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Verifiably exact solution of the electronic Schrödinger equation on quantum devices
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Quantum computers have the potential for a significant speedup of molecular computations. However, existing
algorithms have limitations; quantum phase estimation (QPE) is intractable on current hardware while variational
quantum eigensolvers (VQE) are dependent upon approximate wave functions without guaranteed convergence.
In this paper we present an algorithm that yields verifiably exact solutions of the many-electron Schrödinger
equation. Rather than solve the Schrödinger equation directly, we solve its contraction over all electrons
except two, known as the contracted Schrödinger equation (CSE). The CSE generates a wave-function Ansatz,
constructed from an iterative product of nonunitary two-body transformations, whose energy gradient with
respect to the two-body operator of the current iteration vanishes if and only if the CSE is satisfied. Because
the CSE implies the Schrödinger equation, the two-electron Ansatz provides a verifiably exact Ansatz for solving
the many-electron Schrödinger equation. The exactness property contrasts with that of Ansätze built from the
product of unitary two-body transformations where the gradient—the residual of the anti-Hermitian part of
the CSE (ACSE)—can vanish without implying a solution of the Schrödinger equation. We demonstrate the
algorithm on both simulators and noisy quantum computers with H2 dissociation and the rectangle-to-square
transition in H4.
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I. INTRODUCTION

The wave function of a many-particle quantum system
scales exponentially with the number of particles, and hence,
it can be computationally advantageous to compute the en-
ergy and other one- and two-particle expectation values [i.e.,
the two-particle reduced density matrix (2-RDM)] without
computing the wave function [1–6]. A natural equation for
the determining the 2-RDM is obtained from contracting
the matrix formulation of the Schrödinger equation over all
particles save two, generating the contracted Schrödinger
equation (CSE) [7–9]. The CSE has the significant, nontrivial
property that a wave function satisfies the CSE if and only if
it satisfies the Schrödinger equation [7,10]. In classical elec-
tronic structure algorithms, however, the CSE is indeterminate
in the solution of the 2-RDM because it depends upon not
only the 2-RDM but also the higher three- and four-particle
RDMs (3- and 4-RDMs). While the indeterminacy of the
equation can be removed by reconstructing higher RDMs in
terms of the 2-RDM [11–14], the reconstruction introduces
an approximation, which limits applications of the CSE from
being exact.

In this paper we show that many-particle quantum systems
can be solved on a noiseless quantum computer from the
solution of the CSE for the 2-RDM. The reconstruction of
higher RDMs in the CSE, required on classical computers,
can be avoided on a quantum computer through a combination
of state preparations and 2-RDM measurements. The CSE
extends a family of algorithms, known as contracted quantum
eigensolvers (CQE), in which the residual of a contracted
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eigenvalue equation is solved on a quantum computer to gen-
erate a solution of the original eigenvalue problem [15–19].
The solution of the CSE generates a series of nonunitary,
two-body transformations that provide an exact Ansatz for
the wave function [20–22]. The wave-function Ansatz is ex-
act in that the gradient of the energy with respect to the
two-body operator of the current iteration vanishes if and
only if the CSE, and hence the many-electron Schrödinger
equation, are satisfied. In all previous versions of the CQE,
the anti-Hermitian part of CSE (ACSE) [23–30], which keeps
the two-body exponential transformations unitary, was used
as the contracted equation. However, the ACSE, unlike the
CSE, does not necessarily satisfy the Schrödinger equa-
tion upon its solution, which can in principle lead to problems
where the ACSE is satisfied away from a eigenstate.

In contrast to many variational quantum eigensolvers
(VQE) [31–33] which use approximate wave-function An-
sätze, the proposed CQE for solving the CSE converges in
the absence of noise to a solution of the CSE that corre-
sponds to an exact many-particle solution of the Schrödinger
equation. The CSE Ansatz for the wave function is more
scalable than the conventional coupled cluster Ansatz because
it is exact with only two-body transformations [20] while the
coupled cluster Ansatz requires 2- to N-particle excitations
[20,34]. Each two-body transformation in the product has
been shown to correspond to an order of perturbation theory
which guarantees rapid convergence in the vicinity of the
solution [21]. Additionally, the CQE approach performs the
optimization based on the residual of the contracted equation,
and hence does not require any VQE-based subroutines, seen
in adaptive or iterative based approaches [22,35–37]. In this
work we provide examples of the exactness of the CSE-based
CQE, and additionally apply the CQE to molecular H2 on a
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superconducting quantum device, as well as noiseless simula-
tions of the rectangle-to-square transition in H4 with quantum
simulators.

