequency is ωcr = √

Z/α(0) (this
frequency will be important for our considerations in Sec. III).
The formula (9) has the correct static limit [α(iω = 0) =
α(0)]. The correct ultraviolet limit is also obtained in view
of the asymptotic relation α(iω) → Z/ω2, which fulfills the
TRK sum rule [11,12]. This sum rule remains valid for
metastable reference states (see Appendix D). Values of α(0)
have been tabulated in Ref. [24] for all elements with nuclear
charge numbers 1 � Z � 120. (Remark: It is also possible
to match the single-oscillator model against the van der
Waals coefficient of the atomic dimer system [25,26], but
in this case, one fails to fulfill the TRK sum rule in the
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FIG. 1. Dynamic (dipole) polarizability of atomic hydrogen,
α(iω), as a function of the imaginary driving frequency. The exact
values obtained from Eq. (4) are compared with the few-oscillator-
strength-based model (fosc) described in Appendix B of Ref. [13].
The first 30 oscillator strengths and their corresponding transition
energies are collected from Table 4 of Ref. [22] for the evaluation,
which yields a maximum relative error of 4.16%. For comparison,
the single-oscillator model, given in Eq. (9), is also plotted. The
atomic polarizability is given in atomic units, i.e., in units of e2a2

0/Eh,
where e is the electron charge, a0 is the Bohr radius, and Eh is the
Hartree energy.

ultraviolet region. Here, we use the functional form given in
Eq. (9).)

As an intermediate between the exact calculation of the
dynamic polarizability and the single-oscillator model, the
few-oscillator model has recently been discussed in Ap-
pendix B of Ref. [13]. Let us assume that a finite number
of oscillator strengths fn are known (n ∈ {1, . . . , N}), with
corresponding resonance frequencies ωn. The few-oscillator
strength model reads as follows,

αfosc(iω) =
N∑

n=1

fn

ω2 + ω2
n

+ 1

ω2 + ω2
c

(
Z −

N∑
n=1

fn

)
, (10a)

(ωc)2 = Z − ∑N
n=1 fn

α(0) − ∑N
m=1 fm/ω2

m

. (10b)

Here, ωc describes the typical scale of virtual excitations
into the continuum. One collects a number N of oscillator
strengths [first term on the right-hand side of Eq. (10a)] and
approximates the completion of the spectrum by including the
second term on the right-hand side of Eq. (10a). The choice
of the frequency ωc in Eq. (10b) ensures that the correct static
limit α(0) is reproduced. From tables (e.g., Ref. [22]), it is
possible to collect at least N = 9 oscillator strengths to the
lowest excited states for typical atomic species.

In Figs. 1 and 2, and Fig. 3 for metastable helium, we show
that the oscillator-strength-based approach used in Ref. [13],
which is enhanced by matching the static polarizability and
the ultraviolet limits with accurate limits, yields numerical
data for the dynamic polarizability of hydrogen and he-
lium which are in good agreement with the exact results.

FIG. 2. Dynamic (dipole) polarizability of (ground-state) atomic
helium as a function of imaginary driving frequency. The values
obtained from the exact approach based on a fully correlated basis
set are compared with the oscillator-strength-based model. Oscillator
strengths for excited states from n = 2 to n = 10, and their corre-
sponding transition energies are collected from Table 14 of Ref. [22]
for the evaluation, which yields a maximum relative error of 12.14%.
For comparison, the single-oscillator model [Eq. (9)] is also plotted.

A comparison of the single-oscillator model to the few-
oscillator–strength model illustrates the gradual improvement
achieved by including more known oscillator strengths. An-
other observation is as follows: The presence of resonances
due to transitions to other bound-state energy levels has a ten-
dency to lower the curve of α(iω) upon the inclusion of more
bound-state resonances as compared to the single-oscillator
model, i.e., one has α1osc(iω) > αfosc(iω) > α(iω). Hence,
the single-oscillator model tends to overestimate the polariz-
ability at finite excitation frequencies, while reproducing the
correct limit for very high frequencies.

FIG. 3. Same as Figs. 1 and 2, but for metastable helium (He∗) in
the 2 3S1 reference state. Because the two curves for the fosc model
and the exact polarizability almost overlap, the curve for the fosc
model is shifted upwards by a constant offset of +5.0 a.u. in order to
make the curves visually discernible.
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FIG. 4. Change in the effective exponent neff for atom-wall inter-
actions due to the transition from the short-range (van der Waals) to
the long-range (Casimir) regime for hydrogen, ground-state helium,
and metastable 2 3S1 helium, interacting with intrinsic silicon. To
this end, the atom-wall potential is numerically evaluated and the
effective exponent is calculated via Eq. (11) as a function of the
atom-wall separation. The Clausius-Mossotti (CM) model described
in Ref. [13] is used for the dielectric function of intrinsic silicon,
with slightly modified parameters (see Table I). The exact dynamic
polarizability is used for all atoms.

