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Langevin approach to magnetic-field-gradient-induced spin relaxation in a coated cell
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Magnetic-field-gradient-induced spin polarization transverse relaxation is re-examined in an alkali-metal
atomic cell with antirelaxation coating. The experimentally observed motional-narrowing effect in a paraffin-
coated vapor cell, a phenomenon for depicting the suppression of spin polarization transverse relaxation caused
by the magnetic-field gradient, is more than an order of magnitude weaker than theoretical predictions. Such a
discrepancy is due to the existence of background gas. By taking the background gas into consideration, Redfield
theory combined with the Langevin approach is proposed to depict the magnetic-field-gradient-induced spin
relaxation in a coated cell, and the model is verified to be consistent with the previous results derived under two
limits in which the mean free path is either much smaller (diffusion regime) or much larger than (ballistic regime)
the cell size. Our work provides a potentially feasible method to evaluate the background gas pressure inside the
coated cell, and it can help to foster better comprehension of the performance of an antirelaxation coated cell.
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I. INTRODUCTION

An atomic vapor cell with antirelaxation coating has found
tremendous applications in magnetometry [1–3], spin noise
measurement [4–6], frequency standards [7–10], and funda-
mental physics experiments [11–13]. Considering that the
atoms in the coated cell can experience thousands of collisions
with the cell wall without losing polarization [14,15], and
taking into account the low saturated atomic vapor pressure,
atoms move rapidly within the cell. The rapid atomic motion
brings many benefits, such as the motional-narrowing effect
[16], which suppresses the spin polarization transverse relax-
ation caused by the magnetic-field gradient. The coated cell,
typically the one filled with alkali-metal atoms, is widely used
for measuring Earth’s magnetic field [17,18], and it has the po-
tential to achieve femtotesla sensitivity even in a magnetically
unshielded environment [19].

A persistent goal has been learning how to precisely and
quantitatively model the spin relaxation mechanism under
the influence of a magnetic-field gradient. In the majority of
previous work for this topic, a diffusion equation has been
used to describe the motion of spin polarization [20–24],
which is applicable for a liquid NMR sample [25,26] or an
atomic vapor cell filled with high-pressure gas (the pressure
is typically larger than 104 Pa) [27,28]. Under this condition,
the mean free path of atoms, i.e., λ, characterizing the average
distance over which a moving atom travels before collisions
with other atoms, is on the order of ∼µm or less and is
typically much smaller than the cell size, i.e., R. The diffusion
equation is valid under the condition in which λ � R [29],
i.e., the diffusion regime.

Nevertheless, without buffer gas, the mean free path of
the atoms in a well-performed coated cell is normally on
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the order of hundreds of meters, and the atoms may travel
ballistically between collisions with the cell wall, i.e., the
ballistic regime. The diffusion equation is thus invalid for
describing the atomic motion within the coated cell. To solve
this problem, Ref. [30] presents a neat and clever approach,
i.e., it analyzes the accumulation of a random phase, and in
turn it gives a quantitative expression of the relation between
the magnetic-field gradient and spin polarization relaxation in
the coated cell.

Besides of the two cases mentioned above, i.e., when the
atomic mean free path is much smaller (diffusion regime) or
larger than (ballistic regime) the size of the vapor cell, it is nat-
ural to ask (i) if there exists an intermediate regime, in which
the mean free path is comparable with the size of the atomic
vapor cell, i.e., on the order of millimeters or centimeters,
and (ii) if so, which theoretical model is suitable to depict the
magnetic-field-gradient-induced spin polarization relaxation?

For the first question, the mean free path of the atoms in
the coated cell could be suppressed from hundreds of meters
to millimeters. The dominant factor is due to the amount of
background gas occurring inside the coated cell. The back-
ground gas could be typically generated from two processes,
i.e., the out-gassing of the chemical reactions between the
alkali-metal atoms and the paraffin coating [31,32], and the
heating process, such as ripening [33,34]. The occurrence of
the background gas inside the coated cell has been proved
experimentally [35–37], while it is normally taken as a ne-
glected factor for analyzing the spin polarization relaxation,
especially under a magnetic-field gradient, since the pressure
of the emerging background gas (∼1 Pa) is much smaller
than the pressure of the buffer gas added inside the cell [38].
Accordingly, the coated cell with background gas is different
from the case in which the coated cell is filled with buffer gas,
under which the diffusion equation is applicable to analyze
the atomic motion [39]. However, the pressure of background
gas is much larger than the saturated vapor pressure of the
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alkali-metal atoms (∼10−5 Pa), and it makes the motional
characteristics of atoms inside the coated cell distinct from
the ballistic case.

For the second question, previous theoretical models for
the diffusion regime and the ballistic regime are not suitable
for characterizing the magnetic-field-gradient-induced spin
relaxation in a coated cell with background gas, which is in
the intermediate regime and has attracted increasing attention,
especially on how to develop a generalized theoretical model
to cover the full range of the mean free path. In general,
the Redfield theory is widely used to solve this problem,
together with various other developed approaches to calcu-
late the autocorrelation function or power spectral density of
the fluctuating field experienced by moving spin polarization
[40–48].

One way to obtain the power spectral density of the fluc-
tuating field for all values of the mean free path is based on
the velocity autocorrelation of spin polarization. The authors
analyze the trajectory and velocity of a particle and develop
a damped oscillation equation to characterize the velocity
autocorrelation [40]. This method is then applied in Ref. [41],
and different angular distributions of the trajectory need to be
considered for different boundary shapes. To simplify the cal-
culation, the correlation function and power spectral density
are calculated in rectangular boundary, with a single angle of
trajectory, and the derived results are consistent with previous
work in the diffusion regime.

