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Virtual states in electron-molecule scattering via modified effective-range theory
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The numerical approach to calculating the S-matrix poles associated with virtual states in electron-molecule
collisions is proposed within the modified effective-range theory frame. The S-matrix continuation into the
complex momentum plane is possible thanks to the analytical properties of modified Mathieu functions, that
is, the exact solutions of the Schrödinger equation with the long-range polarization potential (∼r−4). The
short-range electron-molecule interaction is included in the introduced numerical approach by model comparison
with experimental integral, differential, and momentum-transfer elastic cross sections. The influence of the
polarization potential on the virtual-state pole positions is analyzed for nonpolar targets such as N2, CH4, CO2,
and SF6. The relation between the S-matrix pole position and the s-wave scattering length is discussed.
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I. INTRODUCTION

Low-energy electron scattering on molecules shows a
whole richness of phenomena called “resonances” [1], which
manifest as rapid changes of cross sections (total, vibra-
tional excitation [2], dissociative attachment, i.e., formation
of fragment negative ions, etc.) in the function of the collision
energy. Particularly, polyatomic molecules [3] show many
structures in the energy range of a few eV, reflecting their
chemical complexity; see, for example, [4]. A prototype for
such resonances is the structure observed by Schulz [2] in
the vibrational cross section for N2 at about 2–3 eV (which
also manifests as a maximum in the total cross section; see,
for example, [5]). Despite decades of studies, theories still
find it difficult to predict such resonances’ exact positions,
amplitudes, and widths.

In general, resonances are related to a significant time
delay in the passage of the incident electron wave packet near
the target (compared to the transition time in the absence of
the resonant interaction). Such a time delay corresponds to
the phase change of the incident wave by π/2 rad above the
potential phase shift (i.e., in the absence of the resonance)
at the resonant energy. The potential phase shift is present
in the scattering process as a slowly changing background
for the dynamical resonant interaction. Mathematically, the
resonance can also be associated with a pole of the S matrix in
the complex momentum plane (k), slightly below the positive
real axis by a distance small compared with the distance from
the origin [6,7].

A particular case predicted by the theory, where the pole
of S matrix lies precisely on the negative imaginary mo-
mentum axis, just below the origin is called a virtual state.
Unlike typical resonances, the virtual states are not associated
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with the time delay of an electron wave packet. However,
their presence significantly enhances the wave function of
the scattered electron near the target due to a strong con-
structive interference of the incident and reflected waves [8].
Consequently, integral elastic and momentum-transfer cross
sections for electron scattering from ground-state molecules
increase sharply as the electron energy decreases to zero. This
mathematical concept has been used to explain unusually high
elastic cross sections at low energies observed for SF6 [9,10],
CO2 [11,12], and other nonpolar molecules [13,14]. For a long
time, the presence of the poles associated with the virtual
states had been proven only in semiheuristic ways until the
work of Morgan [15], who showed their existence in electron
scattering on CO2 through ab initio numerical calculations
using the R-matrix method.

Single S-matrix poles associated with virtual states are
generally well defined on the negative imaginary axis for
the short-range potentials, which disappear beyond a certain
distance from the molecule. On the other hand, analytical
studies for pure long-range interactions show that the S matrix
can have an infinite number of virtual-state poles. Moreover,
the S matrix for infinite-range potentials can be plagued with
redundant poles and zeros, which do not correspond to any
resonance, bound, or virtual state; see [16,17] and references
therein.

Electron scattering from molecules comprises both long-
and short-range potentials. However, textbooks on quantum
mechanics (e.g., see [18]) typically describe virtual states
in low-energy electron scattering considering only a finite-
range potential. Herzenberg and Saha [8] showed that a true
virtual state cannot exist if a long-range dipole potential
(∼r−2) is present (i.e., for collisions with polar targets). Such
an interaction displaces a pole off the negative imaginary
axis to the left on the complex momentum plane. Never-
theless, a displaced pole still profoundly affects low-energy
cross sections if the dipole moment is low enough (less
than 1.19 D [8]).
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To the best of our knowledge, no studies have been devoted
to the effect of long-range polarization potential (∼r−4) on
the S-matrix poles associated with the virtual states. Such
potential is a dominant long-range interaction in electron scat-
tering by nonpolar molecules due to the dipole induced by
the charge of the incoming projectile. Though the R-matrix
method intrinsically contains the contribution of this poten-
tial; however, the choice of representation of the short-range
polarization response of the molecule inside the R-matrix box
noticeably affects the S-matrix pole positions [15,19].

