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Passive dynamical decoupling of trapped-ion qubits and qudits
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We propose a method to dynamically decouple every magnetically sensitive hyperfine sublevel of a trapped ion
from magnetic field noise, simultaneously using integrated circuits to adiabatically rotate its local quantization
field. These integrated circuits allow passive adjustment of the effective polarization of any external (control
or noise) field. By rotating the ion’s quantization direction relative to this field’s polarization, we can perform
“passive” dynamical decoupling (PDD), inverting the linear Zeeman sensitivity of every hyperfine sublevel. This
dynamically decouples the entire ion, rather than just a qubit subspace. Fundamentally, PDD drives the transition
mF → −mF for every magnetic quantum number mF in the system—with only one operation—indicating it
applies to qudits with constant overhead in the dimensionality of the qudit. We show how to perform pulsed and
continuous PDD, weighing each technique’s insensitivity to external magnetic fields versus their sensitivity to
diabaticity and control errors. Finally, we show that we can tune the sinusoidal oscillation of the quantization axis
to a motional mode of the crystal in order to perform a laser-free two-qubit gate that is insensitive to magnetic
field noise.
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I. INTRODUCTION

Trapped ions offer high-fidelity one- and two-qubit gates,
long memory times, and the potential to reduce circuit depths
with the all-to-all connectivity enabled by ion transport and
reordering [1–7]. Regardless, many challenges remain when
integrating the capabilities promised in isolated academic
demonstrations into larger systems. One reason for this is that
large-scale computers must run many distinct operations that,
sometimes, have conflicting requirements. For example, many
two-qubit gating schemes [2,4,5,8–10] require shelving each
ion to a magnetic field (B field from here on) sensitive (Zee-
man) qubit before implementation, leaving it vulnerable to
memory errors. This is typically ameliorated with a spin-echo
(dynamical decoupling) sequence [11,12] which exchanges a
qubit’s states to invert its B-field sensitivity. If a transition
between our choice of qubit states cannot be driven, the need
for shelving or dressing pulses will complicate any scheme.
Further, since exchanging two states works only on a qubit,
extending the scheme to qudits ultimately adds control com-
plexity and/or errors [13,14].

In this work, we describe a method for dynamical decou-
pling that inverts the (linear) magnetic sensitivity of every
mF �= 0 state of a target ion. Since it affects all states sepa-
rately, it works equally well on qudits and qubits—regardless
of whether they can be driven directly. Using trap-integrated
circuits [1,4,7,15–19] [see Fig. 1(a)] we can locally manip-
ulate the quantization field direction experienced by a target
ion. This changes the vectorial components of any electro-
magnetic field it encounters “passively,” by which we mean it
rotates a coordinate system internal to the ion rather than the
field polarization itself. As we show, adiabatically inverting
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the quantization field direction inverts the B-field sensitivity
of the entire ion, letting us increase memory times via dy-
namical decoupling. Specifically, in Sec. II we discuss how
one can temporarily alter the effective size and direction of a
quantization field local to an ion, perform a specific task in the
customized environment, then return to the ion’s permanent
quantization field by ramping the circuits off. Then, in Sec. III,
we show how the technique can be used to passively dynami-
cally decouple (PDD) the ion from magnetic field noise. By
adiabatically rotating the local quantization field until it is
antiparallel to its original direction, we can invert the ion’s
B-field sensitivity (see Fig. 1). In other words, we drive the
transition |F, mF 〉 → |F,−mF 〉 for every state in the ion. This
allows us to dynamically decouple [11,12] all internal states
of the ion from B-field noise with no need to directly drive
a specific transition. The fact that PDD acts on an entire ion,
rather than a qubit subspace of that ion, extends dynamical
decoupling to qudit systems with constant overhead in the
dimensionality of the qudit. In Secs. III A and III B, we discuss
how to perform pulsed- and continuous PDD. Extending from
the latter, in Sec. III C we propose a scheme for laser-free
two-qubit gates where the rotation frequency of the quantiza-
tion field is tuned near the motional sideband frequency of a
multi-ion crystal in a static magnetic field gradient. The gating
scheme promises some of the advantages of those based on
oscillating gradients [4,10,15,16,18,20], while requiring only
a static gradient and remaining insensitive to B-field noise.
Finally, in Sec. IV we discuss the impact of diabaticity, cross-
talk, and anticipated control errors.

