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Decoherence-protected spins associated with nitrogen-vacancy color centers in diamond possess remarkably
long coherence time, which makes them one of the most promising and robust quantum registers. The current
demand is to explore practical rapid control strategies for preparing and manipulating such registers. Our
work provides all-microwave control strategies optimized using multiple optimization methods to significantly
reduce the processing time by 80% with a set of smooth near-zero-end-point control fields that are shown to
be experimentally realizable. Furthermore, we optimize and analyze the robustness of these strategies under
frequency and amplitude imperfections of the control fields, during which process we use only 16 samples to
give a fair estimation of the robustness map with 2500 pixels. Overall, we provide a ready-to-implement recipe
to facilitate high-performance information processing via a decoherence-protected quantum register for future
quantum technology applications.
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I. INTRODUCTION

Nitrogen-vacancy color centers (NV centers) in diamond
are an important candidate for future quantum computer reg-
isters as well as enhanced quantum sensors [1,2] because
of their long coherence time. Utilizing the decoherence-
free subspace (DFS) of the nuclear spin systems [3–5] can
even prolong their coherence time and strengthen their ad-
vantages in future quantum technologies. A wide range of
systems coded in DFS have been studied in areas of quantum
computing and quantum sensing [6,7], including atoms [8],
trapped ions [9,10], solid-state quantum dots [11], and so
on [12–14]. Recently, a DFS strategy based on one NV−

center and two nearby nuclear spins has been proposed, show-
ing high resistance against static noises in the σz direction
[15]. In this strategy, the preparation and manipulation of
the DFS are based on stimulated Raman adiabatic passage
(STIRAP) driven by a microwave control field, avoiding the
slow process of directly driving nuclear spins through the
radio-frequency field. Nevertheless, the total transition time
of the STIRAP strategy is still limited by the adiabatic condi-
tion. A method of superadiabatic STIRAP [16] can efficiently
speed up the velocity by one order of magnitude, provided
an auxiliary radio-frequency field is applied. However, the
required strength of this radio field is in magnitude of mega-
hertz, making it a challenge to faithfully achieve the field in
experiment due to the nonlinear relationship between the Rabi
frequency and the drive amplitude [17].

In this work we present the all-microwave control opti-
mization strategies to construct and manipulate nuclear spins
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in the DFS of the NV-based nuclear system, decreasing the
evolution time by one order of magnitude while maintaining
the same fidelity. The control fields have smooth shapes and
near-zero values at the beginning and ending points, making
them feasible to be realized in experiments. As a recipe for
optimization strategies in real experiments, we compare three
common optimization methods, namely, the gradient-based
gradient ascent pulse engineering (GRAPE) method [18],
the multivariate function optimization chopped random basis
(CRAB) method [19], and the phase-modulation (PM) method
[20] in terms of the optimization result and speed for different
evolution times. We show the simulated and experimental
field shapes given by each method, confirming the experi-
mental feasibility of these strategies. As the frequency and
amplitude bias and the noise of the control field are inevitable
in practice, we further make a fast estimation as well as opti-
mization of the field robustness using the Bayesian estimation
phase-modulated (BPM) method [21]. With this method only
16 samples are adequate to give the 50 × 50 pixel fidelity
distribution map. In general, we supply a versatile, fast, and
realistic toolbox of optimization methods to facilitate further
implementations of the NV center as a quantum register and
sensor.

The structure of the paper is as follows. In Sec. II we
introduce the construction and manipulation strategy based on
the decoherence-protected space of the NV-nuclear system.
Section III represents optimization results of the GRAPE,
CRAB, and PM methods in terms of fidelity, optimization
speed, and field shape. Section IV investigates and analyzes
the experimental feasibility of the optimization fields in terms
of the real control shape given by control apparatuses (arbi-
trary wave generator and amplifier), as well as the robustness
under frequency and amplitude bias, where we optimize this
robustness using the BPM method. In Sec. V we provide a
summary and discuss our results.
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TABLE I. Parameter values in the total Hamiltonian [15].