II. THEORY

We discuss the CSE in Sec. II A, the exact Ansatz for the
wave function that arises from the CSE in Sec. II B, and the
quantum algorithm for solving the CSE in Sec. II C.

A. Contracted Schrödinger equation

For many-particle quantum systems with at most pairwise
interactions, consider the contraction of the matrix formu-
lation of the Schrödinger equation to generate the CSE
[7–10,20],

〈�|â†
i â†

j âl âk (Ĥ − E )|�〉 = 0, (1)

where Ĥ is the Hamiltonian operator, |�〉 is the wave function
of a given state, E is the energy of the state, and a†

i (ai)
is the second-quantized creation (annihilation) operator for
a particle in orbital i. For convenience we assume that the
wave function and the Hamiltonian are real. The CSE has the
following important property: if the Hamiltonian has at most
pairwise interactions, a wave function satisfies the CSE if and
only if it satisfies the Schrödinger equation. The Schrödinger
equation clearly implies the CSE, but the opposite direction is
provable from showing that the CSE implies the energy vari-
ance which in turn implies the Schrödinger equation [7,10].

The CSE [7–10,20] can be expressed as the sum of its
Hermitian and its anti-Hermitian components

2Ri j;kl = 1
2 (2Si j;kl + 2Ai j;kl ) = 0, (2)

where
2Si j;kl = 〈�|{â†

i â†
j âl âk, (Ĥ − E )}|�〉 (3)

and
2Ai j;kl = 〈�|[â†

i â†
j âl âk, Ĥ ]|�〉 (4)

are the Hermitian CSE (HCSE) and the ACSE [23–30], re-
spectively. Previous CQE algorithms [15–19] have been based
on a solution of the ACSE. The advantage of using the ACSE
rather than the CSE as the basis for CQE is that the iterative
solution of the ACSE implies a wave-function Ansatz based
on the product of unitary two-body transformations [15]. The
disadvantage of using the ACSE, however, is that the solution
of the ACSE does not theoretically imply the solution of
the many-electron Schrödinger equation [20,24], even though
practically it has been shown in noiseless quantum simula-
tions to converge to the solution from exact diagonalization
(full configuration interaction) for a variety of molecular sys-
tems [15–19]. The goal of the present work is to develop
the theory and algorithm for a CQE based on the CSE in
which the solution of the CSE by nonunitary two-body
transformations implies the solution of the many-electron
Schrödinger equation.

B. Exact wave-function Ansatz

The CSE, it has been shown previously [20,21], implies
that the exact many-body wave function |�〉 has a minimal

parametrization in which it is expressed as a product of M
two-body exponential transformations applied to a mean-field
reference wave function |�0〉 as follows:∣∣�CSE

n+1

〉 = eεR̂n
∣∣�CSE

n

〉
, (5)

where R̂n for each n = 1, 2, ..., M is a general two-body oper-
ator

R̂n =
∑
i jkl

2Ri j;kl
n â†

i â†
j âl âk, (6)

in which 2Ri j;kl
n is a two-body matrix element. Importantly,

differentiating the energy with respect to the matrix elements
of 2Rn yields the residual of the CSE,

2Ri j;kl
n = lim

ε→0

1

2ε

d

dRkl;i j
n

〈�n|eεR̂†
n (Ĥ − E )eεR̂n |�n〉 (7)

= 〈�n|â†
i â†

j âl âk (Ĥ − E )|�n〉 + O(ε). (8)

Upon convergence of the energy at the final iteration M, the
gradient of the energy with respect to the parameters 2Ri j;kl

M
vanishes, implying the satisfaction of the CSE. Consequently,
all local minima of this Ansatz for the wave function corre-
spond to solutions of the CSE and hence, solutions of the
Schrödinger equation, proving that this wave-function Ansatz
is exact [20,21].