Telegrapher’s equation is introduced in Ref. [42] to ob-
tain the conditional probability of a particle’s position, so as
to describe the atomic motion for one-dimensional motion
with a plane boundary. The validity of this model is verified
under different mean free paths through Monte Carlo simula-
tions. However, the solutions of the two- or three-dimensional
telegrapher’s equation cannot characterize the correspond-
ing conditional probability since they can be negative values
[43]. To solve this problem, the approach based on persistent
continuous-time random walks [44] is applied in Ref. [45]
to calculate the power spectral density in the one-, two-, and
three-dimensional atomic motion. The corresponding method
is extended by considering the velocity distribution of the
scattered particles in Ref. [46]. Besides, there exist other
investigations on extending the power spectral density by ap-
plying a succession of integrations by parts, and we expect
that the results are valid from the diffusion regime to the
ballistic regime, which can be seen in Refs. [47,48].

In this manuscript, we present a complementary theoretical
model, which combines the Redfield theory with Langevin’s
diffusion approach to deal with the magnetic-field-gradient-
induced spin relaxation covering a full range of the mean free
path in the coated cell. The results of our model are verified
to be consistent with the established results derived under two
extreme conditions, i.e., the diffusion regime and the ballistic
regime.

II. THEORETICAL MODEL

This section introduces the details of our proposed the-
oretical model based on the Redfield theory combined with
Langevin’s diffusion approach. Our model takes the different
regimes, or equivalently, the mean free paths (see Appendix A

for detailed clarifications), into consideration, i.e., the mean
free path is larger than, comparable to, or smaller than the
vapor cell.

A. Redfield theory with Langevin’s diffusion model

In this paper, Redfield theory, which is a generalized treat-
ment of second-order time-dependent perturbation [49], is
applied to analyze the magnetic-field-gradient-induced spin
relaxation in coated cells. Redfield theory is valid under
the following two approximations [50]: (i) Weak-coupling
approximation: the physical system is weakly coupled with
the environment, i.e., the perturbation caused by the envi-
ronment on the system is small; (ii) Markov approximation:
the perturbation caused by the environment on the system is
a memoryless process, indicating that the evolution of the
system over time is independent of the previous state. For
the coated cell, perturbation caused by the magnetic-field
gradient is considerably smaller compared to that by the static
bias field in most application scenarios. Besides, the random
motion of atoms in the coated cell makes the magnetic-field-
gradient-induced perturbation a random process. Thus, both
of the aforementioned two approximations are satisfied for the
coated vapor cell.

With the presence of the magnetic-field gradient, the static
bias magnetic field B0�ez should be replaced with B0�ez + �B1.
For simplicity, the influence of a first-order magnetic-field
gradient can be written as �B1(�r), which is a static mag-
netic field that varies with space. Here, the variation of the
magnetic-field gradient over time is not considered. However,
due to the rapid movement of the atom within the cell, the
atom encounters varying magnetic fields at different moments.
As a consequence, for a specific atom, the magnetic field
it experiences varies with time and has the form �B1(�r, t ) or
�B1(�r(t )). The impact of the magnetic-field gradient on the evo-
lution of atomic spin can be regarded as a perturbation under
the condition of | �B1(�r, t )| � B0. Based on the Redfield theory
[16,49], the relaxation of spin polarization can be depicted by
the power spectral density of the magnetic-field perturbation,
and the relaxation times T1 and T2, which characterize the
decay of longitudinal and transverse polarization over time,
take the forms

1

T1
= γ 2

2
[S1x(ω0) + S1y(ω0)],

1

T2
= 1

2T1
+ γ 2

2
S1z(0), (1)

where

S1x,y,z(ω) =
∫ ∞

−∞
〈B1x,y,z(�r, t )B1x,y,z(�r, t + τ )〉e−iωτ dτ (2)

are the power spectral density of magnetic-field perturbations
in the x, y, z directions, respectively. 〈· · · 〉 means the ensemble
average, γ is the gyromagnetic ratio, and ω0 = γ B0 is the
atomic spin precession frequency under the influence of the
bias magnetic field B0.

Considering the existence of the static bias field B0�ez,
Eq. (1) can be phenomenologically analyzed in the frame ro-
tating at the Larmor frequency ω0. T1 characterizes the decay
of longitudinal spin polarization, and such a decay is caused
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by static transverse magnetic fields B1x and B1y in the rotating
frame. The static fields B1x and B1y in the rotating frame os-
cillate at Larmor frequency ω0 in the laboratory frame. That is
why T1 is related to S1x(ω0) and S1y(ω0). On the other hand, T2

characterizes the decay of transverse spin polarization and is
related to the linewidth of the magnetic resonance signal (see
Appendix B), and such a decay is caused by static longitudinal
magnetic field B1z in the rotating frame. Static fields B1z in the
rotating frame are also static in the laboratory frame. That is
why T2 is related to S1z(0).

To derive the form of the spin relaxation, it is necessary to
calculate the autocorrelation function of perturbation caused
by the magnetic-field gradient, i.e., 〈B1i(t )B1i(t + τ )〉, which
can be represented by |∇B1i|2 times the autocorrelation func-
tion of the position 〈i(t )i(t + τ )〉, and it has the from

〈B1i(t )B1i(t + τ )〉 = |∇B1i|2〈i(t )i(t + τ )〉, (3)

where i = x, y, z. If the static bias field B0 is large enough,
i.e., ω0 � 1/τR or D/R2, where τR = 4R/3v̄ is the average
time between consecutive atom-wall collisions, R is the ra-
dius of the cell, v̄ is the thermal velocity of atoms, and D
is diffusion coefficient of atoms, then the impact of T1 on
T2 can be ignored (see Appendix C). Under this condition,
magnetic-field-gradient-induced transverse relaxation has the
form

1

T2
= γ 2

2
S1z(0)

= γ 2

2
|∇B1z|2

∫ ∞

−∞
〈z(t )z(t + τ )〉dτ, (4)

and 〈z(t )z(t + τ )〉, which is the autocorrelation function of the
position along the z direction and is assumed to be a stationary
process, is given by conditional probability density, which
depicts the characteristics of atomic motion,

〈z(t )z(t + τ )〉 = 〈z(t0 + τ )z(t0)〉

=
∫∫

ρ(�r0, t0)ρ(�r, t0 + τ | �r0, t0)zz0 d�d�0, (5)

where

d� = r2 sin θdrdθdφ, d�0 = r2
0 sin θ0dr0dθ0dφ0, (6)

z(t0 + τ ) = z, z(t0) = z0, and ρ(�r0, t0) is a uniform initial
probability density in a spherical cell with radius R and vol-
ume V ,

ρ(�r0, t0) = 1

V
=

(
4πR3

3

)−1

. (7)

ρ(�r, t | �r0, t0) in Eq. (5) is the conditional probability density
of an atom at position �r at time t , if t0 and �r0 are the initial
time and position. The theoretical model that we develop is
applicable for different cell shapes, taking different boundary
conditions into consideration.