In order to gauge the transitions from the short-range to
the long-range regime, we use the effective “local” power
coefficient

neff = z

V (z)

dV (z)

dz
= d ln(|V (z)|)

d ln(z)
. (11)

It evaluates to exactly n when V (z) = V0zn. By the logarithm
of the potential, we understand the logarithm of the numerical
value (reduced quantity) of the potential, expressed in atomic
units.

The dependence of the effective exponent neff on the atom-
wall distance z is shown in Figs. 4 and 5 for the interaction
of H, He, and H∗ with silicon and gold, respectively. Let us
define the breakdown point zbr for the short-range expansion
to be the distance where the effective exponent neff reaches
the value neff = −3.25, which is 25% of the way between
the asymptotic short-range value (neff = −3) and the long-
range value (neff = −4). This definition, while arbitrary to
some extent, captures the essence of the transition between
the two regimes. In addition to the substantial deviation of
the effective exponent neff from the value neff = −3 at the
breakdown point, we have checked that the relative devia-
tion of the atom-surface potential V (z) from the short-range
estimate (19), parametrized by the function D(z) = [V (z) −
(−C3/z3)]/V (z), is at least 35 % at z = zbr, further validating
the sensibility of our definition.

From Fig. 4, one reads off the following values for interac-
tions with intrinsic silicon:

zbr (H; Si) ≈ 203 a.u., (12a)

zbr (He; Si) ≈ 126 a.u., (12b)

zbr (He∗; Si) ≈ 1033 a.u. (12c)

FIG. 5. Breakdown of the short-range asymptotics for the atom-
wall interaction for hydrogen interacting with gold, as described by
the plasma model (14). Otherwise, the figure is analogous to Fig. 4.

When using the single-oscillator model, the values change
into

zbr (H; 1osc; Si) ≈ 194 a.u., (13a)

zbr (He; 1osc; Si) ≈ 117 a.u., (13b)

zbr (He∗; 1osc; Si) ≈ 674 a.u. (13c)

For the fosc model, the values of zbr are in between the values
for the exact polarizabilities and those for the 1osc model,
namely, 200, 121, and 1005 a.u., respectively, for H, He,
and He∗.

Another example is the calculation of zbr for interactions
with gold, where we use the plasma model,

ε(iω) = 1 + ω2
pl

ω2
, (14)

where ωpl is the plasma frequency. For the plasma frequency
ωpl, we use the same value as advocated in Ref. [9], namely,
9 eV. The dielectric function of the plasma model diverges
in the limit ω → 0, which implies that the long-range limit
of the interaction with a gold surface is the same as that for a
perfect conductor (see also Ref. [7]). The dielectric function of
gold, approximated by the plasma model, is strongly peaked
for very low frequency; it constitutes a cursory approximation.
Because of the strong emphasis on very low virtual pho-
ton frequencies, we can expect zbr to be exceptionally large
as compared to other materials (see also the discussion in
Sec. III).

Figure 5 shows the breakdown of the short-range expansion
for hydrogen and ground-state and metastable helium, for
interactions with gold. One reads off the values

zbr (H; Au) ≈ 309 a.u., (15a)

zbr (He; Au) ≈ 228 a.u., (15b)

zbr (He∗; Au) ≈ 1414 a.u. (15c)
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For the single-oscillator model, one obtains

zbr (H; 1osc; Au) ≈ 297 a.u., (16a)

zbr (He; 1osc; Au) ≈ 217 a.u., (16b)

zbr (He∗; 1osc; Au) ≈ 892 a.u. (16c)

For the fosc model, the values of zbr are in between the values
for the exact polarizabilities and those for the 1osc model,
namely, 306, 223, and 1399 a.u., respectively, for H, He,
and He∗.

The breakdown distance depends quite substantially on
the atomic system. These observations raise the question of
the general dependence of the breakdown of the short-range
expansion on the atomic species and on the properties of the
solid.

We have already mentioned that the plasma model of gold
leads to exceptionally large values of zbr. This can be ramified:
For example, the modified plasma model given in Eq. (13.46)
of Ref. [9] adds additional terms which modify the plasma
model given in Eq. (14) for higher frequencies, while the
leading asymptotics for ω → 0 are unmodified. The addition
of further terms shifts the dominant contribution to the inte-
grals to higher frequencies ω, mimicking larger values of ωcr

and leading to smaller values of zbr. [One notices that ωcr is
proportional to

√
Z/α(0), while zbr can be estimated to be

proportional to
√

α(0)/Z , according to Eq. (21).] This is in-
deed confirmed. When using the exact polarizabilities and the
modified plasma model given in Eq. (13.46) of Ref. [9], the
results given in Eq. (15) change into 201, 123, and 1311 a.u.,
respectively, for H, He, and He∗. The relative change as com-
pared to the simple plasma model given in Eq. (14) is smallest
for metastable helium; this is due to emphasis on smaller ex-
citation frequencies (small value of ωcr for metastable helium,
see Fig. 3), where the simple plasma model given in Eq. (14)
and the modified plasma model given in Eq. (13.46) of Ref. [9]
share the same asymptotics.

