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Fast realization of high-fidelity nonadiabatic holonomic quantum gates
with a time-optimal-control technique in Rydberg atoms
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The nonadiabatic holonomic quantum computation (NHQC) has received great attention for decades, however,
there are many challenges to its implementation in experiments. To further shorten the evolution time is the first
challenge to be conquered to realize high-fidelity quantum gates in NHQC. In this paper, we propose a controlled
two-qubit model in Rydberg atoms to realize nonadiabatic holonomic quantum gates, where the evolution time
is extremely decreased and the influences of several kinds of noises are minimized by utilizing the time-optimal-
control technique on the target atom. In addition, we can construct arbitrary geometric gates by selecting the
appropriate parameters in our model. Furthermore, numerical simulations for the C-T gate and C-

√
H gate

based on the master equation show that the fidelities of geometric gates obtained in our model are still very high
even though noises are considered, which demonstrates the robustness of our protocol. It is worth noting that the
controlled two-qubit model may pave the way to realize fault-tolerant quantum computation in the future.
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I. INTRODUCTION

Since Shor has proved that quantum computation can be
used to efficiently solve large-number factorization in 1994
[1], this area has received great attention and has been de-
veloped rapidly. A key challenge in this area is to realize
fast implementations of quantum gates that are resilient to
various kinds of noises. Holonomic quantum computation
(HQC) is a general protocol to construct robust quantum
gates because the holonomic phase only depends on global
properties of the evolution path and is insensitive to the evo-
lution details [2–4]. However, HQC is based on adiabatic
evolution, which means that, in general, it requires a very
long time for operating systems to achieve goals. Inevitably,
the fidelity of quantum gates must be decreased because of
accumulation of relaxation, dephasing, imperfect quantum
manipulation, and other decohered channels [5–7]. Therefore,
fighting against various noises and operation errors is essential
to achieve high-fidelity quantum manipulation. To shorten the
evolution time and suppress these decohered channels, nona-
diabatic holonomic quantum computation (NHQC) based on
nonadiabatic non-Abelian geometric phase [8] has been pro-
posed [9,10], not only avoids the disadvantage of long-time
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evolution but also maintains the advantage of geometric phase
[11] which are robust against control errors. So far, this pro-
tocol has been implemented experimentally in many systems,
such as nitrogen-vacancy centers in diamond [12–17], ion trap
systems [18], nuclear magnetic resonance system [19–21],
superconductivity systems [22–24], and so on.

In contrast to the platforms mentioned above, the Rydberg
atom, where the external electron is excited to high-lying
states, also can be used to encode quantum information or
realize single-qubit quantum gates due to their long lifetime
[25–31]. Furthermore, Rydberg atoms exhibit large dipole
moments such that there are strong van der Waals or dipole-
dipole interactions [25,32–43], which provides us with a
direct way to realize two-qubit controlled quantum gates
based on NHQC [44–47]. However, the implementation of
the conventional NHQC must satisfy strict conditions, and the
same long evolution time is required to realize the arbitrary
geometric gate at any angle, which will lead to its sensitivity
to decoherence effects [48–50].