In the present paper, we show that the virtual states in
electron-molecule collisions can be revealed and studied using
Mathieu functions, that is, the analytical solutions for the
Schrödinger equation with pure polarization potential (r−4).
We follow the conclusions of Khrebtukov [20], who noted
that Mathieu functions can be exploited for the S-matrix con-
tinuation into the complex momentum plane. The S-matrix
poles are examined for SF6 and CO2, where virtual states
play an important role in electron scattering. For compar-
ison, an identical analysis is performed for N2 and CH4,
where no unusually significant increase in the elastic cross
section towards zero energy is observed. The contribution
of the short-range interaction is included in our approach
using modified effective-range theory (MERT) [21,22]. More
specifically, the contribution of the finite-range potential to
the scattering phase shifts is expressed by the parameters of
the effective-range expansion, which are determined through
model comparison with experimental cross sections. Idziaszek
and Karwasz performed MERT analysis for CO2 and N2 using
only total cross sections [23,24]. In the present paper, for both
molecules, we develop the methodology that we proposed pre-
viously for CH4 [25] and SF6 [26]—the constraints on MERT
parameters are imposed simultaneously by integral elastic
cross section (IECS), differential cross sections (DCS), and
momentum-transfer cross section (MTCS) derived from beam
and swarm experiments. Excellent reviews of experimental
and theoretical studies on low-energy electron scattering on
N2 and CH4 can be found in recent work by Song et al.
[27,28]. For SF6 and CO2, please see the recent work [29,30]
and references therein.

To reveal the influence of the polarization potential on vir-
tual states, our model, which intrinsically takes into account
resonant and nonresonant scattering, is compared with the
Feshbach projection-operator formalism introduced by Dom-
cke and coworkers [31–33]. Feshbach’s formalism allows
studying the poles of the S-matrix resonant part, neglecting the
influence of the slowly changing background (as a function of
the energy) and long-range interactions. Finally, in light of the
present results, we discuss the validity of the relation between
the scattering length (A0) and the S-matrix pole position (k0)
on the complex momentum plane, i.e., A0 = i/k0. Such a sim-
ple relation was used in the past to determine the zero energy
cross section in electron-molecule collisions [11,15,19] or
the energy of virtual and bound states in positron scattering
by atomic and molecular targets [34,35]. Our present results
are found to be consistent with the conclusions of the most
recent work by Čurík et al. [36], which deals with the relation
between the scattering length and S-matrix poles.

This paper is organized as follows. In Sec. II, we describe
briefly the principles of the modified effective-range theory.

Section III includes MERT analysis of elastic integral, differ-
ential, and momentum-transfer cross sections for N2 and CO2

to parametrize the contribution of the short-range interaction.
A similar MERT analysis has already been done for CH4 and
SF6 in our previous papers [25,26]. Section IV describes the
calculations of the S-matrix poles associated with the virtual
states using the Feshbach projection-operator formalism and
the semianalytical continuation of the S matrix into the com-
plex momentum plane with the help of Mathieu functions. The
main conclusions are summarized in Sec. V.

II. MODIFIED EFFECTIVE-RANGE THEORY

The details of the modified effective-range theory have
been described in our previous papers [21,22]. Here, we de-
scribe it only briefly. The relative motion of the electron and
neutral nonpolar molecule can be described by the following
radial Schrödinger equation within a partial-wave formalism
(in atomic units):[

d2

dr2
− l (l + 1)

r2
+

(
e2μ

h̄2

)(
α

r4
+ V2(r)

)

+ Vs(r) + k2

]
�l (r) = 0, (1)

where l is the angular momentum quantum number, k is
the wave number, α is the dipole polarizability, and Vs(r) is
the short-range potential. Since atomic units are employed
throughout this paper, the electron mass (me), the Planck
constant (h̄), and the elementary charge (e) are equal to unity.
Consequently, the reduced mass of the electron-molecule sys-
tem (μ) can be also approximated to 1. Here V2(r) = (α2/r4 +
2Q/r3)P2(cos θ ) denotes the nonisotropic part of the polariza-
tion potential with P2 being the Legendre polynomial of order
2. We further assume that V2(r) can be neglected compared
to α/r4. This is justified as long as the quadrupole moment
Q and the nonspherical polarizability α2 expressed in atomic
units are much smaller than α. As shown in [23] this is an
excellent approximation for N2. For the CO2 molecule, V2 is
expected to be small at energies below 1 eV as indicated by
the results of [24].

MERT was originally developed by O’Malley et al. [37],
who proposed to include the contribution of the short-range
potential Vs(r) in boundary conditions subjected to analytical
solutions of the Schrödinger equation with pure long-range
polarization potential (∼r−4):[

d2

dr2
− l (l + 1)

r2
+

(
e2μ

h̄2

)
α

r4
+ k2

]
�l (r) = 0. (2)

�l (r) can be expressed in terms of modified Mathieu func-
tions, the behavior of which at small and large distances r is
determined by the standard boundary conditions:

�l (r)
r→0∼ r sin

(√
α

r
+ γl

)

and �l (r)
r→∞∼ sin

(
kr − l

π

2
+ ηl

)
(3)

where γl is a parameter determined by the short-range part of
the interaction potential, while ηl is the scattering phase shift.
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These boundary conditions provide the following expres-
sion for the scattering phase shift:

tan ηl = m2
l − tan2 δl + Bl tan δl

(
m2

l − 1
)

tan δl
(
1 − m2

l

) + Bl
(
1 − m2

l tan2 δl
) , (4)

where Bl = tan(γl + lπ/2) and δl = π
2 (νl − l − 1

2 ). Here ml

and νl denote the energy-dependent parameters which can
be determined numerically from properties of the Mathieu
functions (see the numerical procedures described in [21,22]).

