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Singly differential studies of one-electron processes in He2+-He collisions
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The differential 3He2+ -He scattering problem is investigated using the two-center wave-packet convergent
close-coupling method in the incident energy range of 50–630 keV/u. The present two-electron approach
accounts for electron exchange between reaction fragments and uses the configuration-interaction method to treat
the target structure. We also apply a simpler method based on the effective one-electron target description. The
singly differential cross sections are presented for electron capture, elastic scattering, excitation, and ionization of
the target. The paper demonstrates the importance of the electron-electron correlation at lower projectile energies
for the electron-capture and elastic-scattering processes. The two-electron results for electron capture into the
ground state describe the available experimental data very well at all projectile energies, while the
effective single-electron model shows good consistency at energies starting from 300 keV/u. For ionization,
we observe a good level of agreement between the two approaches for all types of singly differential cross
sections, and they agree well with the experimental data, wherever available. In addition, the angular differential
cross sections for ground-state and total electron capture are presented for 4He2+ -He collisions at the projectile
energies of 62.5, 125, 187.5, and 250 keV/u. The angular differential elastic-scattering and excitation cross
section and all three types of the singly differential ionization cross sections are found to be practically the same
as the corresponding results for 3He2 -He collisions.
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I. INTRODUCTION

Collisions of fully stripped ions with helium have been the
subject of a great number of experimental and theoretical re-
search works. Particularly, the 4He2+ -He scattering problem
has attracted considerable attention due to its symmetric na-
ture. One of the experimental challenges of investigating this
system is the indistinguishability of the formed and residual
ions after the collision. For example, once a target electron is
captured by the projectile, both the formed and the residual
ions are 4He+ ions, which complicates the measurements of
the electron-capture cross sections. Many experimental [1–7]
and theoretical [1,8–11] studies of He2+-He collisions fo-
cused on providing integrated cross sections for various one-
and two-electron collisional processes. However, the singly
differential cross sections (SDCSs) were not investigated as
extensively as the total cross sections. There are some exper-
imental results available for electron capture into the ground
state [12–14], which were obtained using the cold target recoil
ion momentum spectroscopy technique, and for the singly
differential cross section as a function of ejected-electron
angle measured using an electron spectrometer [15]. Atomic
collisional data for neutral beam modeling in fusion plasmas
have recently been reviewed by Hill et al. [16].

A number of theoretical approaches were applied to calcu-
late the angular differential cross section for electron capture
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into the ground state. Zapukhlyak and Kirchner [17] employed
the two-center basis generator method (TC-BGM) based on
the independent-electron model (IEM). In the approach, the
time-dependent Schrödinger operator, where the Hamiltonian
is of a single-particle form with an effective ground-state
potential, is solved by the TC-BGM. In the IEM the final
two-electron states are described by the symmetrized products
of single-particle states. The TC-BGM results demonstrated
very good agreement with the available experiments not only
for single-electron capture, but also for two-electron processes
including double-electron capture and transfer excitation.

Several forms of the continuum distorted-wave (CDW)
approach were also applied to study the differential electron-
capture cross sections in He2+-He collisions. The Born
initial-state (BIS) approximation method [14] was employed
within the CDW approach, where an asymmetrical model of
the entrance and exit channels is used to describe the captured
electron. The exit channel wave function was described by
the four-body CDW method, and for the entrance channel
the four-body first Born approximation (FBA) was used. The
approach produced a differential picture of the process with
some unphysical dips not compatible with the experiment, but
it described the experiment well at small scattering angles for
most of the projectile energies considered.

Velayati et al. [18] applied the CDW approach using the
eikonal initial-state (EIS) and eikonal final-state (EFS) de-
scriptions. In the EIS approach, the initial state is described
by the eikonal wave function and the final state is described
by the distorted wave. In the EFS implementation, it was the
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opposite. The independent-particle model was employed in
both approaches. The methods agreed with each other reason-
ably well, but there were some noticeable deviations at the
lowest collision energy considered.

Apart from the CDW approaches, Velayati et al. [18] ap-
plied the classical trajectory Monte Carlo (CTMC) method.
The authors concluded that their theoretical approaches can
describe the experiment at some projectile energies at particu-
lar scattering angles, but in general none were able to provide
a consistent differential description of the charge-transfer dy-
namics of 3He2+ -He collisions.

The three-body (3B) and four-body (4B) Coulomb-Born
distorted-wave (CBDW) approximations were applied by
Ghanbari-Adivi and Ghavaminia in Refs. [19] and [20], re-
spectively. Post and prior forms of the transition amplitude
were calculated in both approaches. It was found that the
three-body model was in reasonable agreement with the ex-
periment and other theories, however the four-body results
were not in satisfactory agreement with the experimental data.
The CBDW-4B results described the experiment reasonably
well at small scattering angles. However, as the scattering
angle is increased, the results exhibited unphysical dips.

Single-electron capture and transfer-excitation processes in
He2+-He collisions were also investigated by Jana and Purkait
[21] using the CBDW-4B approach and another method
based on the four-body boundary-corrected continuum-
intermediate-state (BCCIS-4B) approximation. For electron
capture, both the CBDW-4B and BCCIS-4B results con-
siderably overestimated the experimental data in the entire
scattering angle range where the data are available, at all
considered collision energies. For transfer excitation, the two
results were in reasonable agreement with each other and the
experiment. Later, Jana et al. [22] applied another version of
the distorted-wave approximation within the four-body for-
malism (DW-4B) with some improvements. In particular, the
wave functions of all channels were chosen to satisfy the cor-
rect boundary conditions, a shorter-range interaction potential
was used, and the electron-electron correlation effects were
taken into account. Agreement between the DW-4B results
and the experiment was very good. Samaddar et al. [23] also
addressed the same scattering problem using the four-body
formalism of the target continuum-distorted-wave approxima-
tion, where the independent-electron model was applied to
describe the target structure. Their results were overall in good
agreement with the available experiments. It was also reported
that, for DCS in He2+-He collisions, including intermediate
ionization continua of the two electrons in the exit channel
resulted in very good agreement with the experiments.