Parameter Symbol Value

zero-field splitting D 2π × 2.87 GHz
gyromagnetic ratio of electron spin γe 2π × 2.8 MHz/G
gyromagnetic ratio of nuclear spin γc 2π × 1.7 kHz/G
dipolar coupling d12 4 kHz
isotropic hyperfine coupling A(1)

zz 12.45 MHz
isotropic hyperfine coupling A(2)

zz 2.28 MHz

II. DECOHERENCE-PROTECTED SPACE
OF NUCLEAR SPINS

The system under consideration is a tripartite system com-
prising one NV− electron spin (S = 1) and two proximal 13C
nuclear spins (I = 1/2). The effect of near 14N nuclear spins
can be eliminated by polarization technology in experiment
[22]. The total Hamiltonian of the system reads [15]

H = DŜ2
z + γeB · S + S ·

2∑
i=1

A(i) · I(i) + γcB ·
2∑

i=1

I(i) + Hnn,

(1)

where DŜ2
z is the zero-field term of the electron spin, γeB · S

is the magnetic interaction of the electron spin, S · ∑2
i=1 A(i) ·

I(i) is the hyperfine coupling of the electron spin and the
nuclear spins, γcB · ∑2

i=1 I(i) is the magnetic interaction of the
nuclear spin, and Hnn is the dipole coupling between nuclear
spins. The explicit forms of the hyperfine coupling tensor A(i)

for ith nuclear spin and Hnn, as well as the detail procedure
to simplify the Hamiltonian, can be found in Appendix A.
Hereafter, we use the simplified form

H =
[

Hms=0 0
0 Hms=1

]
, (2)

where Hms=0 and Hms=1 are the 4 × 4 subspace Hamiltonians
of two nuclear spins when the electron spin numbers are

ms = 0 and ms = 1, respectively, with the explicit forms

Hms=0 = γcBz
(
Î (1)
z + Î (2)

z

) + γcBx
(
Î (1)
x + Î (2)

x

)
+ d12

2

[
(Î (1)

+ Î (2)
− + Î (1)

− Î (2)
+ ) − 4Î (1)

z Î (2)
z

]
(3)

and

Hms=1 = (D + γeBz )1 + A(1)
zz Î (1)

z + A(2)
zz Î (2)

z , (4)

respectively, where 1 represents the 4 × 4 identity matrix. The
values of the parameters in Eqs. (3) and (4) are shown in
Table I. Denoting the eigenstates and corresponding eigenval-
ues of H by |ψi〉 and Ei, respectively (i = 1, 2, . . . , 8), H can
be represented by H = ∑

i Eiσ̂ii, where σ̂i j = |ψi〉〈ψ j |. The
explicit forms of |ψi〉 are shown in Fig. 1(b). Specifically,
|ψ2〉 has zero eigenvalue, |ψ3〉 has near-zero eigenvalue (see
caption of Fig. 1(b) and Appendix A for details), which makes
both of these states robust against fluctuations of the magnetic
field and possess long dephasing time. The states |ψ2〉 and
|ψ3〉 therefore construct the decoherence-protected subspace.

To process logical qubit operations in the decoherence-
protected subspace based on |ψ2〉 and |ψ3〉, one should first
initialize the system into |ψ2〉 or |ψ3〉 and then carry out a
flip-flop process between these two logic states. The initial-
ization process follows the transitions |0↑↑〉 → |ψ1〉 → |ψ2〉,
where the first step |0↑↑〉 → |ψ1〉 can be completed by tuning
the amplitude of the magnetic field in a timescale of 20 µs
[15] (see Appendix B). The second step of the initialization

FIG. 1. (a) Triparticle system comprising one NV− electron spin (S = 1) and two proximal 13C nuclear spins (I = 1/2). (b) Explicit
formation of eigenstates (without normalization) of the Hamiltonian of the triparticle system shown in Eq. (2). For j = 1, 3, 4, α j =
(2d12−2E j )(−d12−2E j−2Bzγc )

2B2
x γ 2

c
and β j = −d12−2E j−2Bzγc

2Bxγc
, with Ej the solution of the equation −2d3

12 − 4B2
xd12γ

2
c + 8B2

z d12γ
2
c − (3d2

12 + 4B2
xγ

2
c +

4B2
z γ

2
c )Ej + E 3

j = 0. The explicit values of E1, E3, and E4 under different magnetic fields are shown in Appendix A. (c) Schematic diagram of
the transition process |ψ1〉 → |ψ2〉 in the initialization step and |ψ2〉 → |ψ3〉 in the spin-flip step.
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FIG. 2. (a) Transition efficiency of the process |ψ1〉 → |ψ2〉 given by STIRAP methods with a Gaussian-shaped control field following
Eq. (10). The black line with dots shows the results with optimized parameters σ and td. The gray line with triangles shows the results with fixed
parameters σ = T/8 and td = √