Integral elastic (σIE), momentum-transfer (σMT) and differ-
ential elastic (dσ/dω) cross sections (all measurable directly)
are calculated using the standard partial wave expansions:

σIE = 4π

k2

∞∑
l=0

(2l + 1) sin2 ηl (k), (5)

σMT = 4π

k2

∞∑
l=0

(l + 1) sin2[ηl (k) − ηl+1(k)], (6)

dσ

dω
= 1

k2

∣∣∣∣∣
∞∑

l=0

(2l + 1) exp ηl sin ηl (k)Pl (cos θ )

∣∣∣∣∣
2

(7)

where θ is the scattering angle and Pl (x) are the Legendre
polynomials.

O’Malley et al. [37] showed that energy dependence of
parameter Bl (k), related to the unknown short-range potential,
has the following general form:

Bl (k) = bl (0) + 1
2

√
αe2μ/h̄2ρl (0, k)k2. (8)

where bl (0) is the zero energy contribution and

ρl (0, k) =
∫ ∞

0
�l (0, r)�l (k, r) − �l (0, r)�l (k, r)dr. (9)

Thus far all equations are exact. O’Malley et al. [37] proposed
to approximate the latter parameter by the energy independent
value at zero energy. Then Bl (k) takes the form

Bl (k) ≈ bl (0) + 1
2

√
αe2μ/h̄2Rlk

2, (10)

where Rl = ρl (0, 0). Equation 10 is similar to the effective-
range expansion of the scattering phase shift in absence of
the long-range potentials used to describe neutron-proton
collisions [38,39]. Hence, in analogy to the original effective-
range theory, we can call Rl the “effective range,” though
the physical meaning of this parameter is rather different.
Since the error is of the order k4, it is expected that the ap-
proximation is valid at low energies. We have already shown
[21,22,25,40,41] that ρl (0, k) changes rather slowly with in-
creasing energy since MERT (using approximation 10) is able
to describe the scattering cross sections almost up to the
energy thresholds for the first inelastic processes (i.e., elec-
tronic excitation, or positronium formation in case of positron
scattering) for many atoms and molecules.

In the zero energy limit both integral elastic [Eq. (5)] and
momentum-transfer cross sections [Eq. (6)] can be expressed
by the s-wave scattering length (A0):

σIE(k) ≈ σMT(k) = 4πA2
0, k → 0. (11)

The s-wave scattering length can be expressed in terms of b0

as A0 = −
√

αe2μ/h̄2/b0.

At low energies, the leading contributions come mainly
from the first two or three partial waves (l = 0, 1, 2) while
the contributions of higher partial waves are small and they
are not modified by the short-range forces due to very high
centrifugal barriers associated with large l numbers. Therefore
the scattering phase shifts experienced by higher partial waves
can be described by Born approximation [37]:

tan ηl (k) = παk2

8(l − 1/2)(l + 1/2)(l + 3/2)
. (12)

We found that the k4 terms appearing in phase shifts induced
by pure long-range forces (due to charge-induced dipole and
quadrupole moments) as presented by Ali and Fraser [42] give
only minor correction, so these terms were omitted. In this
paper, we consider the contribution of high partial waves up
to l = 12 using the approximation by Eq. (12).

Substituting Eqs. (4) and (10) for two or three first partial
waves [and Eq. (12) for higher partial waves] into Eqs. (5)–(7)
one gets relations which can be fitted to experimental data
in order to determine the unknown parameters (bl and Rl )
of the effective-range expansion of Bl (k). In this paper, we
use experimental values of N2 and CO2 dipole polarizabilities,
α = 11.54a3

0 and 16.92a3
0 [43], respectively. We checked that

the MERT fit is weakly dependent on the value of dipole
polarizability for both studied molecules, within existing dis-
crepancies of α in the literature.

III. MERT ANALYSIS

A. Molecular nitrogen N2

To optimize the derivation of MERT coefficients, we have
developed a numerical procedure allowing the simultaneous
fitting of multiple data sets with shared fitting parameters.

In the present paper, we performed MERT simultaneous
fit to integral elastic and momentum-transfer cross sections
recommended by Itikawa [45] below 1.5 eV (i.e., below 2�g

shape resonance). We also included differential elastic cross
sections by Sun et al. [52], which cover a relatively large en-
ergy range (E = 0.55, 1.0, and 1.5 eV). The DCS data of Sohn
et al. [53] cover an even more extensive energy range, but as
discussed by Song et al. [27] these cross sections are probably
underestimated due to normalization procedure (unavoidable
in cross-beam experiments used for DCS characterization).
Figures 1 and 2 show the results of MERT fit. The derived
parameters of the effective-range expansion [Eq. (10)] are
given in Table I. We found that the phase shifts of three partial
waves (s, p, and d) need to be characterized by Eq. (4) to get
an agreement between all three datasets. Moreover, the model
reproduces DCS by Allan [58] at all scattering angles, includ-
ing 180◦—the angular region inaccessible experimentally for
a long time.