II. THEORY

We consider a set of “target” ions experiencing two mag-
netic fields. The first is the permanent quantization field
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FIG. 1. (a) Example circuit design capable of arbitrarily chang-
ing the effective quantization field experienced by a “target” ion.
(b) Representation of a spin-echo sequence via adiabatic rotation of
the local quantization field �Bt on a target qubit. The ion experiences
a quantization field initially pointing up on the page (i) that is then
rotated into a direction orthogonal to its original direction, continuing
its rotation until it points down (ii). Finally, the system is returned
to its initial �Bt without rotating �Bt. This causes the ion to remain
in the state defined by the quantization field in (ii), inducing a
|F, mF 〉 → |F, −mF 〉 transition for every Zeeman state, i.e., inverting
the ion’s energy shifts from external B fields.

�B0 = (0, 0, B0), identical for every ion in the computer, and
the second is a temporary or local B field from the near field
of the trap circuits �Bc. We consider the effect these two fields
have on the Zeeman states |F, mF 〉 of a system, where F is
the total angular momentum of the state, and mF is its mag-
netic quantum number. This makes the system’s “permanent”
Hamiltonian

Ĥ0 = h̄A

2
�I · �J + μBB0(gJĴz + gI Îz), (1)

where A is the hyperfine splitting and �L ≡ (L̂x, L̂y, L̂z ) the
angular momentum operators �L ∈ {�I, �J}. While the following
results are general, for clarity we consider only S1/2 ground-
state manifolds, meaning the system has two possible values
for a state’s total angular momentum F+ = I + J and F− =
I − J [21]. In the following we will write the magnitude of
vectors | �V | as V and their unit vectors �V /V as V̂ . We consider
only magnetic field magnitudes of � 10 Gauss, as used in
current commercial trapped-ion processors [6,22]. This makes
the ∼ MHz transition Rabi frequencies small relative to the
A/2π ∼ GHz frequency separation of typical S1/2 hyperfine
manifolds [23]. This allows a perturbative treatment of these
off-diagonal elements, resulting in a repeatable AC Zeeman
shift. Therefore, we simplify our analysis by making the rotat-
ing wave approximation with respect to these terms, i.e., we
drop matrix elements between states with different values for
F . After this approximation, we are free to neglect the ∝ �I · �J
term in Eq. (1). This reduces Eq. (1) to

Ĥ0 
 μBB0(gJĴz + gI Îz). (2)

We explore values of B0 to be � 10 Gauss, so that a nearby
integrated circuit should be capable of generating a B field
�Bc larger than B0 (with an experimentally feasible current);
for example, a wire carrying 0.25 Amps of current gener-
ates 10 Gauss at a point 50 µm away from the trap, much
less than the ∼1 Amp surface currents that were used in
recent high-fidelity gate operations [4]. This redefines the
total quantization field for the target ion as �Bt ≡ �B0 + �Bc for

a user-specified duration. Using one to three spatially sepa-
rated circuits integrated into the plane of the trap, we obtain
one to three degrees of freedom (respectively) to control
the magnitude and direction of the total magnetic field �Bt =
(Bc,x, Bc,y, Bc,z + B0) experienced by the ion [see Fig. 1(a)].
In this work, we will define �Bc such that it has no projection
along the y direction, making �Bt = (Bc,x, 0, Bc,z + B0). Since
gJ � gI, it is straightforward to rotate �Bt at a rate that is slow
compared to the electron spin interaction (μBBtgJ/2π h̄) but
(nearly) instantaneous compared to the nuclear spin interac-
tion (μBBtgI/2π h̄). This means we can drop the ∝ Î term in
Eq. (2) for simplicity, noting the following scheme does not
invert the shift from the nucleus because inverting that shift
would require operation timescales ∼gJ/gI longer than those
we discuss here. Considering this, when �Bc has been ramped
on, the total Hamiltonian becomes

Ĥt = μBgJ �Bt · �J, (3)

which we will use in the numerical examples below.
The operator Ût that diagonalizes Ĥt can be represented

as a rotation of the system such that its quantization field
direction is redefined to be along B̂t. This “redefinition” can
be encapsulated by a single rotation about an axis orthogonal
to both �B0 and �Bt , here taken to be the y direction. We can
represent such a rotation by

Ût = e−iφĴy , (4)

where tan(φ[t]) = −Bt,x/Bt,z. Using this operator to trans-
form Eq. (3) according to H̃ = Û †

t ĤtÛt + ih̄ ˙̂U †
t Ût gives

H̃ = μBBtgJĴz + h̄φ̇(t )Ĵy. (5)

In the limit that we change the quantization field slowly com-
pared to the ion’s Zeeman splitting, we can let φ̇ → 0 and
ignore the latter term in the above equation—its largest effect
being an added, repeatable AC contribution to the effective
value of Bt, which can be calibrated out (see Sec. IV).