III. OTHER ELEMENTS

The question of the dependence of the breakdown distance
zbr on the atomic species is made more urgent by the obser-
vation that more complex atoms with occupied inner shells
typically have a much larger static polarizability [24] and
much smaller typical excitation energies (at least to the first
excited states, see Ref. [27] for a compilation). One might
think that the smaller (lowest) excitation energies of more
complex atoms could imply a much narrower functional form
of the dynamic polarizability α(iω) for more complex atoms
and, hence, a drastic extension of the nonretarded 1/z3 short-
range regime. However, one could also counterargue that more
complex atoms also possess transitions to much higher excited
states. Hence, one could argue that these higher-energy virtual
transitions might lower the distance range for the onset of
retardation.

The discussion of other atomic species is made easier by
investigating the general structure of the atom-surface inter-
action integral given in Eq. (2). In order to estimate how far
the nonretarded approximation is valid, let us start from the
regime of not excessively large z. In this case, the exponen-
tial suppression factor exp(−αωpz) is not very pronounced,

and the dominant integration region comes from large p. We
expand H[ε(iω), p] for large p with the result,

H[ε(iω), p] ≈ 2p2 ε(iω) − 1

ε(iω) + 1
, (17)

commensurate with the leading term recorded in Eq. (22) of
Ref. [28]. One then carries out the integral over p in Eq. (2)
and obtains the approximate formula

E (z) ≈ − 1

4πz3

∫ ∞

0
e−2 α ω zα(iω)

ε(iω) − 1

ε(iω) + 1
. (18)

Now, if one can ignore the exponential suppression factor
exp(−2αωz) over the entire characteristic ω integration re-
gion, then one can approximate the interaction energy by the
very simple expression

E (z) ≈ − 1

4πz3

∫ ∞

0
α(iω)

ε(iω) − 1

ε(iω) + 1
= −C3

z3
, (19)

where C3 is defined in the obvious way. This is precisely
the short-range asymptotic limit [in the expansion in pow-
ers of z and ln(z)] of the atom-surface interaction energy.
The term given in Eq. (19) corresponds to the expression
−C3/z3; the leading short-range C3 coefficient is otherwise
listed in Eq. (35) of Ref. [28] (it is called C30 in Ref. [28])
and in Eq. (16.24) of Ref. [9]. However, if one cannot ignore
the exponential suppression (retardation) factor exp(−2 α ω z)
over the relevant characteristic ω integration region, then the
short-range expansion breaks down, and the atom-surface in-
teraction energy is no longer well approximated by Eq. (19).
We can thus conclude that the nonretardation approximation
is valid in the distance range

z � 1

α ωch
, (20)

where ωch is the largest characteristic frequency in the prob-
lem, i.e., either in the polarizability or in the dielectric
function of the material.

The largest characteristic excitation frequency will typi-
cally be obtained from the atom, not from the solid. Typical
characteristic excitation energies for solids are in the range of
a few eV, as is evident from the extensive tabulation of dielec-
tric functions in Ref. [29]. For conductors whose dielectric
function is described by the plasma model given in Eq. (14),
the characteristic absorption frequency is zero. This is evident
if one writes the expression for the plasma model dielectric
function as 1 + ω2

pl/(ω2 + ω2
0 ) with ω0 = 0.

Let us use the single-oscillator model and define the crit-
ical distance zcr for the onset of retardation effects to be the
scale where the condition (20) breaks down. This means that
the critical angular frequency and its corresponding distance
scale (in atomic units) are respectively

ωcr =
√

Z

α(0)
a.u., zcr = 137

√
α(0)

Z
a.u. (21)
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FIG. 6. Critical distance zcr versus nuclear charge number Z , for
all elements with 1 � Z � 120 given in Ref. [24].

The estimates from Eq. (21) read as follows (using data from
Ref. [24]):

zcr (H) = 137

√
4.5

1
a.u. = 290 a.u., (22a)

zcr (He) = 137

√
1.383

2
a.u. = 113 a.u., (22b)

zcr (He∗) = 137

√
316

2
a.u. = 1720 a.u. (22c)

The correspondence (in terms of the order-of-magnitude)
zcr (H) ∼ zbr (H), zcr (He) ∼ zbr (He), and zcr (He∗) ∼ zbr (He∗),
is obvious. In the latter case, the order-of-magnitude approxi-
mation zcr (He∗) is larger than zbr (He∗) by about 27 %, which
is perfectly acceptable given the cursory nature of the ap-
proximation. A plot of values of zcr for all elements with
1 � Z � 120 is presented in Fig. 6. Peak values are observed
for alkali metals, which typically display a very large static
polarizability.