For the processes of elastic scattering and target excitation,
there are no previously available experimental data or theoret-
ical results, to the best of our knowledge. The same is the case
for the ionization cross section differential in ejected-electron
energy or scattered-projectile angle. However, two approaches
were applied to calculate the ionization cross-section dif-
ferential in ejected-electron angle for 3He2+ -He collisions.
Bernardi et al. [15] presented the CDW-EIS and CTMC results
for the ionization SDCS differential in electron angle at the
collision energies of 50 and 100 keV/u, together with the
experimental data. The underlying theories of the CDW-EIS
and CTMC approaches for collisions of fully stripped ions

with helium were described in Refs. [24] and [25], respec-
tively. Overall, neither of the theories was able to describe the
experimental data sufficiently well. At small ejection angles,
the CDW-EIS method underestimated the experimental data
for both collision energies.

In this paper, we apply the wave-packet convergent
close-coupling (WP-CCC) approach [26,27] to calculate
singly differential cross sections in collisions of 3He2+ and
4He2+ ions with the helium atom. In the wave-packet ap-
proach, the continuum of the involved atoms is described
by the pseudostates obtained by integrating the correspond-
ing positive-energy wave functions in a certain set of the
discretization bins [28]. The WP-CCC approach was success-
fully applied to study total and differential cross sections for
various ion-atom collisions. It was found to be especially
suitable in studies of the differential breakup processes as it
allows investigating ejected electrons with an arbitrary energy
[29–31].

The WP-CCC approach was employed to study collisions
involving multielectron targets as well. A single-center ver-
sion of the approach, applied to collisions of antiprotons and
energetic protons with helium, demonstrated a good level
of agreement with the available experiments [32]. The two-
center WP-CCC approach, which takes the electron-electron
correlation into account, was successfully applied to the four-
body p-He scattering problem to calculate the integrated cross
sections for one-electron processes in a wide range of incident
energies [26]. Later, it was applied to study singly differential
cross sections for electron capture, elastic scattering, target
excitation, and ionization [33,34]. It was demonstrated that the
WP-CCC approach can accurately describe the singly differ-
ential picture of all processes taking place in p-He collisions.
The WP-CCC method has recently been used to calculate
the energy and angular distribution of electrons (i.e., doubly
differential cross sections) emitted in p-He [35] and p-H2

collisions [36] and gave very good agreement with experi-
mental data. Earlier, the method was extended to collisions of
fully stripped ions with helium. The total cross sections were
calculated for electron capture, elastic scattering, target exci-
tation, and ionization in He2+-He collisions from 10 keV/u to
5 MeV/u, with particular emphasis on the intermediate ener-
gies [27]. The obtained results agreed well with the available
experimental data for all considered processes.

Here, the two-electron and effective one-electron (E1E)
WP-CCC approaches are employed to investigate the singly
differential cross sections for one-electron processes in the
He2+-He collision system at intermediate projectile energies.
This energy range enables us to better understand the im-
portance of coupling between the reaction channels and the
electron-electron correlation, which is neglected in the E1E
approach. There are experimental [12–15] and theoretical
[14,18–23] results available for comparison, but these are
mostly for charge transfer. This paper presents comprehensive
calculations of the singly differential cross sections for all
one-electron processes taking place in He2+-He collisions.

Unless specified otherwise, atomic units (a.u.) are used
throughout this paper. Hereafter, we refer to He2+ without
specifying whether it is the 3He2+ or 4He2+ isotope when
we discuss these projectiles in general or when a particular
statement holds for both isotopes.
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II. WP-CCC APPROACH

Here we describe application of the two-center WP-CCC
approach to the He2+-He system. The approach is based on
the total scattering wave function �, which is the solution of
the full time-independent Schrödinger equation,

(H − E )� = 0, (1)

where E is the total energy and H is the full Hamiltonian of
the four-body collision system. The total energy can be written
in either of the following three forms:

E =ε0 + k2
α

2μT
+ εα = ε0 + k2

1β

2μP
+ ε1β = ε0 + k2

2β

2μP
+ ε2β,

(2)

where ε0 is the binding energy of the frozen target electron.
The indices α and β denote the full set of quantum numbers
representing states in the He2+-He and He+-He+ channels,
respectively. Channel 1β is the same as channel 2β but with
the electron of the residual target and that of the formed
(after electron transfer to the projectile) He+ ion exchanged.
Furthermore, kα is the momentum of the projectile relative to
the helium atom in the α channel, μT is the reduced mass of
this system, εα is the energy of the pseudostate α, k1β (k2β) is
the momentum of the formed He+ ion relative to the residual
helium ion in the 1β (2β) channel, μP is the reduced mass, and
ε1β (ε2β) is the energy of the He+ ion in the 1β (2β) channel.
We note that ε1β = ε2β .

The full Hamiltonian H can be written as

H = Kσ + HT1 + HT2 + VP + V12 (3)

= Kρ1 + HP1 + HT2 + V1 + V12 (4)

= Kρ2 + HP2 + HT1 + V2 + V12, (5)

where the Hamiltonians of the formed and residual He+ ions
are written as

HPi = −∇2
xi

2
− 2

xi
, i = 1, 2, (6)

HTi = −∇2
ri

2
− 2

ri
, i = 1, 2, (7)

respectively;

Kσ = − ∇2
σ

2μT
, Kρi = − ∇2

ρi

2μP
, i = 1, 2 (8)

are kinetic energy operators and

VP = 4

R
− 2

x1
− 2

x2
, (9)

V1 = 4

R
− 2

r1
− 2

x2
, (10)

V2 = 4

R
− 2

r2
− 2

x1
, (11)

V12 = 1

|r1 − r2| (12)

are the interaction potentials. Here, the vectors r1 and r2 (x1

and x2), respectively, define the positions of the two electrons
relative to the origin (the projectile); σ is the position vector

of the projectile relative to the center of mass of the helium
atom; and ρ1 (ρ2) is the position vector of the system of the
projectile and the first (second) electron relative to the helium
ion. See Fig. 1 of Ref. [27] for the Jacobi coordinate system.