A. Passive field rotations

When the ion experiences a second external field after its
quantization direction has been rotated, the second field’s ef-
fective polarization will be defined by its relation to �Bt, not �B0.
In other words, if an ion would have experienced an operator
�F = (F̂x, F̂y, F̂z ) when the ion’s quantization field was �B0, the
ion will experience the operator F̃ ≡ Û †

t �FÛt after we rotate
�B0 → �Bt. For the rotation described by Eq. (4), this would
give

F̃ = (F̂x cos[φ] + F̂z sin[φ], F̂y, F̂z cos[φ] − F̂y sin[φ]). (6)

In a sense, this “passively” rotates the polarization of the
external field relative to the target ion—independent of our
ability to change its laboratory-frame polarization. It is often
difficult to actively change the polarization of a control field,
so the ability to control this polarization electronically could
simplify many experiments with conflicting polarization re-
quirements. Interestingly, rotating B̂t rotates the effective
polarization of stray magnetic fields as well, providing a
unique way of mitigating their harm.
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III. PASSIVE DYNAMICAL DECOUPLING

For any ion interacting with a stray magnetic field, its
first-order Zeeman shifts are proportional to the field’s projec-
tion onto its local quantization direction B̂t. Therefore, if we
adiabatically rotate B̂t into −ẑ, we invert shift from the field.
In other words, we drive a mF → −mF transition for every
Zeeman state in the ion. This is a unique benefit of PDD: there
is no requirement whatsoever on the ability to directly drive
transitions between a system’s information carrying states, or
even how many information carrying states there are.

Traditional methods for dynamically decoupling a quan-
tum system from magnetic field noise involve inverting the
magnetic sensitivity of only a qubit subspace, not the whole
quantum system; this typically requires driving a transi-
tion (directly or indirectly) between the two states. There is
no such requirement for PDD, since it affects every Zee-
man state in the system. For example, if we perform a
gate on 137Ba+ with one qubit state defined as |S1/2, F, mF 〉
and one as |D5/2, F ′, m′

F 〉, any dynamical decoupling se-
quence via traditional means would require a laser beam
to drive a transition between the S1/2 and D5/2 manifolds.
With passive dynamical decoupling there is no such re-
quirement since the protocol simply maps the qubit onto
{|S1/2, F,−mF 〉 , |D5/2, F ′,−m′

F 〉}. The applicability of PDD
is more general than this, however, since it is a single opera-
tion that dynamically decouples entire atoms, rather than qubit
subspaces; while we will focus on qubits below, the control
sequences we describe would similarly dynamically decouple
qudit systems with constant overhead.

A. Pulsed PDD

After we rotate B̂t into −ẑ, we can return B̂t to +ẑ without
reversing the first operation via ensuring the field remains
aligned with ẑ during the return; if we ensure |B̂t · ẑ| = 1,
Eq. (3) will remain diagonal and the system will not return
to its original state. The final states of the ion will have
undergone an mF → −mF transition (see Fig. 1). Writing the
Hamiltonian for an ion experiencing an extraneous B field
oscillating at ωe we get

Ĥe = μBBe cos(ωet )gJĴz, (7)

the effect of which we can analyze using Eq. (6), inserting �J
for �F . When setting φ = π , the scheme inverts the shift from
the extraneous field on every Zeeman state in the target ion,
transforming Ĥe into −Ĥe. If needed, this operation could be
repeated in a pattern to perform higher-order pulsed PDD se-
quences [24]. Importantly, this does not dynamically decouple
the quadratic shift due to B0 mixing the two hyperfine mani-
folds; this means, for example, that pulsed PDD could not be
used to increase the memory time of the {|F+, 0〉 , |F−, 0〉}
“clock” qubit.