For the case studied here, we have zcr > zbr; i.e., the on-
set of retardation happens a bit earlier than predicted by the
approximation z ≈ zcr. At z = zcr, we have

exp(−2αωcr zcr ) = [exp(1)]−2 = 0.135, (23)

indicating that, for typical excitation frequencies ω ∼ ωcr, the
exponential suppression of the integrand in Eq. (18) is already
very substantial at z = zcr. This fact supports the observation
that zbr < zcr. Still, the approximation zbr ≈ zcr remains a
good, albeit somewhat cursory, estimate for the transition to
the retarded regime.

IV. CONCLUSIONS

The world of atomic physics is full of surprises in terms of
nonparametric prefactors. An example is the variation of the
static polarizability with the atomic species (element number).
Parametrically, the static polarizabilities of all atoms are of
order e2a2

0/Eh, where e is the electron charge, a0 is the Bohr

radius, and Eh is the Hartree energy. However, large nonpara-
metric prefactors multiply this estimate, two extreme cases
being metastable triplet 2 3S1 helium, with a static polariz-
ability of 315 a.u., and lithium, with a static polarizability of
164 a.u.

Another surprise, not treated here in further detail, is the
large static polarizability of metastable singlet 2 1S0 helium,
which amounts to about 800 a.u. However, atomic polariz-
abilities are not the only quantities leading to surprises. As
an example in a different context, the so-called relativistic
Bethe logarithm for S states of hydrogen, parametrically, was
estimated to be of the order of α(Zα)4Eh. After considerable
efforts by a number of groups [30–34], a surprising nonpara-
metric prefactor ≈ −31 (for nuclear charge number Z = 1)
was confirmed to multiply the parametric estimate, shift-
ing theoretical predictions for the Lamb shift of the ground
state of hydrogenlike bound systems [30–35]. Furthermore,
the nonlogarithmic prefactor was seen to remain numerically
large (in between −28 and −31) for nuclear charge numbers
1 � Z � 5. In order to appreciate the large magnitude of the
nonlogarithmic correction to the Lamb shift, one observes that
the relativistic Bethe logarithm (nonlogarithmic) correction
of order for the ground state of hydrogenlike boron (nuclear
charge number Z = 5) almost doubles the effect of the leading
double logarithm −α(Zα)4Eh ln2[(Zα)−2], as is evident from
Eq. (3) and Table I of Ref. [35].

Within the context of atom-wall interactions, we can expect
the nonretarded regime to extend furthest for those atoms
with the highest static polarizabilities at the lowest nuclear
charge numbers. Indeed, we have demonstrated that the onset
of retardation in atom-wall interactions depends quite sig-
nificantly on the atomic species, even if, parametrically, the
estimate (1) remains valid for all. For simple atomic systems
such as hydrogen and ground-state helium, retardation effects
set in already at distances of less than 10 nm ≈ 200 a.u. in
atom-wall interactions. This result is consistent with remarks
in the text following Eq. (2.16) of Ref. [36]. The breakdown of
the short-range 1/z3 approximation happens at distance scales
indicated in Eqs. (12), (15), and (22). An explicit estimate,
zcr = 137 (α(0)/Z )1/2 a.u., was given in Eq. (21).

With the exception of lithium (and metastable helium), the
critical distance for the onset of retardation effects does not
exceed 600 a.u., as shown in Fig. 6. An exceptional example is
provided by metastable helium where zcr assumes the excep-
tionally large value of 1720 a.u., in view of an exceptionally
large static polarizability of 315.63 a.u. However, the actual
breakdown distance for metastable helium is smaller, namely,
1033 and 1414 a.u. for interactions with silicon and gold,
respectively (the latter being described by a simple plasma
model).

We can thus confirm that comparatively large zbr can be ex-
pected for metastable helium, especially for interactions with
very good conductors, an extreme example being provided by
the plasma model (14) for gold. However, even in this extreme
case, the nonretarded regime is limited to about 1400 a.u. We
conclude that the short-range approximation, for atom-wall
interactions, breaks down much earlier than for solid-solid
interactions [9] and we provide estimates for all elements in
the periodic table (see Fig. 6).
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APPENDIX A: DEFINITION OF DISTANCE RANGES

The designations of “short-range” and “long-range”
asymptotics crucially depend on the point of view. Because
the designations are not always consistent, we here present a
mini-review of this issue.

Zaremba and Kohn [37] define “close range” to be the
range of a few atomic radii, commensurate with their aim to
study the transition from physisorption to the van der Waals
regime; the latter is understood as the “long-range regime” in
Ref. [37].

On the other hand, Antezza et al. [6] define the “long-range
regime” as the limit of very large separations far beyond the
validity of van der Waals and Casimir-Polder interactions.
This limit is characterized by a very-long range nonretarded
tail proportional to 1/z3, which is due to effects described
by thermal field theory (contributions of the first Matsubara
frequency), and vanishes at zero temperature. The numerical
coefficient of this extreme 1/z3 long-range tail is very small
(see Eq. (17) of Ref. [6]) and we do not consider it here.