In this article, we propose an efficient two-qubit controlled
model by utilizing the dipole-dipole interaction between Ryd-
berg atoms, combined with the time-optimal-control (TOC)
technique, which can further shorten the evolution time
by solving the quantum brachistochrone equation (QBE)
[51–56]. Thus, an arbitrary universal quantum gate with high
fidelity can be realized by changing the laser amplitude and
phase parameters (we also realize the single-qubit gate based
on TOC in Appendix A). Here we stress that our work is
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different from the previous papers [20,57–64]. In Ref. [57],
the authors took advantage of adiabatic, shortcut-to-
adiabaticity (STA), and nonadiabatic methods to construct
the Rydberg gates. For the STA case, they set the amplitude
and detuning of the original coupling laser as being time-
dependent. While for our scheme the QBE-based TOC is
employed to achieve Rydberg quantum computation in the
shortest evolution time compared with the STA scheme, and
we provide the analytic solutions for the phase and the shortest
evolution time in the effective three-level system by solving
QBE. In addition, for the parameters only the phase of the
effective Rabi frequency is set as time dependent. We set
the laser detuning equal to the fixed Förster defect, which is
crucial for achieving the holonomic quantum gate without the
need for additional resources or operations to realize the time-
dependent detuning [65]. Also, the authors of Refs. [58,59]
focused on a different topic, i.e., the Rydberg blockade [66].
Furthermore, our model combines a TOC technique, finding a
shorter evolution path on the Bloch sphere than those found
in Refs. [20,60–64], where there are single-loop protocols
and they are sensitive to decoherence errors. In this work,
we also numerically simulate the effects of external field
noises, including the Rabi frequency error, detuning error, and
laser phase noise, as well as the effect of intrinsic Rydberg
atom noises, including Doppler dephasing and spontaneous
emission. To demonstrate the robustness of our scheme, we
compare the numerical simulation results of our scheme with
that of the conventional NHQC and shortcuts to adiabaticity
(STA) [67] schemes. Finally, the theoretical analysis and the
numerical simulations show that our proposal is efficient and
robust to generate two-qubit quantum gates based on the time-
optimal-control NHQC (TONHQC).

The rest of this article is organized as follows. In Sec. II,
we depict the model and the two-qubit effective Hamiltonians.
In Sec. III, the theoretical framework for the TOC technique
to realize arbitrary holonomic gates has been illustrated. In
Sec. IV, we numerically simulate the average fidelity of quan-
tum gates considering the several decoherence channels and
compare the robustness of our scheme with the conventional
NHQC and STA. Finally, we summarize our results in Sec. V.

II. MODEL AND EFFECTIVE HAMILTONIANS

We consider two cesium atoms trapped in optical tweezers
as shown in Fig. 1(a), and the distance between two atoms
can be easily adjusted in current experiments. Conveniently,
the left atom is called the control atom, while the right one
is called the target atom. The energy levels for both atoms
are depicted in Fig. 1(b). The hyperfine ground states |0〉c,t =
|6S1/2, F = 3, mF = 0〉 and |1〉c,t = |6S1/2, F = 4, mF = 0〉
are chosen as the qubit-state because they are resilient to
external magnetic fields. The state |1〉c,t can be coupled with
a Rydberg state |r〉c,t by a two-photon resonant laser with
Rabi frequency �c(t ) for the control atom and a two-photon
off-resonant laser with Rabi frequency �1eiφ1(t ) and detuning
� for the target atom. The state |0〉t is also coupled with |r〉t

for the target atom by a two-photon off-resonant laser with
Rabi frequency �0eiφ0(t ) and detuning �. In addition, there
exists another pair of Rydberg states |u〉c and |ν〉t such that the
dipole interaction between these two atoms is not negligible
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FIG. 1. (a) Schematics of atoms trapped in optical tweezers.
(b) Three steps for realization of NHQC: The ground state |1〉c is
resonantly excited to the Rydberg state |r〉c with real Rabi frequency
�c (t ) in (i) and deexcitation in (iii), while the ground state |0〉c is
decoupled from the dynamics; (ii) both |0〉t and |1〉t are coupled to the
Rydberg state |r〉t with time-dependent Rabi frequencies �0r (t ) and
�1r (t ), respectively, and with blue detuning �. The strength of dipole
interaction between two atoms is B. Förster defect in Rydberg states
is denoted by δ. Ground states |0〉t and |1〉t can be transformed into a
bright state |b〉t and a dark state |d〉t by a unitary transformation such
that |b〉t is coupled to |r〉t with Rabi frequency �br (t ) and blue detun-
ing � while |d〉t is not coupled to other energies. �0r (t ) = �0eiφ0 (t ),
�1r (t ) = �1eiφ1(t ), �br (t ) = �be−iφ1(t ).

and the strength of the dipole interaction is labeled as B. Here
we choose |r〉c = |85P1/2, mJ = 1/2〉, |u〉c = |85S1/2, mJ =
1/2〉, |r〉t = |80P3/2, mJ = 1/2〉, and |ν〉t = |81S1/2, mJ =
1/2〉 [68]. The Förster defect δ can be calculated by the ARC
open-source library approximately as 2π × 290 MHz [69]. To
realize universally robust quantum gates, in the following, we
discuss two kinds of effective Hamiltonian based on the initial
state of the control atom.