Note that the IECS and MTCS recommended by Itikawa
[45] are consistent with each other within the frame of the cur-
rent model except for very low energy (below 10 meV), where
MERT-derived MTCS becomes systematically lower than ex-
perimental data [see Fig. 1(b)]. However, swarm-derived data
below 10 meV recommended by Itikawa represent the ef-
fective MTCS defined as the sum of the inelastic CS plus
the elastic ones. Recently, Kawaguchi et al. [63] noted that
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FIG. 1. (a) MERT analysis of integral elastic cross section for electron scattering from molecular nitrogen. Experimental data: Total cross
sections (TCS) by Kitajima et al. [44] and recommended TCS by Itikawa [45]. The vertical dashed line at 1.5 eV indicates the highest energy
used in the fit. MERT-derived partial wave contributions (s, p, and d) to IECS are also shown. (b) MERT-derived momentum-transfer CS
compared with swarm-derived data [46–51].

the deexcitation of thermally populated rotational states
( j+2→ j) may play a comparable role for pure elastic scat-
tering at very low energies. Using Gerjuoy and Stein’s [64]
analytical expressions for rotational excitation and deexcita-
tion CS (considering only long-range quadrupole interaction),
they decoupled inelastic contribution from the elastic one in
the effective MTCS of the IST-LISBON database [51] below
0.3 eV. Our MERT-derived MTCS tends toward their pure
elastic data with lowering energy.

Parameters of the MERT fit on such a set of cross sections
are given in Table I. Presently derived scattering length A0 =
0.435a0 is consistent with other determinations, mainly based
on the different approaches to the modified effective-range
theory. It is interesting to note that A0 for N2 is relatively
small, positive, and comparable to neon despite a massive dif-
ference in dipole polarizability (neon polarizability ≈2.6a3

0,
and scattering length ≈0.220a0 [69]).

Interestingly, using the fitted parameters, the extension of
MERT analysis to higher energies (above 1.5 eV) reveals the
resonancelike peak in the IECS and MTCS appearing “spon-
taneously” in the region of 2�g resonance. The resonance is
purely due to the d wave [see Fig. 1(b)], which undergoes the
π phase shift + some smaller energy-dependent (negative)
nonresonant phase change [see also the inset in Fig. 5(b)].
This is consistent with the theory of resonances in elec-
tron scattering by atoms and molecules described by Schulz
[1,70]. A similar “resonancelike” structure was obtained in

unconstrained MERT fit to TCS alone in [23]. However, un-
like the present paper, the peak appeared in the p wave at
higher energies with respect to experimental 2�g resonance,
and the MERT coefficients did not allow for reproducing ex-
perimental DCSs at lower energies. In the present analysis, the
p- wave contribution reaches a minimum in the resonance re-
gion [i.e., the p-wave phase shift changes sign; see Fig. 5(b)].
The “d-wave” character of the shape resonance is consistent
with the angular distribution of experimental elastic DCS
measured above 1.5 eV (see [71] for detailed discussion). The
present model is unable to reproduce resonant experimental
elastic DCS due to the strong coupling of elastic and vibra-
tional channels—manifested by the oscillatory variations of
IECS as a function of energy in the resonance region (E >

1.5 eV). Nevertheless, it is quite unexpected that it predicates
the position of the resonance peak, despite the fact that the
effective-range parameters are determined through the com-
parison with experimental data located energetically below
the resonance.

B. Carbon dioxide CO2

In the present analysis, we performed MERT simultaneous
fit to IECS and MTCS recommended by Itikawa [72] and
Lozano [29] and DCS by Tanaka et al. [82], Gibson [81], and
Kochem et al. [83] measured below 3 eV (i.e., below 2�u res-
onance). We also included in the analysis experimental TCS
by Field et al. [12] measured below the lowest threshold for

TABLE I. Parameters of the effective-range expansion defined in Eq. (10) for electron scattering from N2 and the s-wave scattering length
(A0).

A0 (a0) b1 b2 R0 (a0) R1 (a0) R2 (a0)

e− + N2 0.435 −0.540 0.049 −15.755 −0.527 0.069
Fabrikant [65] 0.460 From modified effective-range analysis
Chang [66] 0.440 From modified effective-range analysis
Ivanov [67] 0.420 From the energy shifts of the Rydberg states of atoms colliding with N2

Morrison [68] 0.420 From body frame modified effective-range analysis
Idziaszek [21] 0.404 Modified effective-range analysis of total cross sections
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FIG. 2. MERT analysis of differential elastic cross section for electron scattering from molecular nitrogen. DCS vs the scattering angle
below the resonance at (a) 0.1, 0.35, and 0.8 eV; (b) 0.55 eV; (c) 1 eV; and (d) 1.5 eV and in the resonance region at (e) 1.9 eV. (f) DCS vs
electron energy below 1.5 eV at different scattering angles: 20◦, 45◦, 90◦, 135◦, and 180◦. Experimental data from Sun et al. [52], Sohn et al.
[53], Muse et al. [54], Shi et al. [55], Brennan et al. [56], Shyn and Carrigan [57], and Allan [58]. Theories by Sun et al. [52], Hou et al. [59],
[60], Morrison et al. [61], and Feng et al. [62].

vibrational excitation (≈0.08 eV) since it connects smoothly
with IECS by Itikawa [72]. Figures 3 and 4 show the results
of MERT fit. The derived parameters of the effective-range
expansion are given in Table II.