Reviewing the above procedures, magnetic-field-gradient-
induced spin relaxation can be derived based on the following
three steps:

(i) Calculate ρ(�r, t | �r0, t0) through the theoretical analy-
sis of the atomic motion, and calculate 〈z(t )z(t + τ )〉 with
Eq. (5).

(ii) Calculate 〈B1z(t )B1z(t + τ )〉 based on the form of
〈z(t )z(t + τ )〉 by using Eq. (3).

(iii) Calculate transverse relaxation time T2 based on the
form of 〈B1z(t )B1z(t + τ )〉 through Eq. (4).

The first step plays a key role in deriving the calculation.
It is significant to choose a reasonable model to describe
the motional characteristics of atoms in the coated cell. The
corresponding theory applied to describe the atomic motion in
most previous work is based on Einstein’s work for Brownian
motion [29], and it is known as Torrey’s diffusion equation for
analyzing the spin relaxation caused by an inhomogeneous
magnetic field [20–22]. This model is valid only i f the mean
free path of the concerned particle is much smaller than the
size of the boundary [29,41], e.g., the cell with high-pressure
buffer gas, which is not the case for the antirelaxation coated
vapor cell, since the pressure of the background gas within
the coated cell is several orders of magnitude smaller than the
pressure of the buffer gas.

Langevin’s diffusion model is used for analyzing the Brow-
nian motion, which focuses on the velocity of Brownian
motion particles. The restriction on Torrey’s diffusion model
(λ � R) does not exist in Langevin’s diffusion model [29],
which covers from the ordinary ballistic motion model to
Einstein’s (Torrey’s) diffusion model [29,51]. For this rea-
son, Langevin’s diffusion model is a more general diffusion
model to analyze the random motion of particles, especially
for describing the motion of atoms in the coated cell, in
which the mean free path of the atoms is comparable with
the size of the coated cell, i.e., on the order of millimeters or
centimeters. Relevant work can be seen in Ref. [5], in which
Langevin’s diffusion model with ideal coating as the boundary
condition is applied to describe the two-dimensional atomic
motion within an OTS-coated Rb vapor cell, and to analyze
the corresponding spin-noise spectrum of hot vapor atoms.

Based on the above considerations, Langevin’s diffusion
model is used for calculating ρ(�r, t | �r0, t0) in our work to
describe atomic motion within the coated cell. According to
Langevin’s diffusion model shown in Appendix D, for the
motion of atoms in a coated cell, ρ(�r, t | �r0, t0) obeys the
following equation:

∂

∂t
ρ(�r, t | �r0, t0) = D

(
1 − e− |t−t0|

τD

)∇2ρ(�r, t | �r0, t0), (8)

where D is the diffusion coefficient of atoms within the coated
cell. τD = Dm/(kBT ), in which m is the mass of a single atom,
T is the temperature of the cell, and kB is the Boltzmann
constant. The boundary condition for Eq. (8) has the form

�n ∂ρ(�r, t | �r0, t0)

∂n

∣∣∣∣
r=R

= 0, (9)

where �n is an outwardly directed normal unit vector to the
spherical wall. Equation (9) is called the Neumann bound-
ary condition [52,53], typically for the cases in which the
wall-induced relaxation time is much longer than the atomic
motional time between adjacent wall collisions, as shown in
Appendix E. Accordingly, the Neumann boundary condition
is suitable for ideal coating, which assumes that the impact of
wall-collision-induced relaxation is neglected. Based on this
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consideration, the corresponding initial condition is

ρ(�r, t | �r0, t0) = δ(�r − �r0)

= 1

r2 sin θ
δ(r − r0)δ(θ − θ0)δ(φ − φ0), (10)

which describes a single atom at initial position �r0 with initial
time t0. Combining Eqs. (8)–(10), the general solution of the
diffusion equation takes the form

ρ(�r, t | �r0, t0) = 1

R3

∑
n,l,m

Aln jl

(
klnr

R

)
jl

(
klnr0

R

)
Y ∗

lm(θ, φ)Ylm(θ0, φ0) exp
−k2

lnD
[|t − t0| + τD

(
e

−|t−t0|
τD − 1

)]
R2

, (11)

where Ylm(θ, φ) is the spherical harmonic, with l and m as the
two variables, jl (k) is the spherical Bessel function, and kln

is the nth zero of d jl (k)/dk. The normalization constant Aln

satisfies

Aln = R3

[∫ R

0
r2 j2

l

(
klnr

R

)
dr

]−1

. (12)

Based on these, the autocorrelation function of position 〈z(t +
τ )z(t )〉 can be calculated. Substituting Eq. (11) into Eq. (5), it
can be found after some algebra that

〈z(t + τ )z(t )〉 = R2
∑

n

A1nCnFn, (13)

where

Cn = 1

R8

[∫ R

0
r3 j1

(
k1nr

R

)
dr

]2

(14)

and

Fn = exp
−k2

1nD
[|t − t0| + τD

(
e

−|t−t0|
τD − 1

)]
R2

. (15)

Combining Eqs. (4), (13), and (B4) (listed in Appendix B), the
broadening of the magnetic resonance linewidth caused by the
magnetic-field gradient takes the form

1

πT2
= γ 2

2π
S1z(0)

= γ 2|∇B1z|2
2π

∫ +∞

−∞
〈z(t + τ )z(t )〉dτ

≈ γ 2

π

(
∂B1z

∂z

)2

R2
∑

n

A1nCn

∫ +∞

0
Fndτ. (16)

Here we assume that ∂B1z/∂z is the main component of the
axial gradient ∇B1z. It can be seen from Eq. (16) that the trans-
verse relaxation has a quadratic relation with the first-order
axial magnetic-field gradient, which agrees well with previous
theoretical models. In addition to the quadratic relation, our
purpose is to derive an accurate form of the axial quadratic
coefficient az, which has the form

az = γ 2

π
R2

∑
n

A1nCn

∫ +∞

0
Fndτ. (17)

In the following subsections, we compare our model shown
in Eq. (16) with previous work under two extreme conditions,
i.e., when the mean free path is much smaller or larger than
the atomic vapor cell.