2σ . (b) and (c) Control field and population transition at T = 4 µs, with optimized parameters σ = 1.95μs
and td = 2.15 µs. (d) and (e) Control field and population transition at T = 16 µs, with optimized parameters σ = 4.77 µs and td = 8.34 µs. (f)
and (g) Control field and population transition at T = 28 µs, with fixed parameters σ = T/8 = 3.5 µs and td = √

2σ = 4.95 µs.

process, |ψ1〉 → |ψ2〉, and the flip-flop process |ψ2〉 ↔ |ψ3〉
need to be driven by an external control field. Direct driv-
ing with a radio-frequency field is typically slow due to the
low gyromagnetic ratios of the nuclear spin [23]. Although,
in principle, increasing the intensity of the control field can
speed up the driving process, in realistic experiments the dy-
namics of the nuclear spin oscillations becomes nonsinusoidal
under a strong control field [17]. Indirect control with mi-
crowave fields using ms = 1 states |ψ5,6,7,8〉 as an intermediate
circumvents this issue and achieves rapid transition [23].

Taking the transition from |ψ1〉 to |ψ2〉, for example, we
write the driving Hamiltonian as

Hd = [
√

2�p cos(ωpt ) +
√

2�s cos(ωst )]Ŝx, (5)

where �p (s) and ωp (s) are the amplitudes and the frequencies
of two MW fields with ωp = E6 − E1, ωs = E6 − E2, and
Ŝx = (|1〉〈0| + |0〉〈1|)/√2. For brevity, we use the interaction
Hamiltonian with respect to

H0 = E1σ11 + E2σ22 + E6

8∑
i=5

σii. (6)

After neglecting rapid oscillation terms, we obtain the inter-
action Hamiltonian with the rotating-wave approximation

HI
RWA = �p(t )

2
(χ51σ̂51 + χ61σ̂61 + χ71σ̂71 + χ81σ̂81 + H.c.)

+ �s(t )

2
(χ62σ̂62 + χ72σ̂72 + H.c.) + (H − H0), (7)

with χi j = 〈ψi|V̂ |ψ j〉 and V̂ = √
2Ŝx. A detailed derivation

can be found in Appendix C. Considering transverse relax-
ations, evolution of the triparticle system can be described by

the Lindblad master equation

dρ(t )

dt
= −i[HI , ρ] + LS + LI , (8)

where LS = (1/T ∗
2 )(2ŜzρŜz − Ŝ2

z ρ − ρŜ2
z ) is the dissipation

term of the electron spin and LI = ∑2
i=1(1/T ∗

2ni
)(2Î (i)

z ρ Î (i)
z −

Î (i)2

z ρ − ρ Î (i)2

z ) is the dissipation term of the nuclear spins.
Here the coherence times are taken as T ∗

2 = 7 µs, T ∗
2n1

=
500 µs, and T ∗

2n2
= 700 µs [15]. The transition effectiveness

for a certain evolution time T can be measured by the fidelity
between the final density matrix ρ(T ) and the target density
matrix |ψ2〉〈ψ2|, represented by [18]

F = Tr[〈ψ2|ρ(T )|ψ2〉]. (9)

One conventional strategy to complete the state transition
with high fidelity is the STIRAP, where the amplitudes of
control fields take the Gaussian shape

�p(t ) = �0 exp[−(t − td/2)2/2σ 2],

�s(t ) = �0 exp[−(t + td/2)2/2σ 2].
(10)

As shown in Fig. 2(a), this adiabatic transition (with σ =
T/8 and td = √

2σ ) needs the evolution time T � 24 µs to
obtain fidelities of F � 0.8. When T decreases to 4 µs, the
fidelity drops to F = 0.034. We optimize the values of the
parameters td and σ by a direct search method to obtain the
highest fidelity for different evolution times, which increase
the fidelity to F = 0.842 at T = 16 µs. However, the fidelity
at T = 4 µs is still as low as F = 0.723. In addition, as
shown in Figs. 2(b) and 2(d), the optimized control fields
have beginning or ending values around 2–3 MHz. In practical
experiments, such fields with nonzero end points could be
distorted more severely due to the bandwidth limitation of the
amplifier, thus decreasing the final fidelity. Different strategies
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are essential to improve the results with higher fidelity and
more practical field shape.