Thus, from the viewpoint of Ref. [6], the extreme short
range is the regime of less than ten atomic radii, where the
discretization of the crystal surface starts to play a role. The
short-range regime is the 1/z3 nonretarded (van der Waals)
range. The 1/z4 Casimir-Polder interactions then define the
long-range regime. This is the viewpoint we also adopt in the
present paper.

For completeness, let us also say a few words about the
limit of very close approach to the surface. Zaremba and Kohn
[37] showed that in this limit the van der Waals interaction
becomes −C3/(z − z0)3, where z0 is a parameter, of order
unity in atomic units, which can be calculated separately or
obtained experimentally. For dielectric solids, the position of
the reference plane is well approximated by z0 ≈ d/2, where
d is the distance between layers of the substrate [36,38].

In other investigations [38,39], van der Waals-corrected
density-functional theory (DFT) is used in order to calculate
the adsorption energies of atoms on surfaces (e.g., rare gases
on noble metals). The quadrupole correction is routinely taken
into account in this procedure (see Table III of Ref. [38] and
Ref. [7]), and the van der Waals energy is added to the contact
energy at the equilibrium position of the atom in the immedi-
ate vicinity of the surface, the latter being calculated with the
use of DFT (see Table III of Ref. [38] and also Ref. [40] for
a general discussion of van der Waals-corrected DFT). This
procedure is consistent with remarks made after Eq. (2.39) of
Ref. [37], where the authors stress that their approach should
be valid for the region of physisorption (i.e., for the range in
between 4 and 7 a.u.).

APPENDIX B: PARAMETERS OF THE
HELIUM CALCULATION

The a, b, and c parameters of the exponential basis func-
tions exp(−ar1 − br2 − cr12) set are chosen in the same way

for the reference ground state and the triple metastable ex-
cited reference state. One notes that our choice is different
from, say, the basis set indicated in Eq. (18) of Ref. [41].
Through experimentation, we found it numerically favorable
to implement a linear dependence of the exponents of the
basis functions in the exponential basis with the index of the
function.

Specifically, we use a Cartesian approach [42] and write
the following expressions for the singlet 1S, triplet 3S, singlet
1P, and triplet 3P states,

ψn 1S (�r1, �r2) =
jmax∑
j=1

cn 1S, j fn 1S, j (r1, r2, r12), (B1a)

fn 1S, j (r1, r2, r12) = exp(−a jr1 − b jr2 − c jr12)

+ exp(−b jr1 − a jr2 − c jr12), (B1b)

ψn 3S (�r1, �r2) =
jmax∑
j=1

cn 3S, j fn 3S, j (r1, r2, r12), (B1c)

fn 3S, j (r1, r2, r12) = exp(−a jr1 − b jr2 − c jr12)

− exp(−b jr1 − a jr2 − c jr12), (B1d)

ψ i
n 1P(�r1, �r2) =

jmax∑
j=1

cn 1P, j f i
n 1P, j (r1, r2, r12), (B1e)

f i
n 1P, j (r1, r2, r12) = xi

1 exp(−a jr1 − b jr2 − c jr12)

+ xi
2 exp(−b jr1 − a jr2 − c jr12), (B1f)

ψ i
n 3P(�r1, �r2) =

jmax∑
j=1

cn 3P, j f i
n 3S, j (r1, r2, r12), (B1g)

f i
n 3P, j (r1, r2, r12) = xi

1 exp(−a jr1 − b jr2 − c jr12)

− xi
2 exp(−b jr1 − a jr2 − c jr12). (B1h)

The cn 2S+1L, j coefficients depend on the principal quantum
number n, the total spin S, and the total orbital angular mo-
mentum L. The basis states fn 2S+1L, j (r1, r2, r12) multiply the
coefficients. Within the manifold of states of specified sym-
metry, one calculates the Hamiltonian matrix within the basis
spanned by fn 2S+1L, j (r1, r2, r12), and the overlap matrix of the
same basis states, using the approach outlined in Ref. [41]
and Chap. 13 of Ref. [4]. Let now S j j′ = 〈 j| j′〉 be the overlap
matrix and H j j′ = 〈 j|HNR| j′〉, where HNR is the Schrödinger
Hamiltonian of helium in the nonrelativistic approximation
(see Chap. 13 of Ref. [4]). The diagonalization of the effective
Hamiltonian Heff = S−1/2 HS−1/2 leads to discrete states;
the first of which describe low-lying bound states, while the
higher excited states with positive-energy eigenvalues above
the ionization threshold serve to describe the continuum spec-
trum, in terms of a pseudospectrum of discrete states. The
summation over j goes from j = 1 to jmax, where a value of
jmax = 512 turns out to be fully sufficient for our purposes
here. Let us relate the summation index j = (nmax)3 to three
summation indices, k, �, and m, all of which go from 1 to
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nmax = 8 (in our calculation),

k ∈ {1, . . . , nmax}, � ∈ {1, . . . , nmax}, (B2a)

m ∈ {1, . . . , nmax}, jmax = (nmax)3, (B2b)

j = k − 1 + nmax(� − 1) + (nmax)2(m − 1) + 1. (B2c)