B. Langevin’s diffusion model for λ � R

When the mean free path of atoms is much larger than
the cell size (λ � R), which means that the presence of
background gas can be neglected in the coated cell and only
the saturated vapor pressure of atoms is taken into con-
sideration, the average time between consecutive atom-wall
collisions (∼R/v̄) is much smaller than the average time be-
tween consecutive atom-atom collisions (∼λ/v̄). At this time,
atomic motion between adjacent wall collisions described by
Langevin’s diffusion model is in an approximate straight line,
i.e., ballistic motion [29]. It is derived that (the relation be-
tween the diffusion coefficient and the mean free path can be
found in Appendix A)

∫ +∞

0
exp

−k2
1nD

[|t − t0| + τD
(
e

−|t−t0|
τD − 1

)]
R2

dτ

≈
∫ +∞

0
exp

−k2
1n

( kBT
2m

)|t − t0|2
R2

dτ

= R

k1n

√
mπ

2kBT
. (18)

Under this condition, by using Eq. (16), the spin relaxation
caused by the magnetic-field gradient is

1

πT2
= γ 2

π

(
∂B1z

∂z

)2

R2
∑

n

A1nCn

∫ +∞

0
Fndτ

= γ 2

π

(
∂B1z

∂z

)2

R2
∑

n

A1nCn
R

k1n

√
mπ

2kBT

≈ 0.066
γ 2R3

v̄

(
∂B1z

∂z

)2

. (19)

Reference [30] proposed a theoretical model based on the
phase accumulation method to describe the influence of a
magnetic-field gradient on a coated alkali atomic cell. The
quadratic relation between the linewidth of magnetic reso-
nance and the magnetic-field gradient has the form

1

πT2
≈ 0.042

γ 2R3

v̄

(
∂Bi

∂xi

)2

, (20)

where γ is the gyromagnetic ratio, R is the radius of the cell,
v̄ is the atomic thermal velocity, and ∂Bi/∂xi is the magnetic-
field gradient along the xi direction.

Comparing Eqs. (19) and (20), it can be found that
Langevin’s diffusion model under λ � R has the same form
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as that of the phase accumulation model,

1

πT2
∼ k

γ 2R3

v̄

(
∂Bi

∂xi

)2

. (21)

Therefore, when the mean free path of atoms is much larger
than the radius of the coated cell, Langevin’s diffusion model
turns into ballistic motion. We notice that there exists some
difference between the coefficient k of the two models shown
in Eqs. (19) and (20). Such a difference could be attributed to
the assumptions and approximations of the two models. For
instance, in Ref. [30], i.e., the phase accumulation model for
the ballistic regime, magnetic-field gradient information is re-
placed by a typical constant value to simplify the calculation,
and a characteristic relaxation is assumed to happen when the
total accumulated phase is equal to

√
2, which are not needed

in our Langevin diffusion model. Furthermore, the Neumann
boundary condition of our model shown in Eq. (9) is crude
for characterizing the nature of atom-wall collisions in the
ballistic regime. The specific form of reflections (diffuse or
specular) can affect the calculations and thus the magnetic-
field-gradient-induced relaxation [54].

C. Langevin’s diffusion model for λ � R

When the pressure in the cell is too high for atoms to travel
ballistically between the wall, e.g., when the cell is filled with
buffer gas, the mean free path of the atom is significantly
suppressed and is much smaller than the size of the coated
cell (λ � R). Under this condition,

Fn = exp
−k2

1nD
[|t − t0| + τD

(
e

−|t−t0|
τD − 1

)]
R2

≈ exp
−k2

1nD|t − t0|
R2

, (22)

and the spin relaxation caused by the magnetic-field gradient
under this condition is

1

πT2
= γ 2

π

(
∂B1z

∂z

)2

R2
∑

n

A1nCn

∫ +∞

0
Fndτ

= 8γ 2R4

175πD

(
∂B1z

∂z

)2

. (23)

This expression of T2 is consistent with Eq. (C4) in Ap-
pendix C, which is based on Torrey’s diffusion model [22,23]
and is quite different from Eq. (20) for ballistic motion.

The differences between the two diffusion models. i.e.,
Torrey’s diffusion model and Langevin’s diffusion model, are
summarized in Fig. 1. The ratios of the axial quadratic coef-
ficients az corresponding to these two models are calculated
for the potassium atomic coated cell with R = 2 cm, under
different mean free paths. It is shown that, when the mean
free path is small, i.e., less than ∼1 mm, the results calculated
by the two methods are almost identical (the ratio is ∼1),
indicating the consistency between the two models. When
the mean free path becomes larger, the deviation between the
axial quadratic coefficients az calculated by the two diffusion
models becomes deviated from 1, indicating that Torrey’s
diffusion model could underestimate the spin transverse re-
laxation effect caused by the magnetic-field gradient.

10
-1

10
0

10
1

10
2

10
3

Mean free path (mm)

10
-5

10
0

theoretical curve

typical data

FIG. 1. Ratios of the axial quadratic coefficients corresponding
to the proposed theoretical model based on Langevin’s diffusion
model aL

z and the previous theoretical model based on Torrey’s diffu-
sion model aT

z , under the conditions of the mean free paths varying
from 0.1 to 1000 mm. The blue line denotes the theoretical curve, and
the black points are the calculated results at some particular values
of the mean free paths. The radius of a cell is set to R = 2 cm, and
the cell is filled with potassium atoms at T = 50 ◦C.

In conclusion, Torrey’s diffusion model and the phase ac-
cumulation mode for ballistic motion can be approximated
as two extreme cases of our proposed Langevin model under
λ � R and λ � R. Langevin’s diffusion model is thus suitable
to describe the atomic motion in the coated cell under different
conditions, i.e., with or without background gas.