We use an impact-parameter representation and a straight-
line trajectory approximation. Accordingly, the projectile
moves along R ≡ R(t ) = b + vt with respect to the target
nucleus, fixed at the origin. Here b is the impact parameter,
chosen to be perpendicular to v, the initial velocity of the
projectile, directed along the z axis.

The total scattering wave function is expanded in terms of
N target-centered and M projectile-centered pseudostates as

� =
N∑

α=1

Fα (t, b)ψT
α (r1, r2)eikασ

+ 1√
2

M∑
β=1

Gβ (t, b)
[
ψP

β (x1)ψ0(r2)eik1βρ1

+ ψP
β (x2)ψ0(r1)eik2βρ2

]
, (13)

where ψT
α and ψP

β are the wave functions of the target atom
and the hydrogenlike He+ ion formed after electron capture
by the projectile, respectively, and ψ0 is the ground-state
wave function of the residual He+ ion. Unknown expansion
coefficients Fα and Gβ represent the transition probability
amplitudes.

The pseudostates representing the continuum are con-
structed using the wave-packet approach [28]. In this ap-
proach, the continuum is divided into a number of intervals
called discretization bins. Then, the wave packets are ob-
tained by integrating the target (or projectile) continuum wave
function over these bins. The positive-energy pseudostates
together with the negative-energy eigenstates form a basis
used in expansion (13).

We insert the expansion (13) into Eq. (1) and apply the
semiclassical approximation. Then, we successively multiply
it by the pseudostates and integrate over all variables except
for σ, ρ1, and ρ2 to get the following system of differential
equations for the time-dependent coefficients:

iḞα′ + i
M∑

β=1

ĠβKT
α′β =

N∑
α=1

FαDT
α′α +

M∑
β=1

GβQT
α′β,

i
N∑

α=1

ḞαKP
β ′α + i

M∑
β=1

ĠβLP
β ′β =

N∑
α=1

FαQP
β ′α +

M∑
β=1

GβDP
β ′β,

α′ = 1, 2, . . . , N, β ′ = 1, 2, . . . , M. (14)

Note that we start from the exact Schrödinger equation and
use a different expansion for the total wave function than
other conventional close-coupling approaches, such as the
atomic orbital model. However, we arrive at the same set
of equations for the expansion coefficients. Moreover, in our
approach we do not use the concept of the electron translation
factor, which is needed in other close-coupling approaches to
adequately represent the rearrangement channels.
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Matrix elements for direct scattering read as

LP
β ′β = 1

2

∑
i, j=1,2

〈
kiβ ′ , ψP

β ′ , ψ0

∣∣ψP
β , ψ0, k jβ

〉
, (15)

DT
α′α = 〈

kα′ , ψT
α′
∣∣HT − ET

α + VP

∣∣ψT
α , kα

〉
, (16)

DP
β ′β = 1

2

∑
i, j=1,2

〈
kiβ ′ , ψP

β ′ , ψ0

∣∣HPi − εP
β

∣∣ψP
β , ψ0, k jβ

〉

+ 1

2

∑
i, j=1,2

〈
kiβ ′ , ψP

β ′ , ψ0

∣∣Vi

∣∣ψP
β , ψ0, k jβ

〉
, (17)

and for the rearrangement channels as

KP
β ′α = 1√

2

∑
i=1,2

〈
kiβ ′ , ψP

β ′ , ψ0

∣∣ψT
α , kα

〉
, (18)

KT
α′β = 1√

2

∑
i=1,2

〈
kα′ , ψT

α′
∣∣ψP

β , ψ0, kiβ
〉
, (19)

QP
β ′α = 1√

2

∑
i=1,2

〈
kiβ ′ , ψP

β ′ , ψ0

∣∣HT − ET
α + VP

∣∣ψT
α , kα

〉
, (20)

QT
α′β = 1√

2

∑
i=1,2

〈kα′ , ψT
α′ |HPi − εP

β + Vi|ψP
β , ψ0, kiβ〉, (21)

where ET
α = ε0 + εα is the energy of He in channel α, εP

β ≡
ε1β = ε2β is the energy of the formed He+ ion in channel β,
and

HT = HT1 + HT2 + V12

is the Hamiltonian of the helium atom.
The transition probability amplitudes Fα (+∞, b) and

Gβ (+∞, b) are obtained by solving the system of differential
equations (14) as t → +∞, subject to the initial boundary
conditions

Fα (−∞, b) = δα,1s, α = 1, . . . , N,

Gβ (−∞, b) = 0, β = 1, . . . , M.
(22)

The differential cross sections are derived from the
probability amplitudes. Specifically, singly differential cross
sections in the projectile scattering angle for the transition
from the initial state i to the final state f are calculated as

dσ
DS(EC)
f i

d�
= μTμ f

(2π )2

q f

qi

∣∣T DS(EC)
f i (q f , qi )