We found that the phase shifts of three partial waves
need to be characterized by Eq. (4) to get a relatively good
agreement with experiments below the resonance region (E <

3 eV). The extension of MERT analysis to higher energies
(above 3 eV) does not reveal any resonancelike peak as it
happens for N2. The partial wave contributions to IECS are

shown in Fig. 3(a). Interestingly, the p-wave contribution to
IECS reaches the minimum [i.e., the corresponding phase
shift changes sign from positive to negative; see Fig. 5(b)] in
the proximity of the resonance in a similar way as it happens
in N2. The disappearance of p-wave contribution is responsi-
ble for the minimum in the IECS.

Please note, unlike for N2, the origin of resonance in CO2

at 3.8 eV is still not fully understood. Herzenberg and Saha’s
boomerang model [89] suggested the f -wave type of this
resonance. On the other hand, Cartwright and Trajmar [88]
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FIG. 3. (a) MERT analysis of integral elastic cross section for electron scattering from carbon dioxide. Experimental data: Total cross
sections (TCS) by Field et al. [12] and recommended TCS by Itikawa [72] and Lozano et al. [29]. The vertical dashed line at 3 eV indicates the
highest energy used for the fit. MERT-derived partial wave contributions (s, p, and d) to IECS are also shown. (b) MERT-derived momentum-
transfer CS compared with swarm-derived data [73–80].

argued that this peak is a composite structure of shape and
Feshbach resonances. Experimental studies [90] of angular
distributions of electrons vibrationally (for the 010 bending
mode) scattered on CO2 at 3.8 eV did not indicate a clear (p,
d , or f ) character of this resonance. Subsequently, Allan [91]
discussed the importance of Fermi coupling between different
vibrational modes at this resonance. Rescigno et al. [92] show
that multidimensional treatment of nuclear motion is neces-
sary to describe this resonance with ab initio calculations.

More recent calculations by Laporta et al. [93] indicate mea-
surable progressions of vibrational excitation up to n′ = 10
for the symmetric stretching mode (and n′ = 2 for the two
other modes); they also show a vibrational-like structure in
the elastic channel. Decisively, CO2 resonance needs further
analysis.

We need to underline that the present model cannot repro-
duce a substantial rise of MTCS below 0.01 eV recommended
by many authors. We checked that it is impossible to get
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FIG. 4. MERT analysis of differential elastic cross section for electron scattering from carbon dioxide. DCS vs the scattering angle at
(a) 1 eV (in the inset at 0.155 eV), (b) 1.5 eV, (c) 2 eV, and (d) 3 eV. Experimental data from Gibson et al. [81], Tanaka et al. [82], and Kochem
et al. [83]. Theories by Rescigno et al. [84], Lee et al. [85], Gianturco and Stoecklin [86], and Tanaka et al. [82].
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TABLE II. Parameters of the effective-range expansion defined in Eq. (10) for electron scattering from CO2 and the s-wave scattering
length (A0).

A0 (a0) b1 b2 R0 (a0) R1 (a0) R2 (a0)

e− + CO2 (s + p) −6.95 −0.604 −1.502 −1.382 −0.263 0.622
Singh [87] −7.20 Semiempirical model fitted to swarm-derived MTCS
Morrison [11] −6.17 MERT fit to converged close-coupling calculations
Fabrikant [65] −6.8 to −7.2 Modified effective-range analysis
Estrada [33] −7.82 Model based on the projection-operator formalism of Feshbach
Morgan [15] −4.95 R matrix
Lee [85] −4.50 SMC calculations in the SEP approximation
Idziaszek [24] −6.60 Modified effective-range analysis of total cross sections

consistency between this rise and other datasets (regardless
of the combination of datasets used in the fitting procedure).
Interestingly, MERT agrees with MTCS by Biagi [76] at very
low energies, even though this dataset is not included in the
fitting.

The present model reproduces very well experimentally
determined angular variations of DCS at 1 and 1.5 eV
[Figs. 4(a) and 4(b)]. At higher energies [Figs. 4(c) and 4(d)],
the experimental DCS becomes nearly constant between 40◦
and 130◦ (isotropic scattering). The model has a problem
recapturing this feature, and the discrepancy increases with
energy. This may be due to the increasing contribution from
the anisotropic part of polarization potential and/or phenom-
ena of coupling between the elastic and highly nonpotential
vibrational excitations, as observed by Allan [94].