We can also use the Hermitian Ŝn and anti-Hermitian Ân

parts of the CSE residual to define HCSE and ACSE wave-
function Ansätze [20,21,24]:∣∣�HCSE

n+1

〉 = eεŜn
∣∣�HCSE

n

〉
(9)

and ∣∣�ACSE
n+1

〉 = eεÂn
∣∣�ACSE

n

〉
, (10)

which upon convergence imply the HCSE and ACSE, respec-
tively. Because the Hamiltonian is Hermitian, the solution of
the HCSE like that of the CSE also implies the energy vari-
ance and hence, solution of the Schrödinger equation [20,21].
Even though the HCSE is only part of the CSE, its solution
implies that of the entire CSE, and therefore, like the CSE
Ansatz, the HCSE Ansatz in Eq. (9) is also an exact Ansatz
whose critical points correspond to stationary-state solutions
of the Schrödinger equation. In contrast, the ACSE Ansatz in
Eq. (10) only converges to a solution of the ACSE that is
not guaranteed to imply the Schrödinger equation. We can
define a family of exact wave-function Ansätze in which we
alternate between HCSE and ACSE updates in Eqs. (9) and
(10), respectively. If we apply both HCSE and ACSE updates
at each iteration, we have the following form for the wave
function: ∣∣�HCSE-ACSE

n+1

〉 = eεŜn eεÂn
∣∣�HCSE-ACSE

n

〉
, (11)

whose stationarity also implies the CSE. Because the HCSE
part requires the application of a nonunitary transformation, it
can also be applied less frequently; in fact, the HCSE can even
be applied just once at the end of any electronic wave-function
Ansatz to verify the exactness of the solution.

Because each two-body transformation in the product in
Eq. (5), Eq. (9), or Eq. (11) can be selected to correspond to
an order of perturbation theory in the wave function [21], the
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solution can converge rapidly with the number of iterations
in the vicinity of the solution. Importantly, the number of
iterations depends on the quality of the initial guess. More-
over, because the method is size extensive, the total number
of iterations is independent of size when the system consists
of Q independent fragments with Q tending to infinity. As
shown for the ACSE, the rate of convergence of the CSE also
depends on whether a first-order or second-order optimization
is performed; see Ref. [18] for more details.

C. CQE algorithm

On classical computers, to avoid the exponential-scaling
cost of computing and storing the wave function, the CSE
or ACSE is reexpressed in terms of RDMs [7–9,23,24,26–
30,38], with the higher-order RDMs being approximated as
functionals of the 2-RDM [11]. This RDM-based approach
based on the ACSE has been accurately applied to treating
strong correlated molecular electronic behavior with both
ground and excited states including photoexcitations [26,30]
and conical intersections [27,28]. On a quantum computer,
however, the wave function in Eq. (5) can be prepared and the
2-RDM can be measured without reconstructing the higher
RDMs , allowing us to solve the CSE for, in principle, exact
simulations of many-particle quantum systems.

1. Preparation of the Ansatz

To solve the CSE on quantum computers, we can prepare
the wave function using the Ansatz in either Eq. (5), Eq. (9), or
Eq. (11). We select Eq. (11) because it allows us to interweave
ACSE updates, which we have previously developed [15–19],
with HCSE updates, which we develop and implement below.
At each iteration the wave function in Eq. (11) is normalized
by dividing by the square root of the normalization factor
N = 〈�n+1|�n+1〉. The sums within both Ŝn and Ân are im-
plemented via Trotterization, although when ε is small, the
error is negligible. The step size must be selected to provide
improvement towards the solution of the CSE; while it cannot
be too large due to the Trotterization approximation, it also
cannot be too small due to the noise present on the quantum
device. In this sense, it is used as a proxy for assessing the
error of implementing a target operator [e.g., exp(εŜn)] on
the device. In practice, the step size can be a fixed learning
rate (small) or a parameter that is optimized to minimize the
energy in a line search— see Algorithm 1. For more details
on specific optimization methods, see Ref. [18]. To implement
the exponential operator eεŜn , we develop a dilation approach,
adapted from the quantum simulation of nonunitary dynamics
[39], in which we embed the nonunitary transformation in
a unitary transformation. While not discussed in detail here,
other approaches to nonunitary dynamics such as the least-
squares-based imaginary time-evolution technique [40] can
also be adapted.

Consider an operator V [Ŝn]

V [Ŝn] =
[

1 εŜn

−εŜn 1

]
, (12)

which acts to produce a state:

V [Ŝn][|�〉 |�〉]T = [eεŜn |�〉 e−εŜn |�〉] + O(ε2). (13)

Algorithm 1. CQE for solving the contracted Schrödinger equa-
tion by nonunitary two-body exponentials transformations. Given
initial state |�〉, an optimization procedure O [which inputs an
energy function, wave function, and residual (gradient) and outputs
the energy and search direction], and a nonunitary implementation
T , the algorithm generates a solution of the CSE including the energy
E within an error threshold γ .