III. OPTIMIZATION

In what follows we show how various optimization meth-
ods improve the low transition efficiency of STIRAP when
the evolution time is reduced to several microseconds. We
consider three widely used methods: the GRAPE [18], CRAB
[19], and PM methods [20]. The GRAPE method is an ex-
ploitative method, in the sense that it updates each pulse
section along the gradient ascending direction, and the value
of its objective function will converge to a local optimum. In
contrast, the CRAB and PM methods are explorative based on
the global search method, where the expansion coefficients
of the control fields are taken as the optimization parame-
ters. Both methods use truncated expansion, while the CRAB
method features randomization of the frequencies and the PM
method features phase-modulation formation to improve the
optimization efficiency.

Considering the transition process from |ψ1〉 to |ψ2〉 and
taking the fidelity F in Eq. (9) as the objective function, all
three methods give the optimal shapes of control fields �p(t )
and �s(t ) that maximize F under the constraint �p (s)(t ) �
�max, where we set the maximum field amplitude as �max =
π MHz. We use a boundary function [24] λ(t ) = hp/[hp −
(t − h)p], with h = T/2 and p = 30, to obtain a near-zero
value of starting and ending points, which makes the control
fields more practical in experiments. The stopping criterion
is set as the termination tolerance of the function value being
less than 10−4.

For the GRAPE method, �p and �s are constructed by
N pulses respectively with equal width T = T/N , and the
optimization parameters are the amplitudes of these 2N pulses
represented by up

j and us
j , respectively, with j = 1, 2, . . . , N .

Considering the local property of the GRAPE method, we
use two types of initial values to explore the optimums in
a larger range. One is denoted by GRAPE(1/λ), with initial
field �p (s)(t ) = �0/λ(t ), where �0 is uniformly distributed
random number in the range [0.5π, 0.9π ] MHz. The other is
denoted by GRAPE(G), with the Gaussian-shaped initial field
in Eq. (10) with σ randomly taken from [0.3, 3] µs, td = √

2σ ,
and �0 = 0.9π MHz. In each interaction of the GRAPE pro-
cess, these pulses are updated successively according to the
format [18]

up (s)
j = up (s)

j + ε
∂F

∂up (s)
j

, (11)

where ε is the interaction step length, the value of which
should be set properly to guarantee the convergence of F .
Meanwhile, the explicit forms of control fields in the CRAB
method are

�p = 1

λ(t )

Nc∑
n=1

[An sin(ωnt ) + Bn cos(ωnt )], (12)

�s = 1

λ(t )

Nc∑
n=1

[Cn sin(ωnt ) + Dn cos(ωnt )], (13)

where ωn = 2πn(1 + rk )/T (rk ∈ [−0.5, 0.5]) represents ran-
dom numbers with flat distribution [19]. For the PM method,
the explicit forms of the control fields are

�p = 1

λ(t )

Nc∑
n=1

an cos

(
bn

vn
cos(vnt )

)
, (14)

�s = 1

λ(t )

Nc∑
n=1

an cos

(
bn

vn
sin(vnt )

)
. (15)

The optimization parameters of the CRAB and PM methods
are the Nc × 4 matrix [A, B,C, D] and the Nc × 3 ma-
trix [a, b, v], respectively, where A = [A1, A2, . . . , An]′; other
vectors have similar forms. Here we take Nc = 3, which cor-
responds to fewer harmonics and hence is more friendly to
control apparatuses.

Figure 3(a) shows the optimization fidelity given by the
GRAPE, CRAB, and PM methods for different evolution
times. At T = 4 µs, the GRAPE method with both kinds of
initial values gives F ≈ 0.82 [0.82 for GRAPE(G) and 0.817
for GRAPE(1/λ) explicitly] and the PM method gives F =
0.8. The CRAB method only reaches F = 0.683. The highest
fidelity 0.848 appears at T = 11 µs. Comparing the results of
different methods, we see that the GRAPE(G) method shows
a stable performance at different time conditions, while the
GRAPE(1/λ) method performs poorly for longer evolution
times. The PM method is more likely to give the highest
fidelity when T � 7 µs but can also give bad results at a
few time points; this instability indicates a lack of total trial
numbers. The CRAB method falls behind in both aspects
of highest fidelity and stability. Overall, the fidelity exceeds
0.8 when T � 4 µs, indicating that 4 µs is the shortest time
required to efficiently complete the transformation. A compar-
ison of the optimization speeds of two direct search methods
(PM and CRAB) is shown in the inset of Fig. 3(a), evaluated
by the average calling number of objective functions. On a
timescale of T < 10 µs, the CRAB method shows a speed
advantage, and when T > 10 µs, the CRAB and PM meth-
ods show similar behaviors. Explicit population transitions at
T = 4 µs are shown in Figs. 3(b)–3(d).