Note also that MERT [see inset of Fig. 4(a)] is much
higher than the experimental DCS by Kochem et al. [83]
measured at a very low energy of 0.155 eV. We checked
that it is impossible to integrate these experimental DCSs to
get an agreement with experimental TCS [12,72] measured
with much lower error at this energy region. Moreover, the
declared energy resolution (0.025 eV, which is more than 10%
of 0.155 eV) plus the finite angular resolutions of the exper-
imental system plus the expected large transversal extension
of the low-energy electron beam suggest that the experimental
results at 0.155 eV should be treated with caution.

Presently derived scattering length A0 = −6.95a0 is con-
sistent with other estimations (see Table II) done using the

effective-range analysis of experimental and theoretical data
[11,65,87]. Interestingly, all ab initio–type calculations such
as R-matrix [15] and Schwinger multichannel method in
static-exchange-polarization (SMC-SEP) approximation [85]
predict much lower values (though consistent with each
other). This reflects that R-matrix and SMC-SEP methods
give significantly lower IECS than experiments below 1 eV.
Consequently, some semiempirical corrections of polarization
response are necessary to increase theoretical cross sections at
low energies [19].

C. Phase-shift analysis

In Fig. 5, we show MERT-derived phase shifts of partial
waves for N2 and CO2. Notice that the s-wave phase shift (η0)
for CO2 is in perfect agreement with close-coupling calcu-
lations by Morrison [11]. Compared with the current results,
we also present the phase shifts determined in our previous
works for CH4 [40] and SF6 [26]. It is necessary to mention
that the MERT analysis was performed for the latter molecule,
considering the coupling of the elastic channel with strong
electron attachment in the low-energy range (treated as the
absorptive process). The MERT-derived s-wave phase shift
for SF6 remains in perfect agreement with the calculations of
Fabrikant et al. [10].

The s-wave phase shift changes from purely negative for
N2 (repulsive interaction) to purely positive for CO2 and SF6

(attractive interaction) at energies below 1 eV. The CH4 lies in
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FIG. 5. MERT-derived partial wave scattering phase shifts for N2, CO2 (present results), CH4 [25], and SF6 [26]: (a) s-wave phase shift
(the coupled-channel calculations of s-wave phase shift for CO2 by Morrison [11] are also presented) and (b) p-wave phase shift. The inset
shows d-wave phase shifts.
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FIG. 6. Feshbach projection-operator formalism fit to MERT-derived s-wave phase shift (η0) below 0.1 eV for N2, CH4, CO2, and SF6.
The decomposition of the phase shift into a positive resonant term (ηres, dashed line) and a negative background term (ηbg, dash-dotted line) is
also shown.

between since the s-wave phase shift changes the sign at the
energy (≈0.5 eV) corresponding to the Ramsauer-Townsend
minimum in the IECS. The overall character of η0 energy
dependence is rather weakly related to the polarization of
the molecule since CO2 and CH4 have almost identical static
dipole polarizabilities (α). On the other hand, the strength of
polarization interaction is visible in the p-wave phase shifts
(η1) since stronger polarizability corresponds to lower energy
where the sign change of η1 occurs.

Strong, attractive interaction in low-energy electron scat-
tering by CO2 and SF6 translates to a marked rise of IECS
toward zero energy. This behavior is explained by the exis-
tence of a pole in the S matrix on the negative imaginary
momentum (k) axis near the origin. Estrada and Domcke
[33] developed a Feshbach projection-operator formalism to
estimate the pole’s location from the s-wave scattering phase
shift (η0). However, this model does not include the effect
of the long-range polarization potential (∼r−4). On the other
hand, the numerical calculations of parameters appearing in
the Mathieu functions [i.e., δl and ml in Eq. (4)] for complex k
can be used to find S-matrix poles as suggested by Khrebtukov
[20]. In the subsequent section, we compare the prediction of
Estrada and Domcke’s approach with the results obtained by
the direct continuation of the S matrix into the imaginary k
plane using analytical solutions of the Schrödinger equation
for the r−4 potential.

IV. S-MATRIX POLES

A. Virtual states by Feshbach projection-operator formalism

In the Feshbach projection-operator formalism [33], the
scattering phase shift is decomposed into the background and
resonant terms:

η0 = ηbg + ηres. (13)

The unknown background contribution is approximated by the
leading term of its threshold expansion,

ηbg = 2−1/2ζk, (14)

while the resonant part is given by the following expression:

ηres = −tan−1

(
2−1/2ξk exp(−k2/2χ )

k2/2 − εd − Re[F (k)]

)
. (15)

Here

F (k) = −1

2
ξ

[(
π

χ

)−1/2

+ i2−1/2kw

(
k√
2χ

)]
, (16)

where w(z) is a Faddeeva function. The unknown parameters
ζ , ξ , εd , and χ can be determined numerically by fitting the
model to s-wave scattering phase shifts at low energies. In
Fig. 6, we present such fits to the MERT-derived η0 below
0.1 eV for all four considered molecules. The decomposition
of phase shift into the resonant and nonresonant parts is also
shown. Notice that the negative background contribution is
comparable in magnitude to the positive resonant term. The
slight imbalance between both terms determines the overall
nature of the scattering. In particular, the nonresonant scatter-
ing dominates for N2 in the considered energy range, while
the opposite occurs for other molecules.