We provide a numerical example of the dynamics of such
a transition in Fig. 2. Here we show a spin-echo sequence for
a system initialized to |ψ (0)〉 = √

1/3 |F = 1, mF = −1〉 +√
2/3 |F = 1, mF = 1〉 of the S1/2 ground-state manifold

of 137Ba+, giving our qubit a B-field sensitivity of ∂ωq

∂B 

2π × 1.4 MHz/Gauss. As shown in the inset, we set the
time dependence of the temporary quantization field to be

FIG. 2. Probabilities vs time of a 137Ba+ ion initialized to
|ψ (0)〉 = √

1/3 |F = 1, mF = −1〉 + √
2/3 |F = 1, mF = 1〉 of the

S1/2 manifold of 137Ba+, undergoing an inversion of its magnetic
field sensitivity. Up to a calibratable phase shift, every hyperfine
sublevel of the ion undergoes the transformation mF → −mF at the
end of the sequence. |F = 1, mF = −1〉 is red (middle line at t = 0),
|F = 1, mF = 0〉 is gray (bottom line at t = 0), and |F = 1, mF = 1〉
is green (top line at t = 0). (Inset) The quantization field components
experienced by the ion versus time, where Bx = sin2(πt/τ ) is the
orange (bottom line at t = 0) line and Bz = cos(πt/τ ) is the blue
line (top line at t = 0).

�Bt = |Bt|(1 − cos[πt/τ ], 0, sin2[πt/τ ]), where τ = 2 µs and
Bt = 10 Gauss (see inset of Fig. 2. As will be discussed in
Sec. IV, choosing functions for �Bt such that �Bt(0) = �Bt(t f )

and �̇Bt(0) = �̇Bt(t f ) = 0 significantly reduces the value of Bt

needed to reduce state leakage to a given degree. After the
rotation, we see that the system has undergone the desired
mF → −mF transition discussed above. Importantly, while
we are driving a transition between |F = 1, mF = 1〉 and
|F = 1, mF = −1〉, we are not directly coupling them, which
would violate selection rules. In the figure we can see this
in the fact that |F = 1, mF = 0〉 acts as a bus during the
operation, being populated only transiently.

FIG. 3. Filter function Sωe corresponding to the memory error
for a 137Ba+ ion initialized to the |ψ (0)〉 = √

2/3 |F = 1, mF = 1〉 +√
1/3 |F = 1, mF = −1〉 state of the S1/2 ground-state manifold ex-

periencing B-field noise for t f = 100 µs. Each rotation assumes the
magnitude of the rotated quantization field to be Bt = 10 Gauss.
The gray (dashed dotted) line corresponds to an ion undergoing
no dynamical decoupling, the blue (solid) line corresponds to an
ion undergoing a “passive” spin-echo rotation (pulsed PDD) lasting
τ = 10 µs centered at t f /2. The green (dashed) line corresponds the
scenario where we continuously rotate the quantization field in the
xz plane at a rate ωr = 2π/τ (continuous PDD).
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In Fig. 3 we show the increased resistance to B-field noise
that results from a “passive” spin echo, using the same ini-
tial state shown in Fig. 2; the control sequence is the same,
except we set the rotation time to be τ = 10 µs. There we
plot the filter function F (ω), defined as the function that,
when integrated against the noise spectral density S(ω), gives
the total infidelity of the system I = ∫ ∞

0 dω′F (ω′)S(ω′) =
1 − | 〈T |ψ (0)〉 |2 where |T 〉 is the target state. In this example
we calculate the memory error of an ion after t f = 100 µs, so
|T 〉 ≡ |ψ (0)〉 up to a repeatable AC Zeeman phase shift that
can be calibrated out (see Sec. IV) of the error budget. We
determine F (ω) numerically by calculating the infidelity of a
system experiencing a small B field, representing a noise term,

Ĥe = μBBe cos(ωet + θ )gJĴz, (8)

where we ensure that Be is small enough that I ∝ B2
e , but large

compared to the infidelity due to state leakage. Averaging over
θ and dividing the result by B2

e gives S(ωe) for the operation.
Comparing S(ωe) for the ion with and without a spin-echo
rotation, we can see as ωe → 0 that S(ωe) → 0 for the echoed
sequence, while, for the sequence with no PDD, S(ωe) ap-
proaches maximum value as ωe → 0; since magnetic field
NSDs are typically largest at low frequencies, Fig. 3 shows
that passive PDD should lead to significantly longer qubit and
qudit memory times relative to their nonechoed parallels [25].