IV. EXPERIMENTAL FEASIBILITY

The main concern regarding the experimental feasibility
is whether the optimized field can be accurately realized in
the experiments. To test and demonstrate such experimental
feasibility, we generate the control fields using an arbitrary
wave generator (Tektronix AWG-70002A, connected with the
software Qudi) and measure the output electronic signal by an
oscilloscope (LeCroy-WaveAce 234). The bandwidth of our
arbitrary wave generator (AWG) is 14 GHz and the amplitude
resolution is 10 bits. We denote the optimized simulation
pulse sequences by usim, which comprising N = T/T flat
pulses usim(i) (i = 1, 2, . . . , N) with a pulse length of T .
Similarly, the measured amplitudes of the pulse sequences are
denoted by ureal, which comprises ureal(i) (i = 1, 2, . . . , N).
To compare the shapes of the simulation and real pulses,
we translate the values of the measured signal to make sure
they begin from zero and scale them by a factor of dsim/dreal,
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FIG. 3. (a) Optimization fidelity with different optimization methods for different evolution times. The inset shows the average number of
functions evaluated by the PM and CRAB methods. Also shown is the population transition at T = 4 µs, given by the (b) GRAPE(G), (c) PM,
and (d) CRAB methods.

where dsim = max |usim| − |usim(1)| is the difference between
the maximal amplitude and the amplitude of the beginning
pulse of the simulation control field and dreal = max |ureal| −
|ureal(1)| is the difference between the maximal amplitude
and the amplitude of the beginning pulse of the output pulse
sequence. The comparison results are shown in Fig. 4, where
the real pulse shapes are broadly consistent with the simula-
tion pulse shapes, which implies the optimization methods are
indeed feasible in practice. Details of the experiment and the
true values for conversion between the voltage signal and Rabi
frequency are given in Appendix E.

In practical experiments, besides the limitation of the avail-
able bandwidth of the AWG and amplifier, another inevitable
disturbance of the transition efficiency is the noise originating
from ambient nuclear spins and external bias fields, which
can be represented as the fluctuation of the amplitude as
well as the detuning of the control field. Using the optimal
PM control field shown in Figs. 4(b) and 4(e), we calculate
the fidelity for different values of detuning and amplitude
bias of the control field; the results are shown in Fig. 5(a).
Such a distribution map contains 50 × 50 pixels, requiring
2500 calculation times of the evolution function. Using the

FIG. 4. Comparison of the simulation pulse and the real pulse generated by the AWG (Tektronix AWG-70002A, connected with the
software Qudi) and measured by the oscilloscope (LECROY-WAVEACE 234) after a rf amplifier (Model No. 60S1G4AM3, AR Germany with
frequency bandwidth 0.7–4.2 GHz and gain power of 60 W) for the same gain level. The simulation pulses are given by different optimization
methods: (a) and (d) GRAPE, (b) and (e) PM, and (c) and (f) CRAB. The amplitudes of the measured values of the real pulses are scaled to
make a direct comparison visible (see the text for details).
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FIG. 5. (a) Simulated fidelity of the transition process from |ψ1〉 to |ψ2〉 for different values of detuning and amplitude bias of the control
field. The total evolution time is T = 4 µs and the control field is given by the PM method, shown in Figs. 4(b) and 4(e). (b) Estimation values of
the fidelity using the Bayesian-based estimation method. The black circles represent the locations of the samples. We used 16 randomly chosen
sample points; only those with locations within the range (δ/2π ∈ [−100, 100] MHz, κ ∈ [−0.5, 0.5]) are shown. (c) Simulated fidelity of
the control field optimized by the BPM method. (d) Estimation values of the fidelity using the Bayesian-based estimation method with the
optimized field given by the BPM method. The black circles represent the location of samples. We used 16 randomly chosen sample points;
only those with locations within the range (δ/2π ∈ [−100, 100] MHz, κ ∈ [−0.5, 0.5]) are shown.