The poles of the resonant S matrix corresponding to ηres

are given by the complex solutions of

1
2 k2 − εd − F (k) = 0. (17)

Since F (k) is real valued on the imaginary k axis, Eq. (17)
can be solved graphically. The solutions are shown in Fig. 7
using energy as a variable. The broken line represents F (k) for
ik < 0, while the dotted curve corresponds to F (k) for ik > 0
(and its real part on the positive real k axis, i.e., for E > 0).
As expected, the pole position (k0) lies the closest to the origin
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of the complex momentum plane for SF6 and CO2, while it
departs away from the origin for CH4 and N2. Notably, the
presently derived k0 for CO2 is much lower than the value
reported in [33], the authors of which carried out precisely
the same analysis for this molecule. We checked carefully that
the numerical values of model parameters provided by Estrada
and Domcke [33] cannot give the pole position reported by
these authors, but rather the value very close to the one derived
in the present paper.

B. Semianalytical continuation of the S matrix using modified
Mathieu functions

O’Malley et al. [37] pointed out that Mathieu functions are
valid not only for real and positive k but rather in the sector
−π < Arg k < π . Khrebtukov [20] used this property to
estimate the positions of resonances (i.e., the S-matrix poles)
in electron scattering from alkali-metal atoms. We benefit
from this feature to continue the S matrix defined for real k
as

Sl (k) = e2iηl (k), (18)

into the complex momentum plane. This is done by calcu-
lating ηl using Eq. (4) with MERT-derived parameters of the
effective-range expansion along with δl , ml , and Bl computed
for complex k. The pole in the S matrix formally corresponds
to the condition tan ηl = −i.

We checked that the S matrix calculated in such a way
fulfills the unitary condition Sl (k)S∗

l (k∗) = 1 [6,7] for any
complex value of k. This implies that ηl is real when k
is real. Note that, unlike the Feshbach formalism, this ap-
proach considers intrinsically the contribution of resonant and
nonresonant interactions in the presence of long-range polar-
ization potential.

First, we checked whether the d-wave resonance in the
electron scattering from the N2 molecule [see Fig. 1(b) and
the inset of Fig. 5(b)] is reflected in the S matrix plotted on
the complex momentum plane. We easily found the pole of
S2 just below the real axis at k = 0.42a−1

0 (i.e., E = 2.4 eV)
where the maximum of shape resonance is present. This result
confirmed that the proposed approach allows for determining
the matrix poles corresponding to the real effects in the scat-
tering process.

Since a virtual-state interaction occurs at very low energies,
we consider only the s-wave scattering in further analysis. We
found, without difficulty, poles of S0 in the lower half of the
complex momentum plane for all four considered molecules;
see Fig. 8. The poles are displaced from the negative imag-
inary k axis to the left, so they do not represent true virtual
states (as it is defined for finite-range potentials). This shows
that a polarization potential (r−4) affects the poles’ posi-
tions similarly to a long-range dipole potential (r−2) in polar
molecules [8]. Since the poles are off the imaginary axis, one
would expect a pair of poles located symmetrically relative
to this axis. However, since the long-range potentials, such
as r−4, cause a branch point at k = 0 [31], the mirror image
of the pole is located on a different Riemann sheet. This
sheet can be found by the proper S-matrix rotation around the
origin [95].

The S-matrix pole positions determined in the present
approach are compared with Feshbach projection-operator
formalism in Table III. As expected, the pole position for SF6

is closest to the origin. Moreover, Feshbach’s and Mathieu’s
approaches predict the same pole positions along the imag-
inary axis for this molecule. This suggests that the resonant
terms of the S matrix dominate strongly over nonresonant
ones. Consequently, the pole position along the imaginary axis
does not shift between methods despite the matrix’s analytic
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FIG. 8. Poles in the |S0| matrix on the complex momentum plane (k in a−1
0 units) calculated with a semianalytical approach based on

modified Mathieu functions.

structure change caused by the polarization potential included
in Mathieu’s approach (moving the poles off the axis). The
poles depart further from the origin for CO2, CH4, and N2,
respectively. Moreover, the discrepancies between Feshbach’s
and Mathieu’s methods regarding the pole position along the
imaginary axis also increase in this order. This is due to the
progressive weakening of resonant scattering with respect to
the background interaction. This suggests that the approxi-
mation for nonresonant phase shift proposed in the Feshbach
method, i.e., Eq. (14), is not sufficiently strong to describe this
contribution for CO2, CH4, and N2.