First, when the control atom initially stays at |1〉c, it can
be excited to |r〉c by applying a π pulse, i.e.,

∫
�c(t )dt = π ,

then the Hamiltonian of the system in the interaction picture
is described by

Ĥ1 = 1
2 (�1r (t )|r1〉〈rr|ei�t + �0r (t )|r0〉〈rr|ei�t )

+B|rr〉〈uν|e−iδt + H.c., (1)

with Rabi frequencies �0r (t ) = �0eiφ0(t ), �1r (t ) = �1eiφ1(t ),
in which the amplitude of driving field �0(1) is time indepen-
dent and the phase φ0(1)(t ) is time dependent, blue detuning
�, dipole-dipole interaction strength B, and the energy defect
δ, as shown in Fig. 1(b). It should be noted that the left (right)
qubit represents the control (target) atom in the two-qubit
basis. Furthermore, the above Hamiltonian can be transformed
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FIG. 2. Level structure of the scheme. The detuning of laser � is
set equal to the defect of Förster resonance δ of the selected Rydberg
states.

into a new basis

Ĥ1 = 1
2�be−iφ1(t )|rr〉〈rb|e−i�t + B|rr〉〈uν|e−iδt + H.c., (2)

where |b〉t = sin(θ/2)eiφ|0〉t + cos(θ/2)|1〉t is the bright state
that is coupled to the Rydberg state |r〉t , while there is a dark
state |d〉t = cos(θ/2)|0〉t − sin(θ/2)e−iφ |1〉t that is orthogo-
nal to |b〉t but is decoupled from the dynamics. Here, we
set the angle θ and phase φ to be time independent. We as-
sume �b =

√
�2

0 + �2
1, which is time independent, �0/�1 =

tan(θ/2), φ = φ0(t ) − φ1(t ), and we set � = δ. When � �
�b holds, we obtain an effective Hamiltonian for the system
according to the Floquet expansion [70]

Ĥ1,eff =
(

B�b

2�
eiφ1(t )|rb〉〈uν| + H.c.

)

+ �2
b

4�
(|rb〉〈rb| − |rr〉〈rr|)

+ B2

�
(|uν〉〈uν| − |rr〉〈rr|). (3)

The transition between |rb〉 and |uν〉 can be seen as a two-
photon resonance process and satisfies energy conservation as
shown in Fig. 2.

Second, when the control atom initially stays at |0〉c, it can-
not be excited to the Rydberg state |r〉c, then there is no dipole
interaction between these two atoms. So the Hamiltonian of
the system is

Ĥ2 = 1
2 (�0r (t )|0r〉〈00|e−i�t + �1r (t )|0r〉〈01|e−i�t + H.c.).

(4)

The effective Hamiltonian for this situation yields

Ĥ2,eff = �2
b

4�
(|0b〉〈0b| − |0r〉〈0r|). (5)

Note that the Stark shift terms in Eqs. (3) and (5) can
be canceled by inducing an opposite Stark shift with an
additional laser experimentally [71–75]. Consequently, the
system’s dynamics for step (ii) after the control atom is ex-
cited in step (i) can be described by the Hamiltonian

Ĥeff = B�b

2�
eiφ1(t )|rb〉〈uν| + H.c.. (6)

III. TIME-OPTIMAL-CONTROL NHQC

To construct fast high-fidelity and robust quantum gates,
the essential step is to find an optimal-control trajectory.

Experimentally, the arbitrary holonomic gate can be realized
by tuning parameters φ1(t ), while the values of �b, �, and
B are kept constant. In the following, we will explain this
scheme in detail.