∣∣2
, (23)

where � = (θ, φ) is the solid angle of q f (relative to qi). We
set qi = k1, as the target was assumed to be in its ground state
in the initial channel. Depending on the type of scattering,
the final momentum is set as either q f = kα′ or q f = kβ ′ .
Accordingly, the reduced mass μ f is equal to μT for the
He2+-He channel and to μP for the He+-He+ channel. The
direct-scattering (DS) amplitudes T DS

f i and electron-capture
(EC) amplitudes T EC

f i in momentum space are calculated from
the impact-parameter space transition probability amplitudes
as

T DS
f i (q f , qi ) =2π iveimφ f

∫ ∞

0
db b[F̃f (+∞, b) − δ f i]Jm(q⊥b),

(24)

T EC
f i (q f , qi ) =2π iveimφ f

∫ ∞

0
db b G̃ f (+∞, b)Jm(q⊥b),

(25)

where q⊥ is the magnitude of the perpendicular component of
the momentum transfer q = qi − q f , m is the magnetic quan-
tum number in the final channel, φ f is the azimuthal angle
of q f , Jm is the Bessel function of the mth order, F̃f (t, b) =
eimφbFf (t, b), and G̃ f (t, b) = eimφbG f (t, b), with φb being the
azimuthal angle of b. For more details refer to Ref. [37].

In the WP-CCC method, the ionization amplitude splits
into two components: direct ionization (DI) of the target and
electron capture into the continuum (ECC) of the projectile
[29]. The DI component is written as

T DI(κ, q f , qi ) = 〈
ϕκ

∣∣ψT
f

〉
T DS

f i (q f , qi ) (26)

and the ECC one is written as

T ECC(κ, q f , qi ) = 〈
ϕκ

∣∣ψP
f

〉
T EC

f i (q f , qi ), (27)

where κ (κ) is the momentum of the ejected electron relative
to the target (projectile) nucleus and ϕκ (ϕκ) is the correspond-
ing true continuum state of helium (the hydrogenlike He+

ion). The DI and ECC amplitudes corresponding to the same
ejected-electron momentum should be combined. However,
this is not straightforward as they are calculated in different
frames of reference. To overcome this problem, we transform
the ECC amplitude into the laboratory frame. The electron
momentum relative to the projectile κ is written as κ − v in
the laboratory frame. With that, the fully differential cross
section (FDCS) is calculated from the incoherent combination
of the DI and ECC components, as

d3σion

dEed�ed�
= μ2

T

(2π )5

q f κ

qi
[|T DI(κ, q f , qi )|2

+ |T ECC(κ − v, q f , qi )|2], (28)

where Ee = κ2/2 is the energy of the ejected electron and
�e and � are the solid angles of the ejected electron and
the scattered projectile, respectively. In the laboratory frame,
the momentum transfer q is replaced by q − κ. Therefore,
perpendicular component q⊥ is substituted with (q − κ)⊥ in
calculating the integral in Eq. (25).

The coherent and incoherent combinations of the DI and
ECC components were investigated by Walters and Whe-
lan [38] and Abdurakhmanov et al. [29] in the example of
proton-induced ionization of atomic hydrogen. By compar-
ing the coherent and incoherent combinations these authors
concluded that the incoherent combination was an acceptable
approximation for calculating the differential ionization cross
section. It is also consistent with the basic unitarity of the two-
center close-coupling formalism. It was also demonstrated
that if sufficiently large bases are used in the two-center
expansion the incoherent and coherent combinations give
practically similar results [29]. This indicates that in the co-
herent combination the interference term becomes small as the
basis size increases. Note that the total ionization cross sec-
tion is obtained by summing the integrated cross sections for
target excitation into the positive-energy pseudostates and
electron capture into the continuum of the projectile [27].
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The incoherent combination of the components in Eq. (28)
is consistent with the definition of the total ionization cross
section in the close-coupling formalism. We emphasize that
the DI and ECC components of the ionization amplitude are
calculated in the two final channels, when the target and pro-
jectile are far apart [39]. The DS and EC amplitudes entering
Eqs. (26) and (27) are given by the Fourier transform of the
impact-parameter space probability amplitudes [see Eqs. (24)
and (25)]. These probability amplitudes are calculated using
the expansion coefficients in the different final channels in the
limit as t → +∞ where the overlap between the DI and ECC
components vanishes. Therefore, it is reasonable to assume
that the interference term arising from a coherent combination
of T DS

f i and T EC
f i should approach zero. See Ref. [39] for more

discussion.
Integrating the FDCS in Eq. (28) over the corresponding

variables, we can obtain three types of the singly differential
cross section for ionization. The SDCS in ejected-electron
energy is calculated as

dσion

dEe
=

∫
d3σion

dEed�ed�
d�ed�, (29)

in the ejected-electron angle as

dσion

d�e
=

∫
d3σion

dEed�ed�
dEed�, (30)

and in the scattered-projectile angle as

dσion

d�
=

∫
d3σion

dEed�ed�
dEed�e. (31)

Total integrated cross sections can be obtained by further
integrating the SDCS, which should lead to the same results
as the direct summation of the partial cross sections obtained
from the probability amplitudes. This fact is used to test the
accuracy of the calculations.

In the effective one-electron approach, the helium wave
functions are generated using a computational atomic-
structure package that is based on the multiconfiguration
Hartree-Fock approximation. Using these functions in the ex-
pansion of the total scattering wave function, the multielectron
Schrödinger equation is reduced to an effective one-electron
equation. While this method makes subsequent scattering cal-
culations significantly easier, it neglects the correlation effects
between the electrons that become particularly important at
lower impact energies. In addition, there is no electron ex-
change in the He+-He+ channel as the residual target ion He+

is effectively a single particle. More details of the approach
are described in Ref. [40], and its application to the helium
target is described in Refs. [27,33,34].

Hereafter, we refer to the simplified effective one-electron
method as E1E, and we refer to the two-electron method that
takes into account the correlation between the target electrons
and exchange effects as WP-CCC.