B. Continuous PDD

We can perform continuous PDD by rotating the direction
of B̂t about a vector in the xy plane, here taken to be ŷ. If we
keep the value of Bt constant, this gives

�Bt = Bt(sin[ωrt], 0, cos[ωrt]), (9)

rotating B̂t in a circle at a rate ωr ≡ 2π/τ . As a result, pro-
jections of any extraneous B field �Be · B̂t will sinusoidally
oscillate at ωr . In other words,

H̃e = μBBe cos(ωet + θ )gJ(Ĵx sin[ωrt], 0, Ĵz cos[ωrt]), (10)

rendering B-field noise where ωe � ωr off-resonant. We show
this in Fig. 3 where we plot S(ωe) for the same system
described previously, only undergoing continuous PDD. We
can see that, for this value of τ = 10 µs, continuous PDD
suppresses magnetic field noise by several orders of magni-
tude relative to a spin-echo sequence. In the simulation, we
suppress state leakage by adiabatically ramping �Bt,x on or off
via setting �Bt,x = sin2(ωrt ) when ωrt < π/2 and (t f − t )ωr <

π/2, ensuring that �̇Bt(0) = �̇Bt(t f ) = 0. Although we gain in-
sensitivity to ambient B-field noise, continuous PDD requires
leaving the ions exposed to uncertainties in �Bt for significantly
longer than pulsed PDD, since it requires the control fields to
be on for all t f .

C. PDD-assisted laser-free entangling gate

In the presence of a static B-field gradient, we can rotate B̂t

at a rate tuned near the frequency of a motional mode, driving
a spin-dependent force for every state in the ion. This reduces
to the the spin-dependent force typically associated with σ̂z ⊗
σ̂z two-qubit gates [26–28] when applied to a qubit subspace.
If an ion is at rest in a magnetic field with a nontrivially large

gradient pointing in the z direction, its Hamiltonian can be
represented as

Ĥzz = μB

(
Bz + ∂Bz

∂z
ẑ

)
gJĴz. (11)

The impact of Bz is repeatable and can be calibrated out, so we
ignore its effect for simplicity. Projecting the position operator
ẑ onto a specified motional mode with ladder operators â(â†)
and frequency ωa, we can make the rotating wave approxima-
tion with respect to the other modes in the system and write

Ĥzz = h̄
zzĴz(â†eiωat + âe−iωat ), (12)

where μBgJB′
zβa ≡ h̄
zz, and βa is the projection of the ẑ op-

erator onto mode a. If this system undergoes continuous PDD,
i.e., B̂t is rotated in a circle, the transformed Hamiltonian will
be

H̃zz 
 h̄
zz(â†eiωat + âe−iωat )(Ĵz cos[ωrt] + Ĵx sin[ωrt])

+μBBtgJĴz, (13)

assuming the diabatic term is negligible. Transforming into
the interaction picture with respect to the ∝ Bt control field
term, we make the rotating wave approximation with respect
to the ∝ Ĵx terms—assuming that ωa ± ωr is far detuned from
the Zeeman splitting. Finally, if we tune ωr ∼ ωa, we get

H̃ ′
zz = h̄
zz

2
(â†eiδt + âe−iδt )Ĵz, (14)

where δ ≡ ωa − ωr . Projecting this Hamiltonian onto a qubit
subspace, we get the typical Hamiltonian for a σ̂z ⊗ σ̂z entan-
gling gate.

A key advantage of this gate scheme is that it is continu-
ously dynamically decoupled from B-field noise in a similar
way as the laser-free gates in Refs. [4,18], suppressing qubit
dephasing during the gate. Another advantage this scheme
has over previous laser-free schemes, however, is that there is
(again) no requirement on the ability to directly drive a transi-
tion between the qubit states. Importantly, this scheme allows
experimentalists to tune near a motional mode of the system in
a static gradient—without the need for ∼GHz frequency fields
to drive the qubit transition, as is the case in Refs. [8,9]. This
means it could be useful in gates that use permanent gradients.