Bayesian-estimation method [21], we can significantly reduce
this number from 2500 to 16 and get a fair estimation of the
50 × 50 pixel distribution map, shown in Fig. 5(b). Based on
this method, to improve the robustness of the control field, we
further make an optimization using the BPM method [21] with
the objective function defined as the average fidelity

Fobj = N
M∑

k=1

N∑
j=1

p(δk )p(κ j ) f (δk, κ j ), (16)

where f (δk, κ j ) is the fidelity with control field detuning δk

and amplitude bias κk (see Appendix D for details), p(δ) and
p(κ ) are the normal distributions of δ and κ ,

p(δ) = 1√
2πσδ

e−δ2/2σ 2
δ

p(κ ) = 1√
2πσκ

e−κ2/2σ 2
κ ,

(17)

and N = [
∑M

k=1

∑N
j=1 p(δk )p(κ j )]−1 is the normalization

constant. The optimization results are presented in Fig. 5(c)
and the estimation of Fig. 5(c) using 16 samples is given in
Fig. 5(d), which are visibly identical.

V. CONCLUSION

We have presented a comprehensive comparison of three
widely used methods, namely, the GRAPE method, the CRAB
method, and the PM method, based on the optimization fi-
delity, speed, and experimental feasibility. Synthetically, we
found that the GRAPE method performs well with high fi-
delity and rapid optimization speed in a shorter evolution time
range, while the PM method shows stable performance for all
evolution times within the scope of consideration and is easy
to use as it can be accomplished by a direct searching method.
In addition, we achieved a fast and accurate estimation as
well as optimization of the field robustness using the BPM
method. These results provide reference for existing STIRAP
shortcut methods in the presence of dissipation [25,26] as well
as robust control methods of the NV center [27,28] to further
explore and complete each other.

Further optimizations can be carried out based on
these methods, including optimization of the magnetic-field
amplitudes during the preparation and manipulation process
of the system, since the bias of the magnetic field is the
common interference factor in typical experiments. One can
also apply the methods to closed-loop control that directly
uses experimental outputs as the objective function value for

022614-6



RAPID TRANSFORM OPTIMIZATION STRATEGY FOR … PHYSICAL REVIEW A 109, 022614 (2024)

FIG. 6. (a) Explicit value of E3 for different Bx and Bz values. (b) Comparison between E1 and E3, evaluated by log10 |E1/E3|. (c) Compar-
ison between E4 and E3, evaluated by log10 |E4/E3|.

exploring a more practical control field during the experimen-
tal process [29–31]. More advance investigations and analyses
on how the control apparatuses implement the numerical
optimized pulses, such as frequency response analysis, will
significantly improve the experimental performance of the
optimized pulses [32]. The system under consideration could
be expanded to scalable multiqubit registers in NV cen-
ters [33,34]. Furthermore, our work can straightforwardly be
adapted to an alternative system involving an intrinsic nitro-
gen nuclear spin [35]. Overall, we provided a versatile opti-
mization strategy for improving the performance of a quantum
register based on DFS nuclear spin systems in diamond for
future quantum computing and sensing technologies.
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APPENDIX A: STATIC HAMILTONIAN

The system under consideration is a tripartite system com-
prising one NV− electron spin (S = 1) and two proximal
13C nuclear spins (I = 1/2) [15]. The total time-independent
Hamiltonian is [15]

H = DŜ2
z + γeB · S + S ·

2∑
i=1

A(i) · I(i) + γcB ·
2∑

i=1

I(i) + Hnn,

(A1)

where DŜ2
z is the zero-field term of the electron spin, γeB · S

is the magnetic interaction of the electron spin, S · ∑2
i=1 A(i) ·

I(i) is the hyperfine coupling of the electron spin and the

nuclear spins, and the hyperfine coupling tensor A(i) for the
ith nuclear spin has the form

A(i)
kl = A(i)

c δkl + A(i)
d

(
δkl − 3r̂ (i)

k r̂ (i)
l

)
, (A2)

with the Fermi constant term Ac, the dipolar interaction Ad ,
and k, l = x, y, z. The term γcB · ∑2

i=1 I(i) represents the mag-
netic interaction of the nuclear spin. The last term follows

Hnn =
∑
i< j

μ0γ
2
c

4πr3
i j

(
Ii · I j − 3(Ii · ri j )(ri j · I j )

r2
i j

)
. (A3)