III. EXPERIMENT AND ANALYSIS

This section introduces an illustrative example of the im-
pact of background gas on magnetic-field-gradient-induced
relaxation within the coated cell. For the coated cell that
we use, the magnetic-field-gradient-induced spin relaxation
is over an order of magnitude larger than the predicted value
based on the theoretical model, which is suitable in the bal-
listic regime. Such a finding motivates us to think that there
might exist some additional gas component inside the coated
vapor cell. In addition, we also consider factors such as those
from the coating absorption, the light-induced desorption, and
the atomic transit effect, which may affect the spin relaxation
caused by the magnetic-field gradient.

A. Magnetic-field-gradient-induced spin relaxation

We use a prototype atomic magnetometer under a con-
ventional optical-magneto double resonance configuration
[55,70] (see Appendix B), which provides a convenient
method to measure the spin relaxation effect caused by
the magnetic-field gradient. A brief configuration of the
magnetometer is shown in Fig. 2(a). The core element is
an antirelaxation paraffin-coated cell filled with potassium
atoms. To simplify the analysis, we use a spherical-shaped
vapor cell, with a radius of 2 cm, to perform our measurement.
The vapor cell is heated and kept at a temperature of 50 ◦C
to improve the signal-to-noise ratio, under which the paraffin
coating can be well preserved. A circularly polarized pump
light, which is tuned to be resonant with the potassium D1
line, is used to optically pump the atomic spin along the direc-
tion of the static bias field B0. An oscillating magnetic field is
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FIG. 2. (a) Experimental configuration of the atomic magne-
tometer for measuring the magnetic-field-gradient-induced spin
relaxation. (b) Relation between the measured linewidth (FWHM,
full width at half-maximum, black dots) of the magnetic resonance
signal and the first-order magnetic-field gradient, (∂Bz/∂z), under
B0 ≈ 900 nT. A quadratic function (red line) is used to fit the mea-
sured data with quadratic coefficient az ≈ 0.228, and the residual
magnetic field gradient is 1.28 nT/cm. The blue line is the theoret-
ically predicted linewidth based on the phase accumulation method
with a quadratic coefficient az ≈ 0.0143.

applied along the transverse direction to drive the atomic spin
precession synchronously if the oscillation frequency is equal
to the precession frequency. Thus, a maximum macroscopic
transverse spin polarization is generated. A linearly polarized
laser light (∼hundreds of MHz detuned from the D2 line)
propagating along the transverse direction is used to measure
the generated spin polarization through the optical rotation
effect.

We apply an anti-Helmholtz coil to generate different axial
magnetic-field gradients ∂B1z/∂z to the atomic magnetome-
ter, and we record the linewidths of magnetic resonances
under different magnetic-field gradients in order to obtain
a quantitative relation between the spin relaxation and the
magnetic-field gradient. It should be emphasized that the
experiment is not intentionally arranged, and the conclusion
derived in this work is general for experiments concerning the
magnetic-field-gradient-induced spin relaxation.

In addition to the quadratic relation between the signal
linewidth and the magnetic-field gradient, we further com-
pare the theoretically predicted quadratic coefficient az based
on the phase-accumulation model shown in Ref. [30] with
the experimental measurement. There exists over an order of
magnitude difference between the two results; see Fig. 2(b).
One of the advantages of the coated cell is the suppression
of the magnetic-field-gradient-induced spin relaxation, or the
motional narrowing effect. However, for the coated cell that
we use, the motional narrowing effect is highly suppressed. It
has been demonstrated experimentally that the dominant fac-
tor originates from a tiny amount of background gas [37,38],
which makes the motion of the atoms distinct from the ballis-
tic mode without background gas.

To match the experimental results about the axial quadratic
coefficient az recorded in Fig. 2(b), which takes the form (see
Appendix B)

az = 1

πT2

(
∂B1z

∂z

)−2

≈ 0.228

(
Hz

cm2

nT2

)
, (24)

we combine Eqs. (17) and (24) and we derive the value of
the diffusion coefficient D and mean free path λ by using our
proposed model,

D = v̄λ

6
≈ 0.2 m2/s, λ ≈ 2.63 mm, (25)

where v̄ = 453 m/s is the thermal velocity. The results indi-
cate that the mean free path of the alkali atoms in the coated
cell that we use is suppressed, from the order of hundreds of
meters with saturated vapor pressure, to millimeters, which
verifies the existence of the background gas. Such a finding
provides a convenient way to determine if there exists any
background gas inside the coated cell without breaking the
cell through monitoring the dependence of the magnetic reso-
nance signal linewidth with different magnetic field gradients.
Besides, the mean free path that we derive is of the same
order of magnitude as the value (λ = 1.4 mm) deduced by
Refs. [37,38], indicating that the emergence of background
gas is not an occasional phenomenon for the coated cell.

B. Potential relaxation mechanisms

Our theoretical model for depicting the magnetic-field-
gradient-induced spin relaxation is based on the analysis of
the atomic motion. In addition to the background gas or the
buffer gas, there are some other factors that could alter the
atomic motional characteristics and should be taken into con-
sideration as well.

1. Coating absorption effect

The spin relaxation caused by interaction between alkali-
metal atoms and the coating, as well as the physical
mechanism of the coating, are relatively complex issues
[56–59] and are still under investigation. When the alkali
atoms collide with the coated wall, atoms could be absorbed
by the coating without being relaxed. Such a phenomenon
may affect the atomic motion inside the coated cell, and it
depends on the average dwell time τs of the atoms. Here,
τs reflects quantitatively how long the spin-polarized atom is
trapped in the coating without losing polarization [59].
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Taking the dwell time into consideration, the boundary
condition of our proposed model, i.e., Eq. (9), should be
modified accordingly as [57,59]

�n ∂ρ(�r, t | �r0, t0)

∂n

∣∣∣∣
r=R

≈ −�nτsv̄

4

∂2ρ(�r, t | �r0, t0)

∂n2

∣∣∣∣
r=R

, (26)

where v̄ means the atomic thermal velocity. Precise measure-
ment about the dwell time of the coating still remains difficult
[58,60,61]. In terms of the potassium atomic cell coated with
paraffin that we use, τs is assumed to be 1 ns ∼ 1 µs. Since
τsv̄ � 1, the right part of Eq. (26) is approximated to be zero,
indicating that the absorption of atoms by the coating has a
negligible impact on the magnetic-field-gradient-induced spin
relaxation.