Inputs: �0, O, H , T
Output: �M , EM .

0a: Set n ← 0
0b: Define E [�, R̂] = 〈�|eT [R̂†]ĤeT [R̂]|�〉/〈�|eT [R̂†+R̂]|�〉
0c: Calculate R̂0

While ||2R̂n|| > γ :
1: En+1, εnR̂n = O(E [�n, R̂n], �n, R̂n)
2: Update |�n+1〉 = T [εnR̂n]|�n〉
3: n ← n + 1

This can be realized in a quantum algorithm by expanding the
state space with a single ancilla, and then applying a Pauli
gadget with the Pauli Y matrix:

V [Ŝn] = eiδŶa⊗Ŝn . (14)

This method works well for small steps, and is similar to tech-
niques for approximating nonunitary time evolution [39]. The
remaining problem relates to subsequent evolutions, which is
not generally addressed. To proceed exactly, we can either ap-
pend another ancilla [41] or perform a projective measurement
to select the particular ancilla state. Both of these approaches,
however, decrease the success probability roughly by half,
having exponentially decreasing success rates [42]. Instead,
we directly implement the next operator without an ancilla or
projective measurement, which can be shown to generate the
target operator to first order. After several steps (on the order
of 1

ε
) the first-order approximation will fail, and hence, we use

a loose Wolfe condition [43] to determine when to perform a
reset or dilation onto another ancilla. The proposed method
still leads to an exponentially decreasing success probability,
but with a much slower decay than in the previous methods. In
theory, performing a type of amplitude amplification [44,45],
which can specifically target the propagated operators of inter-
est, could further mitigate this effect, although for near-term
results this is likely not feasible. Details comparing effective
strategies for implementing this operator will be compared in
future work.

2. Measurement of the CSE residual

To obtain the residuals, we can express the residual of the
CSE as the average of the HCSE and ACSE residuals that
require the 4-RDM and 3-RDM, respectively [see Eq. (2)].
We again turn to an ancilla-based expansion of the wave
function, where we can perturb the wave function and recover
information on the contracted equation to some controlled
approximation. While there likely are ways to recover the
ACSE and HCSE residuals simultaneously, in a circuit-based
measurement these are similar to the real and imaginary to-
mography of a 2-RDM, which naturally can be separated.
Hence, we simply separate the ACSE and HCSE residuals
into two auxiliary state methods. This method of obtaining
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FIG. 1. Method of implementing the CSE Ansatz for the con-
tracted quantum eigensolver. At a given iteration n, we implement
the Trotterizations of the exponential of Ân, and then the nonuni-
tary exponential of Ŝn using a single ancilla qubit. Measurement of
a 2-RDM element is represented by �k . Note that H denotes the
Hadamard gate while Ĥ denotes the Hamiltonian. Information on
the residuals can be obtained using a conditioned time evolution
operator, as well as the traditional time evolution operator.

the ACSE to second-order accuracy in δ has been documented
previously [15], and we can envision a method of obtaining
the HCSE to a similar accuracy as follows.

Let W be a unitary acting on a single ancilla coupled with
|�〉 to produce an auxiliary state |ϒ〉:

Ŵ =
[

1 − δ2

2 Ĥ2 +δĤ

−δĤ 1 − δ2

2 Ĥ2

]
, (15)

and

|ϒ〉 = 1√
2

Ŵ [|�〉 |�〉]T . (16)

Performing the following 2-RDM-related measurement:

M̂i j
kl =

[
â†

i â†
j âl âk 0

0 −â†
i â†

j âl âk

]
, (17)

yields the following residuals:

1

δ
〈ϒ |M̂|ϒ〉 = 2Si j;kl + O(δ2). (18)

On a quantum computer, we can readily perform this op-
eration where Ŵ corresponds to a Pauli-conditioned time
evolution operator and M̂i j

kl to a Pauli-conditioned 2-RDM
measurement:

Ŵ = exp (iδYa ⊗ Ĥ ), M̂i j
kl = Za ⊗ â†

i â†
j âl âk, (19)

in which Ya, Za are the Pauli Y and Z gates acting on the
ancilla a, which we have prepared by applying the Hadamard
transform to the ancilla. Because the Pauli terms are present in
every operator, these Pauli conditioned operators possess the
same scaling as their original operators. In practice, care must
be taken with the relative precisions such that δ is significantly
larger than the sampling errors. It may be possible to alleviate
these concerns [44,45] by using amplitude estimation or pos-
sibly expansions of derivative-based estimates for operators
[46]. Figure 1 shows the implementation of the Ansatz for a
particular iteration.