This generates a basis of (nmax)3 functions. The relations
(B2) define a unique mapping (k, �, m) ↔ j. Given j, one
can calculate k = k( j), � = �( j), and m = m( j), using
m = { j − mod[ j − 1, (nmax)2] − 1}/(nmax)2 + 1, � = { j −
(m − 1)(nmax)2 − mod[ j − (m − 1)(nmax)2 − 1, nmax]− 1}/
nmax + 1, and k = j − (m − 1)(nmax)2 − (� − 1) nmax. The
parameters are chosen to depend linearly on k, �, and m, in
such a way as to avoid degeneracies in the basis (hence using
prime numbers),

a j = ak( j) =
√

3

10
(k + 1), (B3a)

b� = b�( j) = 9 (
√

17 − √
5)

100
(� + 1), (B3b)

cm = cm( j) = 1

10
(m + 1). (B3c)

This choice involves basis functions of the type
exp(−ar1 − br2 − cr12) with numerically large coefficients
a = ak , b = b�, and c = ck , achieved for k, �, m = nmax. Con-
sequently, steep exponential decay is realized for some of
the basis functions, which is helpful in a suitable description
of the region near the cusp, r12 = 0. For low values of k,
�, and m, we achieve a good sampling of the large-distance
region, which is important for a good description of oscillator
strengths.

With very modest computational effort, this approach re-
produces other data [41,43–46] for low-lying energy levels of
helium, and for the static and dynamic polarizability of helium
(within the nonrelativistic approximation), to better than 1 per
mille [47]. Specifically, we obtain a value of 1.383 192 a.u.
for the ground-state static polarizability, which compares well
with Refs. [46,47], and an oscillator strength of 0.276 167 a.u.

for the 1 1S –2 1P oscillator strength, which compares well with
Ref. [46]. For the static polarizability of the metastable triplet
state, we obtain a value of 315.63 a.u., which compares well
with Ref. [24]. For the 2 3S –2 3P oscillator strength, we obtain
a value of 0.5391 a.u., which compares well with Ref. [48].

APPENDIX C: INTRINSIC SILICON

In this Appendix, we provide a brief review of the
Clausius-Mossotti fits recently employed in Ref. [13] for in-
trinsic silicon. We also take the opportunity to correct a few
typographical errors. From Ref. [13], we recall the Lorentz-
Dirac master function as follows:

f (T�, ω) =
kmax∑
k=1

ak
(
ω2

k − iγ ′
kω

)
ω2

k − ω2 − iωγk
, (C1)

where T� = (T − T0)/T0 and T0 is the room temperature. In
Refs. [5,49], inspired by the Clausius-Mossotti relation, the
dielectric ratio

ρ(T�, ω) = ε(T�, ω) − 1

ε(T�, ω) + 2
.= f (T�, ω) (C2)

was fitted to a functional form corresponding to the master
function. That is to say, one fits

εCM(T�, ω)
.= 1 + 2 f (T�, ω)

1 − f (T�, ω)
. (C3)

We now take the opportunity to correct two unfortunate typo-
graphical errors in Ref. [13], Equation (8) of Ref. [13] misses
an opening curly parenthesis in the numerator,

ρ(T�, ω) =
kmax∑
k=1

aCM
k (T�)

{[
ωCM

k (T�)
]2 − i γ ′CM

k (T�) ω
}

[
ωCM

k (T�)
]2 − ω2 − i ω γ CM

k (T�)
,

(C4)
while Eq. (9) of Ref. [13] has a typographical error in
the last term of the numerator; one needs to replace ω4 →
[ωCM

k (T�)]4,

Re[ρCM(T�, ω)] =
kmax∑
k=1

aCM
k (T�)

ω2
{
γ CM

k (T�) γ ′CM
k (T�) − [

ωCM
k (T�)

]2} + [
ωCM

k (T�)
]4

{
ω2 − [

ωCM
k (T�)

]2}2 + ω2
[
γ CM

k (T�)
]2 , (C5)

while the imaginary part is

Im[ρCM(T�, ω)] =
kmax∑
k=1

aCM
k (T�) ω

ω2γ ′CM
k (T�) + {

γ CM
k (T�) − γ ′CM

k (T�)
}[

ωCM
k (T�)

]2

{
ω2 − [

ωCM
k (T�)

]2}2 + ω2
[
γ CM

k (T�)
]2 . (C6)

We note that the imaginary part of the dielectric func-
tion should be strictly positive for real, positive frequencies,
due to causality (see Chap. 6 of Ref. [50]). The region near
ω ≈ 0 of the CM fit for the imaginary part of Im[ε(ω)]
has a positive second derivative. This means that, between
the frequency points ω = 0 and ω = ωmin, where ωmin is
the smallest frequency for which the dielectric function has
been measured, one has a “gap” where any fitting function
runs the risk of “undershooting” the line Im[ε(ω)] = 0, and
the positive second derivative compensates a negative first

derivative at ω = 0 to match the points of smallest frequency
of the fit.