2. LIAD effect

The light-induced atomic desorption (LIAD) effect hap-
pens when the coated cell is exposed to a laser with a
sufficiently shorter wavelength than the resonant wavelength
and high enough power (on the order of several hundreds of
milliwatts). Under this condition, alkali atoms are desorbed
from the cell wall, and the atomic density inside the coated
cell becomes increased [62–65], which alters the motional
characteristics of the atoms inside the cell. Considering the
experimental systems for obtaining magnetic resonance, the
power of the laser is usually on the order of milliwatts, and
the detuning of the laser frequency is on the order of hundreds
of MHz. Taking our prototype atomic magnetometer as an
example, the power of both lasers is less than 1 mW to avoid
the power broadening effect, and the detuning of nonresonant
probe light is ∼200 MHz, which hardly meets the basic re-
quirements of the LIAD effect [63,65]. Besides, even if the
LIAD effect exists, we prove that as long as the increase of
atomic density in the cell is less than two orders of magnitude
(which rarely happens under the influence of the LIAD effect),
the proposed theoretical model for calculating the magnetic-
field-gradient-induced spin relaxation is still valid, and the
LIAD effect could be neglected.

3. Atomic transit effect

The size of the laser beam determines the transit time at
which atoms pass through the beam region [66–68]. For the
coated cell, even in the presence of background gas (∼Pa), the
atom passes through the beam region multiple times during
one pump period (∼10−1 s). Then the laser beam interacts
with the atomic ensemble in the entire coated cell, not just
atoms within the beam region. Under this condition, the in-
fluence of the transit effect, which is decided by the size of
the beam, is negligible when we consider the spin relaxation
effect caused by the magnetic-field gradient in the coated cell.

In terms of the cell with high pressure, i.e., atomic motion
is highly constrained within a small region, the distance of
atomic diffusion during one pump period may be smaller than
the size of the cell. Accordingly, the transit effect should not
be ignored at this time. Under this condition, in order to study
the spin relaxation of the atomic ensemble within the entire
cell, as analyzed in our theory, the size of the beam should be
larger than the size of the cell to ensure that the cell is fully
covered.

IV. DISCUSSION

A. Evaluation of background gas pressure

Our work provides a potentially promising method to esti-
mate the pressure of the background gas within the coated cell.
Magnetic-field-gradient-induced spin relaxation is related to
the mean free path of atoms in the coated cell, and the mean
free path λ is determined by the pressure of the background
gas. As a consequence, the pressure of the background gas in
the coated cell could be estimated through the following steps:

(i) Apply different imposed axial magnetic-field gradients
∂Bz/∂z to the coated cell, and measure the corresponding
linewidths of magnetic resonances.

(ii) Fit the relation between linewidths and ∂Bz/∂z with a
quadratic function, and then record the fitted quadratic coeffi-
cient az.

(iii) Derive the relation between az and diffusion coefficient
D based on theoretical analysis about atomic motion in the
coated cell.

(iv) Combine the experimental fitted az and theoretical
analysis, and calculate the diffusion coefficient D.

(v) Derive the corresponding mean free path of alkali atoms
λ through the diffusion coefficient D.

(vi) Obtain the pressure of background gas pb through the
mean free path λ.

Taking the measured axial quadratic coefficient az ≈ 0.228
in our experiment as an example, the corresponding diffusion
coefficient D and the mean free path λ can be solved numeri-
cally. The mean free path λ of the atoms in the coated cell is
estimated to be 2.63 mm, and it is related to the pressure of
the background gas,

λ = kBT/(pbσc), (27)

where pb is the pressure of the background gas in the coated
cell, and σc is the cross section of the collisions between
potassium atoms and the background gas inside the coated
cell. Thus, based on Eq. (27), an accurate estimation of the
background gas pressure requires an accurate value of the
cross section of the background gas, which depends on the
composition of the background gas.

Here, we make an approximate estimation by taking ad-
vantage of the previous investigations on the background
gas inside the coated vapor cell. Previous work shows that
the background gas in a paraffin-coated atomic vapor cell is
mostly comprised of C3 (and higher) hydrocarbon molecules
as well as hydrogen [37], and the typical value of the cross
section for velocity-changing collisions is chosen as σc =
1 × 10−18 m2 [38,69]. Thus, the pressure of the background
gas in our coated cell could be approximately estimated as

pb = kBT/(λσc) ≈ 1.70 Pa, (28)

which is several orders of magnitude larger than the saturated
vapor pressure of alkali atoms (∼10−5 Pa). Consequently, the
motion of atoms inside the coated cell is significantly sup-
pressed by the background gas, which is shown phenomenally
in Fig. 3(a). Based on Eqs. (17) and (25), the relation between
the estimated pressure of background gas in the coated cell
and the axial quadratic coefficient is shown in Fig. 3(b). As
the background-gas pressure increases, the mean free path of
alkali atoms could be suppressed to the order of millimeters
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FIG. 3. (a) Background gas suppresses the mean free path of
atoms inside the coated cell, from ∼100 m at the saturated vapor
pressure (left) to ∼mm in the presence of background gas (right).
The coating absorption effect is not shown in this figure. (b) Relation
between the estimated pressure of background gas in our coated cell
and the axial quadratic coefficient.

or even smaller, which results in a larger axial quadratic
coefficient.

B. Evaluation of the number of bounces

The number of bounces N is the number of times that a
polarized atom collides with the coating before depolariza-
tion, which is one of the core parameters used to characterize
the performance of the antirelaxation coating. In general, N is
estimated through measuring the longitudinal relaxation time
T1 [70].