III. RESULTS

A. Details of calculation

In both the two-electron and effective single-electron ap-
proaches, the accuracy of the results depends on several

factors, such as the helium structure (including the wave
functions and energy levels) and the matrix elements used
in the differential equation (14). In the two-electron method,
the energy levels and the corresponding wave functions of the
target were calculated numerically. The obtained energy levels
are in very good agreement with the experimental data for all
states. In the effective single-electron model, a pseudopoten-
tial is generated in such a way that the ground-state energy
is the exact experimental value, while for the other states the
calculated energy levels agree with the experimental values
well. For the hydrogenlike He+ ion, we used analytic forms
of the wave functions and energy levels.

We studied the dependence of the results on the number
of discretization bins Nc, the maximum energy of the ejected
electron εmax, as well as the maximum principal quantum
number of negative-energy states nmax and the maximum
angular-momentum quantum number lmax of all the included
states. The convergence test was performed by systematically
increasing the target and projectile basis sizes, while preserv-
ing the accuracy of the employed wave functions for the states.
In the impact-parameter approach, the results also depend on
the choice of bmax, the upper limit for the impact parameter.
Unlike for the integrated cross sections, where smaller val-
ues of bmax are sufficient to produce reliable results, for the
differential cross sections bmax has to be increased up to 30
a.u., depending on the collision energy. The maximum energy
of the included bin states, εmax, ranged from 5 to 28 a.u.
depending on the incident projectile energy.

For simplicity, in calculations we used an equal number of
basis functions for the target and projectile centers. We set
nmax = 8 and lmax = 3, as increasing these values further did
not show any significant changes in the final results. The num-
ber of the discretization bins ranged from 14 to 22 depending
on the projectile energies. The corresponding bases with these
parameters include from 318 to 446 functions.

To generate both the two-electron and effective one-
electron results, we used recently developed computer codes,
which utilize graphics processing units (GPUs). This enabled
us to considerably reduce computing time spent on calcu-
lations compared with our previous codes, where parallel
computations were performed using the central processing
units (CPUs). The computation time of the same process with
the GPU acceleration is about 200 times less than that of
the CPU-based code. For each impact parameter, the com-
putational time was reduced from several hours to 4–5 min,
depending on the size of the bases. The speedup in the
numerical calculations allowed us to perform large-scale cal-
culations.

B. 3He2+-He collisions

In our approach, the integrated cross sections for the
3He2+ -He and 4He2+ -He systems are identical when the
projectile velocities are equal. However, these two systems
should be considered separately for the purpose of calculat-
ing the differential cross sections. We first present the E1E
and two-electron WP-CCC results for the angular differen-
tial cross section for electron capture, elastic scattering, and
excitation of the target in 3He2+ -He collisions. The angular
DCSs are calculated using Eq. (23). Then we present all three
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FIG. 1. Angular differential cross section for electron capture into the 1s state in 3He2+ -He collisions in the laboratory frame. The present
WP-CCC and E1E results are represented by the red solid and black dashed lines, respectively. The experimental data and the CDW-BIS
calculations are from Ref. [14], the TC-BGM IEM calculations are from Ref. [17], the CDW-EIS and CDW-EFS calculations are from Ref. [18],
and the CBDW-3B calculations are from Ref. [19]. The key shown in the last panel applies to all panels.

types of singly differential cross sections for ionization. These
are the cross sections differential in ejected-electron energy, in
electron angle, and in scattered-projectile angle. In all figures,
the two-electron and effective one-electron WP-CCC results
are shown by the red solid and black dashed lines, respec-
tively. All cross sections are given in the laboratory frame.

In Fig. 1, the angular differential cross section is presented
for electron capture into the ground state of the hydrogen-
like 3He+ atom at different incident energies. The maximum
projectile scattering angle ranges between 0.55 and 2 mrad,
depending on the projectile energy. Our calculations are com-
pared with the experimental data of Schöffler et al. [14]. It
was noticed that for the projectile energy of 450 keV/u the
experimental data points above 0.43 mrad got affected by the
reduced solid angle for large transverse momenta. Therefore,
here only the data below 0.43 mrad are shown. Also included
in Fig. 1 are other theoretical results: the CDW-BIS calcula-
tions of Schöffler et al. [14], the TC-BGM IEM calculations
of Zapukhlyak and Kirchner [17], the CDW-EIS and CDW-
EFS calculations of Velayati et al. [18], and the CBDW-3B
calculations of Ghanbari-Adivi and Ghavaminia [19]. Overall
we can observe noticeable discrepancies between the theories,

especially at small collision energies. In Ref. [14], in line
with the experimental data, the theoretical results based on the
CDW-BIS approach are also given. At all considered incident
energies, the CDW-BIS results are in good agreement with
the experiment in a narrow region in the forward direction.
However, the approach fails to describe the experimental
data at larger angles. The approach also shows some dips as
the scattering angle increases, which is not observed in the
experiment.

At 50 keV/u, where no experimental data are available,
the WP-CCC calculations show that the cross section peaks
in the forward direction and displays a shoulder structure
around 0.3 mrad. The shoulder structure is also observed
at collision energies up to 150 keV/u, and it washes out
at higher energies. The experimental data and other theo-
retical results are available at projectile energy 60 keV/u
and above. The most challenging collision energy for the
theoretical approaches appears to be 60 keV/u, where con-
siderable deviations can be observed between the theories
and the experiment. Discrepancies are especially noticeable
at larger scattering angles, where practically all the theoretical
results fail to describe the experimental data, except for the
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FIG. 2. Angular differential cross section for elastic scattering in 3He2+ -He collisions in the laboratory frame. The present WP-CCC and
E1E results are represented by the red solid and black dashed lines, respectively. The present FBA results obtained within the E1E method are
also depicted. The key shown in the last panel applies to all panels.