IV. SOURCES OF ERROR

We have shown how to use PDD to render a system less
sensitive to ambient B-field noise during a given operation
time t f but have not discussed potential sources of error. In
the limit that we can manipulate the currents in trap integrated
circuits with errors much smaller than memory errors from
B-field noise, PDD offers a clear advantage. If it is not clear
that this is the case we must consider the main sources of
error intrinsic to the specific PDD scheme we use. In the
following we will examine the (rough) extent to which errors
from uncertainties in the control field operations, and from
diabaticity, should affect the usefulness of PDD. We note that,
while we do not examine crosstalk in detail since this will
likely be device specific, idle qubits far from the source of
�Bc will experience only small repeatable perturbations to �B0,
resulting in phase shifts that can be tracked.
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A. Diabaticity

So far, we have not discussed the role of the ∝ φ̇(t ) term in
Eq. (5), which represents off-resonant diabatic transitions. If
we rotate the system slowly enough, it will be fully adiabatic
and φ̇(t ) → 0. Since we cannot guarantee adiabaticity for
every system of interest, it is crucial to understand the general
behavior of PDD when φ̇(t ) �= 0. To examine this, we first
transform this term into the interaction picture with respect to
the ∝ Bt(t ) quantization field term in Eq. (5) using

ÛI = exp(−iε[t]Ĵz ), (15)

where ε(t ) ≡ (μBgJ/h̄)
∫ t

0 dt ′Bt(t ′) is the time integral of the
Zeeman splitting induced by �Bt. This gives

Ĥt,I = h̄φ̇(t )(Ĵy cos[ε(t )] + Ĵx sin[ε(t )]), (16)

showing the “diabatic” term in Eq. (5) can be represented with
an angular momentum operator �J that rotates in the xy plane.
We can approximate the time propagator for Eq. (16), using
the Magnus expansion [29]:

Û = exp

{
−i

h̄

∫ t

0
dt ′Ĥt,I (t ′)

− 1

2h̄2

∫ t

0

∫ t ′

0
dt ′dt ′′[Ĥt,I (t ′), Ĥt,I (t ′′)]

}
. (17)

Plugging Eq. (16) into this equation simplifies to

Û = exp

(
− i

∫ t

0
dt ′φ̇(t ′)(Ĵy cos[ε(t ′)] + Ĵx sin[ε(t ′)])

− Ĵz

2

∫ t

0

∫ t ′

0
dt ′dt ′′φ̇(t ′)φ̇(t ′′) sin(ε[t ′′] − ε[t ′])

)
, (18)

which we can separate into two distinct effects: state leak-
age, represented by the first-order terms, and an additional
∝ Ĵz shift, represented by the second-order terms. If we ap-
proximate φ̇(t ) → φ0 and ε(t ) → ε0t to be constant over t f ,
we can see that the first-order terms generally represent off-
resonant transitions inducing leakage that scales ∝ (φ0/ε0)2.
We can further suppress off-resonant leakage errors by “pulse
shaping” φ̇(t ). For our examples of continuous PDD we did
this by setting Bt,x = Bt sin2(ωrt ) at the start and end of the
control sequence. This ensures φ̈(0) = φ̈(t f ) = 0, which fur-
ther suppresses the probability of an off-resonant transition
in the same way it does for carrier [10,30] and spin-motion
[31] interactions. In Fig. 4 we show that increasing the value
of Bt also suppresses state leakage, making these transitions
more off-resonant by increasing the Zeeman splitting of the
atom. We demonstrate this in Fig. 4 for the example case
used in Figs. 2 and 3, plotting the leakage error probability
(1 − | 〈1,−1|ψ (t f )〉 |2 − | 〈1, 1|ψ (t f )〉 |2) versus Bt for both
pulsed and continuous PDD. This shows leakage can be sup-
pressed below 10−4 at ∼1 Gauss for our pulsed and ∼2.5
Gauss for the continuous PDD examples; for reference, a 0.1
Amp current in an infinitely thin wire produces a 4 Gauss B
field at distance of 50 µm. This corresponds to resistive heat
loads ∼100 times lower than the ∼ 1 Amp currents used in
Ref [4]. The second-order terms in Eq. (18) correspond to a
∝ Ĵz AC shift, that, in general, grows like ∝ φ̇2/ε (see the

FIG. 4. State leakage probability 1 − (| 〈0|ψ (t )〉 |2 +
| 〈1|ψ (t )〉 |2) vs temporary quantization field magnitude
Bt used to implement dynamical decoupling. For each
figure we show pulsed (a) and continuous (b) dynamical
decoupling schemes for a system initialized to the state
|ψ (t )〉 = √

2/3 |F = 1, mF = 1〉 + √
1/3 |F = 1, mF = −1〉 of

the S1/2 manifold of 137Ba+. Each set of simulations is for a
t f = 100 µs sequence. In (a) we show a “passive” spin echo,
where we rotate �Bt → −�Bt over τ = 10 µs, and in (b) we rotate �Bt

continuously at ωr = 2π/τ .