To achieve the Hamiltonian of Eq. (2), several approxi-
mations need to be made. First, negligible quantities can be
omitted, including (i) the nonaxial components Sx and Sy,
which are neglected due to D � γeBx and D � Ai j , and (ii)
the isotropic hyperfine couplings, which are much stronger
than the dipolar coupling (d12 = 4 kHz) and the magnetic in-
teraction terms γcBx and γcBz (therefore the latter three terms
vanish in the ms = 1 Hamiltonian). In addition, we consider
a simplified spatial arrangement, where the direction vector
r between the two nuclear spins is assumed to be parallel
to the quantization axis ẑ and the magnetic field comprises
only the z and x directions such that B = Bzẑ + Bxx̂. Further,
for a more concise form of the Hamiltonian as well as the
system description, the anisotropic hyperfine coupling Aani

is neglected. However, using the full Hamiltonian does not
change the main conclusions of the strategy based on the
decoherence-free subspace [15].

The explicit formation of eigenstates of the final Hamil-
tonian of Eq. (2) is shown in Fig. 1(b). Figure 6 gives the
explicate value of E3, as well as comparisons between E1 (4)

and E3 when the values of Bx and Bz vary from 1 G to 100
G, indicating that in this range E3 is indeed close to zero
compared to E1 and E4.

APPENDIX B: INITIALIZATION PROCESS

The strategy adopted to access the decoherence-protected
subspace is by polarizing the spin system to the state |0L〉,
which consists of three steps [15]. The first step is to polar-
ize the system to the state |0↑↑〉, via the application of the
magnetic field having the components Bz ≈ 5 G and Bx ≈
70 G. With this magnetic field, the eigenstate |ψ1〉 is closely
projected to the state |0↑↑〉. Hence, the system is now ap-
proximately polarized to the state |ψ1〉. The second step is
successively tuning Bx and Bz, during which the state |ψ1〉
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evolves adiabatically to a state that has a balanced contribution
of all bare states, reached when the magnetic field arrives at
Bx = 100 G and Bz = 5 G. The last step is the transformation
from the state |ψ1〉 to |ψ2〉, by applying microwave (MW)
fields that drive the transitions |ψ1〉 → |ψ6〉 → |ψ2〉.

APPENDIX C: DRIVING HAMILTONIAN

In the following, we elaborate the derivation of the driving
Hamiltonian [15] to the total system Hamiltonian

H =
∑

i

Eiσ̂ii, (C1)

where σ̂i j = |ψi〉〈ψ j |, with |ψi〉 the eigenstates (i = 1, . . . , 8),
and Ei represents the corresponding eigenvalues. Our static
system is driven by two MW fields, indexed by p and s, giving
the driving Hamiltonian as

Hd = [
√

2�p cos(ωpt ) +
√

2�s cos(ωst )]Ŝx, (C2)

with �p (s) and ωp (s) the amplitudes and the frequencies of the
two MW fields, respectively, and Ŝx = (|1〉〈0| + |0〉〈1|)/√2
the 2 × 2 subspace of S = 1 spin matrices. The interaction
Hamiltonian can be written as

HI = (H − H0) + eiH0t Hde−iH0t . (C3)

To get a more concise expression, we take

H0 = E1σ11 + E2σ22 + E6

8∑
i=5

σii; (C4)

thus the second term in Eq. (C3) becomes

eiH0t Hde−iH0t =
⎛
⎝e−iωpt

8∑
i=5

χ1iσ1i + e−iωst
∑
i=6,7

χ2iσ2i + H.c.

⎞
⎠

× [�p cos(ωpt ) + �s cos(ωst )], (C5)

where χi j = 〈ψi|V̂ |ψ j〉 and V̂ = √
2Ŝx. Note here that χ25 =

χ52 = χ28 = χ82 = 0, so they are not shown in Eq. (C5).
After using the rotating-wave approximation by removing
the rapid oscillation terms with frequencies of 2ωp (s) and
ωp (s) ± ωs (p), we finally get the final interaction Hamiltonian

HI
RWA =�p(t )

2
(χ51σ̂51 + χ61σ̂61 + χ71σ̂71 + χ81σ̂81 + H.c.)

+ �s(t )

2
(χ62σ̂62 + χ72σ̂72 + H.c.) + (H − H0).