TC-BGM IEM calculations that agree with the experiment
very well. We note that the present WP-CCC and the TC-
BGM results reproduce the shoulder seen in the experiment
very well. Our calculations are in good agreement with the
experiment below 0.3 mrad, but overestimate the data at larger
scattering angles. A similar behavior of the WP-CCC cross
sections with respect to the experimental data can be seen
at 150 keV/u, but with relatively smaller deviation at larger
scattering angles. At 300 keV/u, the WP-CCC results are in
very good agreement with the experiment across the entire
scattering angle range. In fact, all theories except for CDW-
BIS, CDW-EIS, and CBDW-3B are in very good agreement
with the experimental data. The WP-CCC results describe
the experimental data generally well at 450 and 630 keV/u
too. At 630 keV/u they slightly underestimate the data in
the 0.15–0.3-mrad region. Here, all methods including the
TC-BGM IEM results also underestimate the experiment. The
present E1E calculations exceed the two-electron WP-CCC
ones and, where available, the experiment below 150 keV/u.
This highlights the importance of the electron-electron cor-
relation in the electron-transfer processes at relatively small
collision energies. Similar conclusions were drawn for the
total electron-capture cross sections in Ref. [27]. The shoulder
structure mentioned above is also poorly described. One can
conclude that a correlated two-electron description of the tar-
get is needed in order to reveal this feature. Starting from 300
keV/u, the E1E and WP-CCC results agree with each other
reasonably well.

Figures 2 and 3 present the WP-CCC results for the angular
differential cross section for elastic scattering and excitation
into all excited states of the target, respectively. We note that
the calculations are performed at all six projectile energies
shown in Fig. 1; however, hereafter we give the results only at
three energies. For both processes, the two-electron WP-CCC
results reveal a shoulder structure at 50 keV/u, somewhat sim-
ilar to that observed for electron capture. But at larger energies
no shoulder is seen. Another interesting observation is that,
for elastic scattering, the magnitude of the cross section in

the forward direction remains almost the same at all projectile
energies considered here. However, the cross section falls off
as a function of scattering angle faster with increasing projec-
tile energy [27]. The differential excitation cross section peaks
in the forward direction and exponentially decreases as the
scattering angle increases. There are no previously available
experimental or other theoretical results for elastic scattering
and excitation. Therefore, we compare only the E1E and
two-electron WP-CCC results. For elastic scattering, at all
collision energies, the two-electron results are larger near
the forward direction, but then drop below the E1E results.
At 100 and 300 keV/u, the deviation between the E1E and
two-electron WP-CCC results becomes larger as the scattering
angle increases. In addition, we include the results for elastic
scattering obtained using the FBA within the E1E method.
We can see that at the considered energies the FBA results
are sufficiently close to the full calculations in the forward
direction. However, they noticeably deviate from the latter as
the scattering angle increases. At 300 keV/u, the deviation
is smaller than that at 50 and 100 keV/u, as expected. For
excitation, at all projectile energies, the agreement between
the results is very good at smaller scattering angles but the
results slightly deviate as the scattering angle increases. Over-
all, the agreement between the results for excitation is better
than that for elastic scattering. This can be explained by the
different target descriptions used in these two approaches. The
elastic scattering is particularly sensitive to the ground state
of the helium atom, however the active electron becomes less
sensitive to the target structure as it transitions to the excited
states.

In the next three figures, we present the singly differential
cross sections for ionization. The ionization cross section dif-
ferential in ejected-electron energy is presented in Fig. 4.
This SDCS is calculated using Eq. (29). The DI and ECC
components of the two-electron WP-CCC results are also
shown in the figure to highlight their contribution. It is seen
that at all collision energies the direct ionization component
peaks when very slow electrons are ejected. At the projectile
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FIG. 3. Angular differential cross section for excitation in 3He2+ -He collisions in the laboratory frame. The present WP-CCC and E1E
results are represented by the red solid and black dashed lines, respectively. The key shown in the last panel applies to all panels.

energy of 50 keV/u, the cross section has a peak around 20-eV
emission energy, where ECC contributes significantly more
than DI. At 100 keV/u, the ECC peak is not dominant enough
to produce a peak in the ionization cross section but shows
up as a shoulder. The shoulder disappears at 300 keV/u due
to diminishing significance of the ECC component, where the
cross section falls steadily as the ejection energy increases.
We also note that the E1E results, presented at all projectile
energies, are in very good agreement with the two-electron
WP-CCC ones.

Figure 5 presents the ionization cross-section differential
in the ejected-electron angle. The cross section is calculated
using Eq. (30). At the projectile energies of 50 and 100
keV/u, our results are compared with the experimental data,
the CTMC and CDW-EIS calculations by Bernardi et al.
[15]. The WP-CCC results slightly underestimate the avail-
able experimental points at 50 keV/u. However, they are in

excellent agreement with the experiment at 100 keV/u. In
comparison with other theoretical calculations, we can see
that the WP-CCC results mostly lie between the CDW-EIS
and CTMC calculations at both collision energies. The DI
and ECC components of the two-electron WP-CCC results
are also shown. The DI and ECC components reveal that at
50 and 100 keV/u the ionization cross sections are mostly
due to ECC at small ejection angles and DI at large angles
including the backward ejection. We also note that at 300
keV/u DI has a dominant contribution in the ionization SDCS
at all ejection angles except for a very narrow cone near
the forward direction. At all collision energies, the E1E and
two-electron WP-CCC results are in overall good agreement.
At 50 keV/u, the one-electron approach produces a shallow
peak in the backward direction. This may be because of the
inability of the E1E approach to properly describe the back-
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FIG. 4. Singly differential cross section for ionization in 3He2+ -He collisions as a function of ejected-electron energy. The present WP-
CCC and E1E results are represented by the red solid and black dashed lines, respectively. The key shown in the last panel applies to all
panels.
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FIG. 5. Singly differential cross section for ionization in 3He2+ -He collisions as a function of ejected-electron angle. The present WP-CCC
and E1E results are represented by the red solid and black dashed lines, respectively. Experimental data and CDW-EIS and CTMC calculations
are by Bernardi et al. [15]. The keys shown in the last two panels apply to all panels.

ward electron ejection, when the collision energy is relatively
6 small.