Appendix). If we can consistently repeat both φ̇ and ε over
many operations, then we can track this shift and eliminate its
effect.

B. Control field uncertainties

In any experiment, a control field will drift from its “ideal”
value, i.e., �Bc(t ) → �Bc(t ) + δ �Bc(t ). The biggest source of in-
fidelity from δ �Bc will likely be due to its projection onto B̂t,
since this will give a first-order shift that can be described by
the time propagator,

ÛδBc,t 
 exp

(
− i

h̄

∂ωq

∂B
Ĵz

∫ tr

0
dt ′B̂t[t

′] · δ �Bc[t ′]
)

, (19)

where tr is here the time the control fields are on. Assuming
δ �Bc drifts slowly over a calibration cycle, we can take δ �Bc to
be constant and write an approximate equation for I. We can
Taylor expand Eq. (19) if I � 1, letting us obtain

I =
(

δBc
∂ωq

∂B
tr

)2

λ2
σz

, (20)

where λ2
σ̂z

≡ 〈σ̂ 2
z 〉 − 〈σ̂z〉2 is the variance of the σ̂z Pauli-Z

operator of the qubit subsystem. We here take λ2
σ̂z

= 1/3 upon
averaging over SU(2). If we choose Bc 
 2.5 Gauss and as-
sume an uncertainty of 10−4 for δ �Bc · B̂t, we get an infidelity
of I 
 1×10−5 for the pulsed spin-echo case (using tr 
 3 µs)
and I 
 2×10−2 for continuous PDD (using tr 
 100 µs). We
can see that continuous PDD is significantly more sensitive to
control field uncertainties simply because tr is larger. Pulsed
PDD, on the other hand, provides less insensitivity to mag-
netic noise, but only leaves the target ion vulnerable to control
errors for a brief (here tr 
 3 µs) period; this trade-off could
make pulsed PDD more appealing as a near-term tool.

022620-5
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V. CONCLUSION

In this work, we discussed how trap integrated circuits can
be used to implement arbitrary passive rotations of the quan-
tization axis temporarily experienced by a target ion. This lets
us implement “passive” dynamical decoupling by inverting
the ion’s quantization field’s projection onto external B fields,
inverting the magnetic susceptibility of its hyperfine sublevels.
We showed how to do “pulsed” PDD, where the energy de-
pendence of every Zeeman state in the ion is reversed over
a short timescale, and how to do “continuous” PDD, where
the ion’s quantization direction is rotated sinusoidally. We
also proposed a different way to perform laser-free two-qubit
gates by showing we can tune this continuous rotation to the
frequency of a motional mode sideband while the ion is in a
static gradient. Finally, we discussed potential sources of error
for the scheme.
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APPENDIX

1. Diabatic AC Zeeman shift

Some of the use cases we discuss below benefit from oper-
ating close to the ∼MHz timescales defined by the Zeeman
splittings of an atom in a <10 Gauss magnetic field. It is

thus useful determine the primary effect of the “diabatic” term
in Eq. (5), which we will show is an AC Zeeman shift. For
simplicity, we will assume that the magnitude of �Bt is constant
over the operation in question, making no such assumption
about its direction. We can factor out the role of diagonal ∝ Ĵz

term by transforming into the interaction picture with

ÛD = exp(−iεt Ĵz ), (A1)

where ε ≡ μBgJBt/h̄, which gives

HD = h̄φ̇(t )(Ĵy cos[εt] + Ĵx sin[εt]). (A2)

We analyze the primary effect of this added term on the target
(at a final time t f ) ion using the Magnus expansion [29] up to
second order:

UD = exp

(
−i

h̄

∫ t f

0
dt ′ĤD(t ′)

− 1

2h̄2

∫ t f

0

∫ t ′

0
dt ′dt ′′[ĤD(t ′), ĤD(t ′′)]

)
.

The first-order term is off-resonant by the (∼MHz) Zeeman
splitting and is adiabatically suppressed if �Bc is ramped off
smoothly or slowly [20,30], so we treat its contribution as
negligible. Assuming we are integrating over a period where
φ̇(t ) = φ̇ remains approximately constant gives

ÛD = exp

(
iφ̇2

2ε
Ĵzt

)
, (A3)

giving an AC shift term that adds to the effective value of Bt .
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