For the coated cell with saturated alkali vapor pressure and
without background gas, alkali atoms are in ballistic motion
between adjacent wall collisions, and the number of bounces
N is thus determined as

N = T1

Twall
= T1

4R
3 /v̄

, (29)

where Twall is the average time between wall collisions
[70–72], R is the radius of the cell, and v̄ is the atomic velocity.

Considering the existence of background gas, atomic mo-
tion within the coated cell is modified from the ballistic
regime to the intermediate regime, as is illustrated. It is thus
natural to ask if it is still appropriate to use the ballistic-motion

method shown in Eq. (29) to estimate the number of bounces
in the coated cell with background gas.

Taking the potassium atomic cell coated with paraffin in
our experiment as an example, the diffusion coefficient D
and mean free path λ are estimated as D ≈ 0.2 m2/s, λ ≈
2.63 mm, and the average interval times for adjacent atom-
atom collisions τλ and for diffusing across the cell τl are
calculated as

τλ ≈ λ

v̄
≈ 5.8 µs, τl ≈ (4R/3)2

D
≈ 3.5 ms, (30)

where the radius of the cell is R ≈ 2 cm, the atomic velocity
of a potassium atom is v̄ ≈ 453 m/s at 50 ◦C, and T1 is on
the order of 10−1–100 s for the cell that we use. We can find
that T1 � max[τλ, τl ]. Under this condition, as described in
Ref. [73], the average of wall collisions N is shown as

〈N〉 = T1

(
l

v̄

)−1

, (31)

where l represents the size of the boundary, and it could be
evaluated as ∼4R/3 for the spherical cell. It can be seen that
Eq. (31) is equivalent to Eq. (29) for ballistic motion. The
physical insight reveals that, due to the cluster of background
gas near the inner surface of the cell, the alkali atoms tend to
hit the wall several times before diffusing away from the wall,
and for a long period T1, the number of bounces corresponding
to ballistic motion and diffusion will become similar. That
is to say, when the relaxation time T1 is much greater than
the interval diffusion time τl , the model for ballistic motion
shown in Eq. (29) can still be applied to estimate the number
of bounces N for the coated cell with background gas.

When the pressure of background gas in the coated cell
becomes larger, or if the cell is filled with high-pressure buffer
gas, indicating that T1 � max[τλ, τl ] may not be satisfied,
the number of bounces N can be estimated by the boundary
condition for the diffusion equation of spin polarization [74],
and the relation between T1 and N has the form [75,76]

k

tan(kR)
= 1

R
− v̄

2N
(
2 − 1

N

)
D

,

1

T1
= Dk2, (32)

where k is the wave number of diffusion, and D is the diffusion
coefficient. As a result, the number of bounces N could be
solved numerically after measuring the longitudinal relaxation
time T1 experimentally.

It should be noted here that the presence of the back-
ground gas only alters the way to estimate the number of
bounces between the polarized atoms with the wall under cer-
tain conditions. Whether the background gas could affect the
performance of the coating or not is still under investigation.

V. CONCLUSIONS AND OUTLOOK

In this paper, we measure the spin polarization transverse
relaxation caused by the first-order magnetic-field gradi-
ent in our paraffin-coated potassium vapor cell. The axial
quadratic coefficient, which represents the relation between
the linewidth of the magnetic resonance and the applied
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gradient, ∂B1z/∂z, is measured to be over an order of mag-
nitude larger than theoretical predictions. Such a deviation is
caused by the occurrence of background gas. With the con-
sideration of background gas in the coated cell, we propose a
modified theoretical model that combines the Redfield theory
with Langevin’s diffusion model to analyze the magnetic-
field-gradient-induced spin-relaxation effect. The result of our
model is equal to that of the diffusion model in the diffusion
regime, and it has the same form as the phase accumulation
model in the ballistic regime. A specific theoretical expression
is also provided for the intermediate regime. In addition, the
mean free path of atoms in our coated cell estimated by our
model is of the same order of magnitude as the pioneering
works. Our work also provides a feasible method to determine
the existence of the background gas, as well as an approximate
estimation on the background gas pressure inside the coated
cell without breaking the cell. In addition, our work can help
to foster better comprehension about the performance of an
antirelaxation coated cell by analyzing the magnetic-field-
gradient-induced spin relaxation effect.
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APPENDIX A: MEAN FREE PATH
AND DIFFUSION COEFFICIENT

The mean free path represents the average distance traveled
by an atom between successive atom-atom collisions. It is a
classical physical concept that differs from the comprehensive
relaxation mechanism about the coating. According to classi-
cal thermodynamics, the mean free path λ has the form

λ = kBT√
2πd2 p

, (A1)

where T is the temperature of atoms, kB is the Boltzmann
constant, d is the van der Waals diameter of atoms, and p is
the pressure of the atomic system. Consider that the potassium
atoms are at saturated vapor pressure, and the temperature of
the atoms is assumed to be 50 ◦C. Under this condition, the
pressure pK and density nK of potassium atoms are

pK = 3.829 × 10−5 Pa, nK = 8.588 × 1015 m−3, (A2)

and the mean free path of the potassium atoms under this
condition is derived as ∼ 87 m and is a typical value for a
coated cell without background gas.

Similarly, the definition of the diffusion coefficient comes
from Fick’s law in classical diffusion theory [29] and it char-
acterizes the diffusion ability of atoms. For three-dimensional
motion, it takes the form D = λv̄/6, where λ and v̄ are the
mean free path and thermal velocity of atoms, respectively.

APPENDIX B: LINEWIDTH AND RELAXATION TIME

For the Mx magnetometer system, the Bloch equation for
describing the evolution of the spin polarization �M in a rotat-
ing frame is

d �M
dt

= γ �M × �Beff − Mx�ex + My�ey

T2
− (Mz − M0)�ez

T1
, (B1)

where �Beff = (B0 − ω/γ )�ez + BRF�ey, ω is the frequency of an
oscillating magnetic field BRF, B0 is a static bias magnetic
field along the z-direction, and γ is the gyromagnetic ratio.
M0 refers to the spin polarization induced by optical pumping,
and T1 and T2 are the longitudinal relaxation time and the
transverse relaxation time, respectively.