Figure 6 shows the E1E and two-electron WP-CCC results
for the ionization cross section differential in the projec-
tile scattering angle. Both methods produce exponentially
decreasing but otherwise featureless cross sections at all pro-
jectile energies. We note, however, that a shoulder feature is
seen at 50 keV/u reminiscent of that seen in our results for the
differential cross section for excitation. In ion-atom collisions,
the target electron is less likely to change the direction of
the incoming projectile to large angles. Therefore, in Figs. 2,
3, and 6, the corresponding cross sections fall off sharply
as the projectile scattering angle increases. Large-angle scat-
tering happens due to the interaction between the projectile
and the target nucleus, especially for slow projectiles. This
indicates that at small projectile scattering angles the angular

differential cross sections are mostly due to electron-projectile
interaction, while at larger angles heavy-particle interaction
becomes more important. The change in the character of the
interaction as the scattering angle increases must be the phys-
ical reason behind the shoulders observed in these figures. At
50 and 100 keV/u, ECC is the dominant mechanism through-
out the whole scattering-angle region of interest, while at
300 keV/u DI becomes dominant (the DI and ECC com-
ponents are not shown in the figure since in all cases the
dominant component is little different from the total). As has
been observed for other types of SDCS for ionization, there
is very good agreement between the present E1E and two-
electron approaches. This reveals that within the wave-packet
approach the E1E model describes the continuum of the he-
lium atom sufficiently well. It allows us to conclude that all
three types of the singly differential cross sections for ioniza-

FIG. 6. Singly differential cross section for ionization in 3He2+ -He collisions in scattered-projectile angle in the laboratory frame. The
present WP-CCC and E1E results are represented by the red solid and black dashed lines, respectively. The key shown in the last panel applies
to all panels.
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FIG. 7. Angular differential cross sections for ground-state and total electron capture in 4He2+ -He collisions in the laboratory frame. The
experimental data are from Mergel et al. [12,13]. The present WP-CCC and E1E results are given as the solid and dashed lines, respectively.
The keys shown in the last two panels apply to all panels.

tion can be described by the effective single-electron model, a
much simpler alternative to the two-electron approach.

C. 4He2+ -He collisions

In this section, we discuss the angular differential cross
sections for ground-state and total electron capture in
4He2+ -He collisions at the incident energies of 62.5, 125,
187.5, and 250 keV/u. Slightly different collision energies are
chosen for this system to be able to compare with the avail-
able experimental data. Theoretical treatment of this collision
system is similar to that of 3He2+ -He collisions. However, as
we mentioned before, it is experimentally challenging due to
its symmetry. Especially, for electron-capture processes, when
both the formed and the residual ions are 4He+, separation
of the reaction products becomes a difficult task. Here, we
follow the traditional notation (n, n′) to describe the reaction
4He2+ -He(1s2) → 4He+(n) − 4He+(n′), where the first elec-
tron is captured into the nth state of the projectile, and the
second electron is excited into the n′th state of the residual
ion (transfer excitation). Experiments cannot distinguish the
(n, n′) and (n′, n) processes. Therefore, conventionally, for
this symmetric collision system the cross sections are pre-
sented for the reactions (n, n′) + (n′, n). Mergel et al. [12,13]
measured the differential cross sections for the reaction (1,1)
and for total transfer excitation, which is the combination of
all possible reactions (n, n′) + (n′, n).

In Fig. 7, we present the angular differential cross sec-
tion for electron capture into the ground state, referred to
as (1,1), and compare with the corresponding experimental
data of Mergel et al. [12,13]. In addition, we compare our
results for total electron capture, which is the sum of partial
electron-capture cross sections into all bound states of the
projectile, with the data for total transfer excitation. We note
that in our approach the target is treated using the frozen-
core approximation, where one of the electrons stays in its
ground state throughout the collision. Therefore, it does not
account for transfer-excitation processes. At 62.5 keV/u, we
observe excellent qualitative and quantitative agreement be-

tween the WP-CCC calculations and the experiment for the
ground-state electron capture. The oscillatory structure of the
cross section seen in the experimental results is accurately
reproduced in our calculations. Our total electron-capture
cross sections are also in excellent agreement with the ex-
perimental data for total transfer excitation. This indicates
the dominance of the (n, 1) reactions in transfer-excitation
processes. At 125 keV/u, the two-electron WP-CCC results
are in good agreement with the experimental data except for
small scattering angles where they slightly overestimate the
data. Agreement between our results and the experiment is
very good again at 187.5 keV/u, however it is slightly worse
at 250 keV/u. As in the case of 3He2+ -He collisions, the
E1E results slightly overestimate the WP-CCC ones, espe-
cially at large scattering angles for both ground-state and total
electron capture. Finally, we have also calculated the angu-
lar differential elastic-scattering and excitation cross section,
and all three types of the singly differential ionization cross
sections. However, they are found to be practically the same
as the corresponding results for 3He2+ -He collisions (when
calculated at the same projectile velocity). Therefore, they are
not presented. One can conclude that the symmetry property
mentioned above must be less relevant to these channels.