Notice that the presently determined pole position along
the imaginary axis for CO2, i.e., −0.081i a−1

0 , is lower in
absolute magnitude than the previous determination by R-
matrix calculations, −0.20i a−1

0 [15] and −0.14i a−1
0 [19], as

well as the semiempirical method by Morrison, −0.1620i a−1
0

[11]. None of these works observed a pole position shift
off the imaginary axis for the 2�+

g molecular symmetry
(i.e., at equilibrium geometry when no permanent dipole mo-
ment is present). Importantly, the pole positions from works
[11,15,19] were used to estimate the scattering length assum-
ing A0 = i/k0 (see also Table II). However, as noted recently
by Čurík et al. [36], such a simple relation between A0 and k0

neglects the background phase contribution. This last work
proved that the unknown nonresonant phase could not be
ruled out considering spherically symmetric short-range po-
tentials. We expect that a similar conclusion remains valid

in the presence of long-range interactions. Our comparison
of Feshbach’s and Mathieu’s approaches for predicting the
S-matrix pole position confirms the importance of background
scattering.

We need to comment briefly on the S-matrix pole po-
sition for CO2 determined by Morrison [11]. This location
was determined by extrapolating the close-coupled calcula-
tions of ηo(k) at low energies [see also Fig. 5(a)] towards
the zero energy point (k = 0) using the power series ex-
pansion of the expression k cot η0(k) = −k0 + ρk2/2. This
is an effective-range expansion of the scattering phase shift
around the pole position (k = k0) derived by O’Malley et al.
[37]. Due to the absence of the linear term in k, this ex-
pansion can be used as long as the linear term in ηo(k) can
be neglected in the neighborhood of k = 0 (see the discus-
sion in [37]). However, MERT-derived η0 for CO2 in the
present paper shows that the term in k dominates the term
in k2 over a relatively wide energy range. Hence, it can-
not be neglected when analyzing scattering phase shift at
low energies, and the quadratic expansion of k cot η0(k) is
inappropriate.

Finally, in Fig. 9, we present the structure of the S-matrix
pole related to electron scattering from CO2. The real and
imaginary parts of S0 undergo abrupt changes from nega-
tive to positive values around the pole position. Moreover,
peak-valley structures of real and imaginary parts are slightly
shifted with respect to each other, resulting in a smooth

TABLE III. The S-matrix pole positions on the complex momentum plane (k in a−1
0 units).

N2 CH4 CO2 SF6

Feshbach formalism 0.000 − i0.159 0.000 − i0.107 0.000 − i0.085 0.000 − i0.039
Mathieu functions −0.144 − i0.098 −0.061 − i0.097 −0.025 − i0.081 −0.005 − i0.039
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FIG. 9. The structure of a virtual-state S-matrix pole for electron scattering from CO2: (a) real part of S0, (b) imaginary part of S0, (c) overlap
of Re(S0) and Im(S0), and (d) absolute value of S0. Identical structures were found for other studied molecules.

(almost symmetrical) peak in the absolute value. We found
that the poles for other studied molecules have the same
structure.

V. CONCLUSIONS

In this paper, we showed that analytical solutions of the
Schrödinger equation with a long-range polarization potential
(∼r−4) expressed in terms of modified Mathieu functions
can be used for the S-matrix continuation into the complex
momentum plane. In particular, the virtual states in the low-
energy electron scattering by nonpolar molecules such as N2,
CO2, CH4, and SF46 can be identified. The contribution of
short-range interaction between the projectile and the target is
parametrized by the coefficients of the effective-range expan-
sion defined within the frame of the modified effective-range
theory. The latter are estimated by comparing carefully the
model with experimental cross sections (integral, differential,
and momentum transfer). In the present paper, we applied this
methodology, used previously for CH4 [25] and SF6 [26],
to N2 and CO2. The MERT parameters were derived from
integral, differential, and momentum-transfer elastic cross
sections.

Interestingly, for the N2 molecule, it turned out that
the obtained MERT parametrization derived at low energies

predicts the d-wave resonance exactly at the position of the
2�g experimental peak. This was confirmed by the pole of the
S matrix in the complex k plane appearing just below the real
axis at the resonant energy.

The virtual-state poles were found to be displaced off the
negative imaginary axis to the left on the complex momentum
plane for all studied molecules. Hence, the polarization po-
tential (r−4) has the same effect on the position of the poles
as the dipole potential (r−2). Nevertheless, poles for SF6 and
CO2 are still close enough to the axis to significantly enhance
the elastic cross section in the low-energy range.

A comparison of the present approach with the Feshbach
projection-operator formalism showed that the competition
between resonant and nonresonant scattering determines the
amount of the virtual-state pole displacement. The back-
ground contribution must be addressed if one wants a
complete picture of the scattering process (especially in the
presence of long-range forces). In particular, the scattering
length (A0) cannot be estimated from the position of the
virtual-state pole (k0) on the negative imaginary axis (i.e.,
using simply A0 = i/k0) without including the nonresonant
contribution, which was quite a common practice until now.
This finding confirms the conclusions of the recent studies
[36] on the relation between the scattering length and S-matrix
poles.
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