(C6)

APPENDIX D: HAMILTONIAN WITH FIELD DETUNING
AND AMPLITUDE BIAS

When considering the frequency detuning δ and amplitude
bias κ of the control fields, the driving Hamiltonian can be
represented as

Hd =
√

2(1 + κ )[�p cos(ω′
pt ) + �s cos(ω′

st )]Ŝx, (D1)

FIG. 7. Calibration curve between the input voltage from the
AWG and the measured Rabi frequency from a single NV experi-
ment. The fit values are a� = 40.4 ± 1.2 MHz/V and b� = 1.0 ±
0.2 V.

where ω′
p = E6 − E1 + δ and ω′

s = E6 − E2 + δ. Taking H0

as

H0 = E1σ11 + E2σ22 + (E6 + δ)
8∑

i=5

σii, (D2)

we have

eiH0t Hde−iH0t =
⎛
⎝e−iω′

pt
8∑

i=5

χ1iσ1i + e−iω′
st

∑
i=6,7

χ2iσ2i + H.c.

⎞
⎠

× [(1+κ )�p cos(ω′
pt )+(1+κ )�s cos(ω′

st )].
(D3)

Again, we neglect the rapid oscillation terms with frequencies
of 2ω′

p (s) and ω′
p (s) ± ω′

s (p), and the interaction Hamiltonian

FIG. 8. Calibration curve between the input voltage from the
AWG and the measured voltage from the oscilloscope. The fit
values are aosc-AWG = 0.016 ± 0.003 Vosci/VAWG and bosc-AWG =
−0.0026 ± 0.0006 Vosci.
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FIG. 9. Calibration curve for the relation between the frequency
of the input signal and the measured voltage from the oscilloscope
(with an input voltage of 230 mV). The parameters are aV − f =
−0.0092 ± 0.0028 V/GHz and bV − f = 0.029 ± 0.008 V.

becomes

HI
RWA = (1 + κ )�p(t )

2
(χ51σ̂51 + χ61σ̂61 + χ71σ̂71

+ χ81σ̂81 + H.c.)

+ (1 + κ )�s(t )

2
(χ62σ̂62 + χ72σ̂72 + H.c.)

+
∑
i=3,4

Eiσ̂ii +
8∑

i=5

(Ei − E6 − δ)σ̂ii. (D4)

Using this Hamiltonian and according to Eq. (8), we can
obtain the density matrix ρ(T, δ, κ ) at time T . Similar to
Eq. (9), the fidelity with detuning δ and amplitude bias κ can
be represented as

f (δ, κ ) = Tr[〈ψ2|ρ(T, δ, κ )|ψ2〉] (D5)

and the average fidelity for different δ and κ can be calculated
by Eq. (16).

APPENDIX E: PULSE CALIBRATION

The method given in this paper for experimentally de-
termining the Rabi frequencies for different pulse shapes is
performed by using a linear relationship between the Rabi
frequencies and the MW amplitudes from an AWG [24]. This
relationship holds due to the small ratio between the transition
frequency in the gigahertz range (2.9 GHz) and the Rabi
frequency in the range of several tens of megahertz. Through
the pulse calibrations in the experiment, we use our built-in
signal processing and analysis software Qudi [36].

For further translation of the pulsed signal from the
oscilloscope voltage signal to the Rabi frequency (see
Fig. 7), the same linear matching procedure is performed
between the voltage from the AWG and the amplified signal

FIG. 10. Comparison of the pulse shapes. For clarity, the scale is predetermined to simply compare the pulse shapes from the numerically
obtained pulses and the measured ones. For the case of �s obtained via the CRAB method at time of 3 µs, the amplitude goes up according to
the pulse envelope of the electronic signal.
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amplitude measured by the oscilloscope (see Fig. 8). Also, we
perform an analysis of the relationship between the signal at
constant AWG voltage and different frequencies of the MW
signals. This is due to fact that the oscilloscope has a certain
bandwidth where the amplitude varies at different frequencies
(here the oscilloscope used has an operating bandwidth up to
300 MHz). After the critical value it has a certain damping,
which has a linear behavior at the higher-frequency range
(see Fig. 9).

Here the relation between the measured voltage of the
oscilloscope Vosci and the voltage inserted in the AWG VAWG

is obtained by the linear equation Vosci = aVAWG + b, with the
scaling factor a and an offset b, obtained by linear regression.
We use the same procedure to establish the relations among
the Rabi frequency �, the voltage VAWG, and the signal fre-
quency f . From these previous measurements the comparison
between the experimental data and the simulated data is done
(see Fig. 10).
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