IV. SUMMARY AND CONCLUSIONS

To summarize, the two-electron and effective one-electron
wave-packet convergent close-coupling approaches have been
applied to study the singly differential cross sections for
all one-electron processes taking place in 3He2+ -He and
4He2+ -He collisions. In the two-electron approach, the cor-
relation between the target electrons and electron-exchange
effects between the reaction fragments were fully taken
into account. The effective single-electron method does not
account for these effects, but it allowed us to study the colli-
sional system in a more efficient way, in terms of numerical
calculations, and provided a good test for the two-electron
WP-CCC results, especially for the processes where no
experimental results were found for comparison. In both ap-
proaches, the continuum for the target and projectile atoms
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was described using the wave-packet pseudostates obtained by
integrating the corresponding continuum function in a certain
set of discretization bins. The singly differential cross sec-
tions were calculated for the ground-state and total electron
capture, elastic scattering, excitation, as well as ionization
of the target for both collision systems. We considered an
intermediate incident energy range of 50–630 keV/u, where
one-electron processes are expected to be dominant.

For electron capture into the ground state in 3He2+ -He
collisions, the WP-CCC results showed overall good agree-
ment with the experimental data of Schöffler et al. [14],
where available. At 60 and 150 keV/u, we observed some dis-
crepancies at larger angles, where the theoretical calculations
showed considerable deviations. For elastic scattering and
excitation, no experiments are available for comparison. The
WP-CCC results for both processes showed that the angular
DCS peaks in the forward direction and steadily falls as the
projectile scattering angle increases. We also observed that
the two-electron WP-CCC cross sections possess a shoulder
structure at smaller collision energies. This feature was found
to be common for all angular differential cross sections. The
WP-CCC results were presented for all types of SDCS for ion-
ization. The calculated SDCS differential in ejected-electron
angle described the experimental data of Bernardi et al. [15]
very well at 100 keV/u, but slightly underestimated it at
50 keV/u. The DI and ECC components of the SDCS were
also presented. For the SDCS differential in ejected-electron
energy, this explained the reason of the second peak of the
cross section at 50 keV/u, and a shoulder at 100 keV/u, to be
due to the ECC peak.

For 4He2+ -He collisions, the experimental data were pre-
sented by Mergel et al. [12,13] for angular differential electron
capture at collision energies from 62.5 to 250 keV/u. The
results given in this paper represent the theoretical analysis
of the aforementioned experimental data. For electron capture
into the ground state, we observed excellent agreement be-
tween the WP-CCC results and the data at 62.5 and 187.5
keV/u. However, at 125 and 250 keV/u, WP-CCC results
slightly overestimated the data at small scattering angles.
A similar situation was observed between the WP-CCC re-
sults for total electron capture and the experimental data
for total transfer excitation. We also observed that the cross
sections for the other processes taking place in 4He2+ -He
collisions are very similar to those for the 3He2+ -He system.
They did not show any new features either quantitatively
or qualitatively. Therefore, we did not present these results.
However, they are available from the authors by request. It is
concluded that the symmetry property of the 4He2+ -He colli-
sion system is less relevant to the elastic-scattering, excitation,
and ionization channels.

We emphasize that the scattering amplitudes calculated in
this paper depend only on the momentum transfer. Therefore,
for a given value of the momentum transfer, the amplitudes for
the two collision systems are identical. The kinematic factors
in the definitions of the cross sections are slightly different due
to the difference in the masses. Accordingly, at each collision
energy, the differential cross sections presented in this paper
for one particular system can be scaled as functions of the
transverse momentum transfer and used for the other system
after the correction for the difference in the kinematic factor.

This applies to all the results except for the total transfer-
excitation ones shown in Fig. 7. This remark may indicate that
plotting the angular differential cross sections as functions of
the transverse momentum transfer would make the aforemen-
tioned generalization simpler. However, generally speaking, it
is not an optimal way of presenting the results. The main rea-
son why we present our results as functions of the scattering
angle is the following. When the differential cross sections are
plotted as functions of the perpendicular component of the
momentum transfer, the most important (from a physics point
of view) region of low momentum transfer, where scattering
mostly happens, gets suppressed due to the presence of sin θ .
Instead, the focus shifts to the regions that are less important
(meaning the regions with much less flux). The disadvantage
of presenting the differential cross sections as functions of the
momentum transfer becomes particularly evident when one
considers the fully and doubly differential cross sections in the
forward direction. Therefore, here in this paper and in our pre-
vious papers, we use the scattering angle as the main variable.

In general, it is concluded that the two-electron WP-CCC
approach is able to reproduce the general differential picture
of both the 3He2+ -He and 4He2+ -He collisional systems in
terms of the angular differential cross sections for electron
capture at all considered collision energies. However, the
effective one-electron method is found to produce accurate
differential electron-capture cross sections only at sufficiently
larger projectile energies. This shows the importance of prop-
erly accounting for the electron-electron correlations in the
target treatment and electron-exchange effects between the
reaction products in the electron-transfer channels in studying
electron-capture processes. The present approaches were also
found to accurately describe the experimental data for the
SDCS for ionization as a function of the ejected-electron an-
gle, where available. For excitation and other types of SDCS
for ionization, there are no experimental or theoretical results
for comparison. However, the agreement observed between
the results of the effective one-electron and two-electron WP-
CCC methods gives us some confidence about the accuracy
of the approaches in describing those processes as well. Ex-
perimental and other theoretical studies would be desirable to
verify these results.

We plan to further develop the WP-CCC approach to inves-
tigate two-electron processes, such as transfer excitation and
transfer ionization in ion collisions with He [41,42], where
agreement between theory and experiment remains unsatis-
factory. We also plan to revisit the widely discussed problem
of kinematically complete single ionization of helium by
C6+ ions [43] using the two-center WP-CCC method. The
single-center quantum-mechanical version of the convergent
close-coupling method was applied to the problem [44]; how-
ever, the results did not agree with the experiment.
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