The Bloch equation of spin polarization components in
three directions over time is shown as

dMx

dt
= −Mx

T2
+ (γ B0 − ω)My − γ BRFMz,

dMy

dt
= −(γ B0 − ω)Mx − My

T2
,

dMz

dt
= γ BRFMx − Mz − M0

T1
.

(B2)

The forms of the transverse polarization Mx and My in steady
state are

Mx = −M0
ω1T2

1 + �ω2T 2
2 + ω2

1T1T2
,

My = M0
�ωω1T 2

2

1 + �ω2T 2
2 + ω2

1T1T2
, (B3)

where ω1 = γ BRF, and ω0 = γ B0,�ω = ω0 − ω is the fre-
quency detuning. The expressions of Mx and My are Lorentz
functions, which correspond to the in-phase and quadrature
components of the magnetic resonance signal, respectively. If
ω1 meets with ω2

1T1T2 � 1, then the linewidth [full width at
half-maximum (FWHM)] of the magnetic resonance signal is
FWHM = 2�ω/2π ≈ 1/πT2, and the axial quadratic coeffi-
cient az between the magnetic-field gradient and the FWHM is

az = FWHM

(
∂B1z

∂z

)−2

= 1

πT2

(
∂B1z

∂z

)−2

. (B4)

APPENDIX C: REDFIELD THEORY WITH TORREY’S
DIFFUSION MODEL

McGregor applied the diffusion theory to describe the
atomic motion in the cell [23],

∂

∂t
ρ(�r, t | �r0, t0) = D∇2ρ(�r, t | �r0, t0), (C1)

where D is the diffusion coefficient. This equation is valid
when the mean free path of the atoms is much smaller than
the size of the cell (λ � R) [29,41]. The general solution for
Eq. (C1) has the form

ρ(�r, t | �r0, t0) = 1

R3

∑
lmn

Aln jl

(
kln

R
r

)
jl

(
kln

R
r0

)

× Y ∗
lm(θ, φ)Ylm(θ0, φ0) exp

(
−k2

ln

R2
D|t−t0|

)
,

(C2)
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under the boundary and initial conditions shown in Eqs. (9)
and (10).

Combining Eqs. (C2) and (5), the complete expression of
〈z(t )z(t + τ )〉 can be written as

〈z(t )z(t + τ )〉 = R2
∑

n

A1nCnexp
−k2

1nD|t − t0|
R2

. (C3)

Based on the Redfield method as mentioned in Eq. (1), the
transverse relaxation information is obtained as

1

πT2
= 1

2πT1
+ γ 2

2π
S1z(0) ≈ 8γ 2R4

175πD

(
∂B1z

∂z

)2

, (C4)

where we assume that ∇B1z ≈ ∂B1z/∂z. Here, the longitudinal
relaxation time T1 is neglected under the condition of ω0R2 �
D [22],

1

πT1
≈ D

π

|∇B1x|2 + ∣∣∇B1y

∣∣2

B2
0

� 1

πT2
, (C5)

where ω0 = B0γ . This also means that when the static bias
field B0 is large enough, the impact of T1 on T2 can be ignored.

APPENDIX D: LANGEVIN’S DIFFUSION MODEL FOR
THREE-DIMENSIONAL ATOMIC MOTION

According to Langevin’s diffusion model for an unre-
stricted one-dimensional Brownian motion [29],

〈(x(t ) − x0)2〉 = 2D
[|t − t0| − τD

(
1 − e− |t−t0|

τD

)]
, (D1)

where x(t ) is the position of a particle at time t with initial
position x0, and 〈· · · 〉 denotes the ensemble average.

The conditional probability density ρ(x, t | x0, t0) for a
particle at position x at time t , with initial time t0 and initial
position x0, has the form of a Gaussian function,

ρ(x, t | x0, t0) =
exp

[ − (x−x0 )2

2〈[x(t )−x0]2〉
]

√
2π

〈
[x(t ) − x0]2

〉 (D2)

for unrestricted-one-dimensional motion. The relation be-
tween partial derivatives of ρ(x, t | x0, t0) with respect to time

and position is given by [5,29]

∂

∂t
ρ(x, t | x0, t0) = D

(
1 − e− |t−t0|

τD

)∂2ρ(x, t | x0, t0)

∂x2
, (D3)

which has the form of the Langevin equation in one-
dimensional motion. The three-dimensional atomic motion in
the coated cell described by Langevin’s diffusion model is
then shown as

∂

∂t
ρ(�r, t | �r0, t0) = D

(
1 − e− |t−t0|

τD

)∇2ρ(�r, t | �r0, t0). (D4)

APPENDIX E: NEUMANN BOUNDARY CONDITION

Based on classical kinetic theory, integrating incident ve-
locities of different sizes and directions, we can get the flux of
polarized atoms going to the coated wall with radius R [74],

J+ = nK

(
v̄ρ

4
− D

2

∂ρ

∂n

)∣∣∣∣
r=R

, (E1)

and returning back from the wall,

J− = nK

(
v̄ρ

4
+ D

2

∂ρ

∂n

)∣∣∣∣
r=R

, (E2)

where nK is the atomic density in the coated cell, ρ is the
conditional probability density of atoms, and ∂/∂n means the
normal derivative to the spherical wall.

If the number of bounces for the coating is N , then the
probability of relaxation during a particular atom-wall colli-
sion is 1/N . The reflected flux J− also has the form

J− =
(

1 − 1

N

)
J+. (E3)

Combining Eqs. (E1), (E2), and (E3), the boundary condition
at the wall surface is [70]

∂ρ

∂n

∣∣∣∣
r=R

= − v̄

2N
(
2 − 1

N

)
D

ρ

∣∣∣∣∣
r=R

. (E4)

If the number of bounces N is large enough, strictly speaking,
N � 1 + R/λ, which means that the coated-wall-induced re-
laxation time is much longer than the motional time between
adjacent wall collisions. Under this limit, the impact of wall
relaxation can be ignored, and Eq. (E4) becomes the Neumann
boundary condition [52,53]

∂ρ

∂n

∣∣∣∣
r=R

= 0. (E5)
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