Indeed, the fitting parameters that were given in Ref. [13]
led to spurious negative imaginary parts under some cir-
cumstances, but these were so small as to be statistically
insignificant [less than 0.2% of the total ε(ω)]. Table I gives
the best CM fitting parameters at room temperature, where
some entries were slightly adjusted compared to the values
given in Ref. [13] (but still within the error bars of the fit) to
ensure overall positivity of Im[ε(ω)]. Figure 7 shows ε(iω),

022808-8



RETARDATION EFFECTS IN ATOM-WALL INTERACTIONS PHYSICAL REVIEW A 109, 022808 (2024)

TABLE I. Parameters for the CM fit are indicated for the real
parts and for the imaginary parts of the dielectric function for silicon,
as given in Eqs. (C5) and (C6), at room temperature (T� = 0 in the
notation of Ref. [13]). Here, a1,2 are dimensionless and ω1,2, γ1,2, and
γ ′

1,2 are in units of Eh/h̄. The values are adapted from Tables I and II
of Ref. [13], with minor adjustments of the entries marked by ∗ (see
text).

k ak ωk γk γ ′
k

1 0.004943 0.1293 0.01841 0.1306
2 0.7709 0.3117 0.101∗ 0.0968∗

comparing the adjusted CM fitting parameters of Table I with
the original parameters of Ref. [13]. The two curves are es-
sentially on top of each other, with a maximal difference of
0.6%.

APPENDIX D: TRK SUM RULE
FOR METASTABLE STATES

The TRK sum rule [11,12] is instrumental in deriving the
correct asymptotic form of the dynamic polarizability at large
imaginary frequency. It states that the sum over all oscillator
strengths is equal to the number of electrons Z of the atom.
According to Eq. (61.1) of Ref. [51], it is valid for an arbitrary
(e.g., metastable) reference state |ψm〉,∑

n

fnm = Z, (D1)

where n sums over all quantum numbers of the system (not
just the principal ones). This is confirmed in Eq. (22) of
Ref. [52] for excited singlet and triplet reference states which
are embedded in a continuum. When comparing to Ref. [52],
one notes that the authors of Ref. [52] use, in some parts of

FIG. 7. Dielectric function of silicon at room temperature for the
imaginary frequency argument, ε(iω). The two curves compare the
CM fit using the parameters of Ref. [13] and the adjusted parameters
of Table I. The abscissa indicates the angular frequency in atomic
units, i.e., the numerical value of h̄ω/Eh, where Eh is the Hartree
energy.

their investigations, a somewhat nonstandard redefinition of
the oscillator strengths, adapted to different magnetic projec-
tions. Here, we adopt the standard definition of the oscillator
strength, which entails an average over the magnetic projec-
tions of the reference state |m〉, and a summation over the
magnetic projections of the virtual state |n〉 (see Sec. 5.5.3
of Refs. [4,53]). In view of the relation

α(iω) =
∑

n

fnm

ω2
nm + ω2

, (D2)

the TRK sum rule determines the asymptotic behavior of the
polarizability for large ω (the energy difference in atomic units
of the virtual state and the reference state is ωnm = ωn − ωm).
Here, we present a derivation which, in contrast to Eq. (11.10)
of Ref. [54], is valid for a system with an arbitrary number Z
of electrons and for an arbitrary reference state. The Hamilto-
nian is

H =
∑

a

( �p2
a

2
− Z

ra

)
+

∑
a<b

1

rab
, (D3)

where a and b sum over the electrons, ra is the electron-
nucleus distance, and rab is the interelectron distance. Indices
a, b, c, d ∈ {1, . . . , Z} enumerate the bound electrons. The
(dipole) oscillator strength for the excitation to the states |ψn〉
is

fnm = 2

3
(En − Em)

∣∣∣∣∣〈ψn|
∑

c

�rc|ψm〉
∣∣∣∣∣
2

, (D4)

where we re-emphasize the average over the magnetic pro-
jections of the reference state |m〉 and a summation over the
magnetic projections of the virtual state |n〉. The sum over
oscillator strengths can be written as follows, in operator
notation,

∑
n

fnm = 2

3
〈ψm|

(∑
c

�rc

)
(H − Em)

(∑
d

�rd

)
|ψm〉, (D5)

where the sum over n includes the continuum. We now make
use of the well-known operator identity