III. RESULTS

We consider three applications: (i) a pairing spin model, (ii)
the dissociation of rectangular H4, and (iii) the dissociation of

FIG. 2. Trajectories for the ACSE and CSE on the unit sphere,
generated by the iterations in the algorithms from several initial
guesses for a three-state system separated by sequential double exci-
tations (i.e., the ground state and second excited state are separated
by quadruple excitations). The unit sphere directly represents coor-
dinates corresponding to amplitudes of c0, c1, and c2. The axes along
the gray line correspond to ±|0〉 and ±|2〉, and the perpendicular
axes, the |1〉 states. States which are in the span of |0〉 and |2〉 satisfy
the ACSE, but not necessarily the CSE.

H2 on a noisy quantum device. The pairing spin model with
two pairs of electrons, whose details are given in Appendix A,
has three independent degrees of freedom corresponding to
the excitation of zero, one, or two pairs that can be mapped
to the unit sphere. Using a variety of initial guesses, we
compute the ground-state energy on a noiseless simulator by
minimizing the residuals of the ACSE and CSE, respectively.
Figure 2 shows the solution trajectories on the unit sphere,
generated by the iterations in the algorithms, for the ACSE
and CSE for each of the initial guesses. The solutions of the
four-electron Schrödinger equation and the CSE are shown by
the black arrows with one hidden behind the sphere. Note that
the six black arrows on the sphere denote the three solutions
of the CSE represented twice through a global phase of ±1.
While the solutions of the CSE are discrete, the ACSE has
additional solutions in the form of a continuous family of solu-
tions denoted by the gray circle. The ACSE iterations, shown
by the green squares, converge for many initial guesses to
spurious solutions lying on the gray circle where the ACSE’s
residual vanishes. In contrast, the two-electron CSE iterations,
shown by the pink circles, correctly converge for each of the
initial guesses to the unique ground state of the four-electron
Schrödinger equation. Solution by the ACSE would require a
fourth-order excitation Ansatz. These results, which are con-
sistent with Ref. [20], highlight the importance of the CSE
rather than the ACSE as the stationary condition for a CQE.

Figure 3 shows the performance of three CQE methods—
CSE, ACSE, and HCSE—on noiseless simulations in the
stretching of rectangular H4 along one of its sides. The energy
surface possesses a discontinuity at the square configura-
tion that is difficult to capture with single-reference methods
[34,47]. With all methods we are able to obtain the full
configuration interaction solution at different dissociation
lengths, including the discontinuity with its multireference
correlation. In Fig. 3(c) we can also see a close relation
between the (squared) norm of the residuals and the en-
ergy variance. While the CSE and HCSE residuals linearly
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FIG. 3. Simulations of rectangular H4 dissociation (with pairs
kept at 1 Å) with a noise-free CQE: (a) energy dissociation curves
and (b) comparison of CSE, HCSE, and ACSE residual norms and
energy variances under several points in trajectories taken from (a).

follow the variance, the ACSE residual encounters temporary
plateaus where it becomes disproportionately small relative to
the variance, reflecting that unlike the case with the CSE and
HCSE, the solution of the ACSE does not rigorously imply
the solution of the Schrödinger equation, which is equivalent
to the vanishing of the energy variance. Note that an upper
bound on the variance in relation to the norms can be derived
via the Cauchy-Schwarz inequality.

Finally, using the IBM QUANTUM EXPERIENCE, we sim-
ulate without error mitigation the dissociation of H2 using
the CSE. The simulation requires two qubits—one for the
symmetry-tapered wave function and one for the nonunitary
dilation. The target wave function is represented by a single
qubit using symmetry tapering. Figure 4 shows that like the

FIG. 4. Quantum computations on “ibm_lagos” of the dissoci-
ation of H2 by the CSE, ACSE, and HCSE, as well as classical
computations by Hartree-Fock and full configuration interaction.

ACSE, the CSE recovers correlation energy across the dissoci-
ation surface, with the accuracy limited only by sampling and
noise-related errors. The differences in implementation here
on noisy devices favors the ACSE, which relative to the CSE
requires fewer multiqubit gates in a more compact Ansatz.

IV. DISCUSSION AND CONCLUSIONS

Many-particle quantum systems, we have shown, can in
principle be solved from an exact solution of the CSE on
quantum devices. The solution of the CSE is particularly
attractive because it has the following important property:
a wave function satisfies the CSE if and only if it satisfies
the Schrödinger equation. Thus, the CSE provides a natu-
ral Ansatz for preparing the wave function, as well as a
functional criterion for the successful convergence of the wave
function. The CSE Ansatz has additional costs associated
with its nonunitary propagation. As these can be mitigated
in principle, or strictly limited (i.e., through the number of
ancilla qubits), the CSE provides a flexible nonvariational
approach for preparing the wave function without sacrificing
exactness relative to the variational solution of the many-
electron Schrödinger equation.

Previously, we have shown that the anti-Hermitian part of
the CSE, known as the ACSE, can be solved on quantum de-
vices [15]. While the ACSE Ansatz for the wave function has
generally been observed to converge to the result from exact
diagonalization (i.e., full configuration interaction) [18,24],
only the CSE has a mathematical guarantee that its wave func-
tion solutions have a one-to-one mapping with the solutions of
the Schrödinger equation [20,21]. As discussed in this paper,
unlike the ACSE, optimization of the CSE on quantum de-
vices requires the performance of nonunitary transformations.
Because the ACSE is a subset of the CSE, the performance
of nonunitary transformations that aim to satisfy the CSE can
be interwoven with unitary transformations that aim to satisfy
the ACSE. Moreover, the balance of unitary and nonunitary
transformations can be controlled to optimize both accuracy
and convergence on noisy intermediate-scale or fault-tolerant
quantum devices, possibly aided through compression of two-
body operators [48–50]. Additionally, the CSE can be invoked
at the end of a CQE based on the ACSE or a VQE calculation
to refine or verify convergence to an exact stationary point of
the Schrödinger equation.

The solution of the CSE can be viewed as solving the
many-particle problem on quantum devices based on an inte-
gration or contraction of the many-particle state, which in the
context of the ACSE has been called a CQE. In contrast to the
VQE [31,33] which generally has an approximate wave func-
tion Ansatz and relies upon variational improvement, the CQE
based on the CSE has a scalable wave function Ansatz that by
definition converges to the exact solution of the Schrödinger
equation. Furthermore, unlike adaptive VQE [36], the CQE
does not require variational reoptimization of all parameters
at each iteration and is guaranteed to be exact when its energy
gradient vanishes. Finally, the CSE-based CQE provides a
framework for exploring nonunitary transformations in the
quantum simulation of electronic structure. The combination
of these unique features and potential advantages shows that
the exact solution of the CSE on quantum devices provides an
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important step forward for the quantum simulation of many-
particle systems on intermediate-term and future quantum
computers.
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APPENDIX A: THREE-SITE MODEL

The paired spin model, used in Fig. 2, describes a
three-state system of sequential pair excitations, where the
potential-free eigenstates are separated by double excitations,
and the ground-to-second excited state requires a quadruple
excitation. Denoting a pair population by 1, we can map this
to the following states:

|0〉 = |1010〉 (A1)

|1〉 = |1001〉 (A2)

|2〉 = |0110〉 (A3)

|3〉 = |0101〉. (A4)

Under a symmetric potential states |1〉 and |2〉 are degen-
erate, with the proper eigenstate being the positive linear
combination of the two. Thus, we can map the three states,
|0〉, 1√

2
(|1〉 + |2〉), and |3〉, to the unit sphere. Importantly,

|0〉 ↔ |1〉 and |1〉 ↔ |2〉 are mediated through a single pair
excitation (i.e., a double excitation), whereas the |0〉 ↔ |2〉
transition requires two pair excitations (i.e., a four-electron
term). This situation also can occur between combinations
of high- and low-spin states, which are not coupled through
two-electron Hamiltonians [51].

APPENDIX B: COMPUTATIONAL DETAILS

Results in Figs. 3 and 4 were performed using the HQCA

(v22.9) [52] set of tools, which utilizes QISKIT (v0.29.0) [53],
IBM QUANTUM [54], and PYSCF (v1.7.6) [55] for interfacing
with quantum simulators and obtaining electron integrals for
circuit-based simulations. All calculations used minimal basis
sets (STO-3G). For Fig. 4, 16 000 shots for circuit measure-
ments were used for the CSE and HCSE and 8000 for the
ACSE, and Z2 symmetries were applied in order to reduce the
Hamiltonian to a single qubit.
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