ABA = 1
2 A2B + 1

2 BA2 + 1
2 [A, [B, A]], (D6)

where A = ∑
c �rc and B = H − Em. Because |ψm〉 is an eigen-

state of the Hamiltonian, we have (H − Em)|ψm〉 = 0 and thus

∑
n

fnm = 1

3
〈ψm|

[∑
c

�rc,

[
H − Em,

∑
d

�rd

]]
|ψm〉

= − i

3
〈ψm|

[∑
c

�rc,
∑

d

�pd

]
|ψm〉

= − i

3
〈ψm|

∑
c

[�rc, �pc]|ψm〉 = Z. (D7)

This derivation confirms that the TRK sum rule remains valid
for metastable excited states and justifies our parameters for
the single-oscillator model of the dynamic polarizability of
metastable triplet helium, used in Sec. III. Recently, gener-
alizations of the TRK sum rule suitable for the treatment
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of dipole recoil terms which occur in recoil-induced contri-
butions to the shake-off probability following β decay have
been discussed in Ref. [55]. Other generalizations with respect

to multipole polarizabilities have been considered [56,57].
Their derivation follows the ideas underlying the above
considerations.
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[42] V. A. Yerokhin, V. Patkoś, and K. Pachucki, Atomic structure
calculations of helium with correlated exponential functions,
Symmetry 13, 1246 (2021).

[43] G. W. F. Drake and Z. C. Yan, Energies and relativistic correc-
tions for the Rydberg states of helium: Variational results and
asymptotic analysis, Phys. Rev. A 46, 2378 (1992).

[44] Z.-C. Yan and J. F. Babb, Long-range interactions of metastable
helium atoms, Phys. Rev. A 58, 1247 (1998).

[45] G. W. F. Drake, High precision theory of atomic helium,
Phys. Scr. T 83, 83 (1999).

[46] G. W. F. Drake, High precision calculations for helium, in
Springer Handbook of Atomic, Molecular, and Optical Physics
(Springer, New York, 2005).

[47] K. Pachucki and J. Sapirstein, Relativistic and QED corrections
to the polarizability of helium, Phys. Rev. A 63, 012504 (2000).

[48] A. W. Weiss, Oscillator strengths for the helium isoelectronic
sequence, J. Res. Natl. Bur. Stand., Sect. A 71, 163 (1967).

[49] K. E. Oughstun and N. A. Cartwright, On the Lorentz-
Lorenz formula and the Lorentz model of dielectric dispersion,
Opt. Express 11, 1541 (2003).

[50] U. D. Jentschura, Advanced Classical Electrodynamics: Green
Functions, Regularizations, Multipole Decompositions (World
Scientific, Singapore, 2017).

[51] H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One-
and Two-Electron Atoms (Springer, Berlin, 1957).

[52] G. W. F. Drake and A. Dalgarno, 2p2 3P and 2p3p 1P states of
the helium isoelectronic sequence, Phys. Rev. A 1, 1325 (1970).

[53] R. C. Hilborn, Einstein coefficients, cross sections, f values,
dipole moments, and all that, Am. J. Phys. 50, 982 (1982).

[54] H. A. Bethe and R. Jackiw, Intermediate Quantum Mechanics
(Perseus, New York, 1986).

[55] E. E. Schulhoff and G. W. F. Drake, Electron emission and
recoil effects following the beta decay of 6He, Phys. Rev. A
92, 050701(R) (2015).

[56] Z.-C. Yan, J.-M. Zhu, and B.-L. Zhou, Polarizabilities of heli-
umlike ions in the 1s2p 1P and 1s2p 3P states, Phys. Rev. A 62,
034501 (2000).

[57] B.-L. Zhou, J.-M. Zhu, and Z.-C. Yan, Generalized Thomas-
Reiche-Kuhn sum rule, Phys. Rev. A 73, 014501 (2006).

022808-11

https://doi.org/10.1103/RevModPhys.52.933
https://doi.org/10.1103/PhysRevB.13.2270
https://doi.org/10.1103/PhysRevLett.112.106101
https://doi.org/10.1103/PhysRevB.85.165405
https://doi.org/10.1063/1.3382344
https://doi.org/10.1103/PhysRevA.98.012510
https://doi.org/10.3390/sym13071246
https://doi.org/10.1103/PhysRevA.46.2378
https://doi.org/10.1103/PhysRevA.58.1247
https://doi.org/10.1238/Physica.Topical.083a00083
https://doi.org/10.1103/PhysRevA.63.012504
https://doi.org/10.6028/jres.071A.023
https://doi.org/10.1364/OE.11.001541
https://doi.org/10.1103/PhysRevA.1.1325
https://doi.org/10.1119/1.12937
https://doi.org/10.1103/PhysRevA.92.050701
https://doi.org/10.1103/PhysRevA.62.034501
https://doi.org/10.1103/PhysRevA.73.014501