Generally, for an arbitrary state |ψm(t )〉 satisfying
the Schrödinger equation, i.e., i|ψ̇m(t )〉 = Ĥ (t )|ψm(t )〉,
the evolution operator can be formally written as
Û (τ ) = ∑

k |ψk (τ )〉〈ψk (0)|. Here we induce a set of
auxiliary bases {|�m(t )〉}, which satisfy the periodic
boundary condition and do not have to be the solutions of
the Schrödinger equation such that |�m(τ )〉 = |�m(0)〉 =
|ψm(0)〉. After one period, the evolution operator is
written as Û (τ ) = ∑

lk[Tei
∫ τ

0 (D+G) dt ]lk|ψl (0)〉〈ψk (0)|, with
the dynamical part Dlk = −〈�l (t )|Ĥ (t )|�k (t )〉 and the
geometric part Glk = 〈�l (t )|i(d/dt )|�k (t )〉. By means
of the auxiliary bases {|�m[μa(t ), ξb(t )]〉}(a, b, . . . , n)
with two sets of independent parameters μa(t ) and ξb(t ),
the geometric part is expressed as Glk = Gμ

lk + Gξ

lk

with Gμ

lk = ∑
a i〈�l (t )|∂/∂μ|�k (t )〉(dμa/dt ) and Gξ

lk =∑
b i〈�l (t )|∂/∂ξ |�k (t )〉(dξb/dt ) [8]. Furthermore, the

dynamical part exactly cancels with Gξ

lk , i.e., Dlk + Gξ

lk = 0.
One possible general option to satisfy this condition is
{|�a[μa(t ), ξb(t )]〉} = eiμa (t )|ψa[ξb(t )]〉, in which |ψa[ξb(t )]〉
evolves according to the Schrödinger equation. Finally, we
obtain the robust geometric phase μa, which is independent
of the Hamiltonian and only depends on the Hilbert space
structure. (Detailed calculations are shown in Appendix B.)
Meanwhile, combining with the periodic boundary
condition, Û (τ ) = ∑

a eiμa (τ )|�(0)〉a〈�(0)| satisfies the
gauge invariance [4], which verifies the geometric properties
of holonomic quantum gates.

For the Hamiltonian in Eq. (6), we define ξ1(t ) =
1
2

∫ √
�2

eff + φ̇2
1 (t )dt , where �eff = B�b/� is time indepen-

dent. Then we can define the general form of three orthogonal
bases (i.e., the set vectors |ψm(t )〉 is a completely orthogonal
system) that obey the Schrödinger equation as

|ψ0〉 =
(

cos
ξ1

2
− i sin

ξ1

2
cos ξ3

)

× e−i ξ2
2 |uν〉 − i sin ξ3 sin

ξ1

2
ei ξ2

2 |rb〉,

|ψ1〉 = −i sin ξ3 sin
ξ1

2
e−i ξ2

2 |uν〉

+
(

cos
ξ1

2
+ i sin

ξ1

2
cos ξ3

)
ei ξ2

2 |rb〉,

|ψ2〉 = cos
θ

2
|r0〉 − sin

θ

2
e−iφ |r1〉. (7)

Here, we set ξ3 = arctan [�eff/(−φ̇1(t ))] and assuming ξ̇3 =
0 for convenience, which implies φ̇1(t ) is a constant. Com-
bining Eq. (7) with the Schrödinger equation, we can obtain
�eff = −2ξ̇1(t ) sin ξ3, φ1(t ) = ξ2(t ) = 2ξ1(t ) cos ξ3. To sat-
isfy the cyclic evolution condition, i.e., ξ1(0) = ξ2(0) = 0,
ξ1(τ ) = 2π , in computational subspace {|�1(0)〉, |�2(0)〉},
the evolution operator can be rewritten as

Û (τ ) = eiγ |�1(0)〉〈�1(0)| + |�2(0)〉〈�2(0)|, (8)
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where the geometric phase is γ = −μ1(τ ) + μ1(0) = π +
ξ2(τ )/2. On the bases mentioned above, we can get ξ1(t ) =
−�efft/(2 sin ξ3), ξ2(t ) = −�efft/ tan ξ3. Considering a π

pulse can be applied again to deexcite the control atom, the
corresponding evolution operator can be further spanned by
the logical qubits {|00〉, |01〉, |10〉, |11〉},

Û (τ ) = |0〉〈0| ⊗ I + |1〉〈1| ⊗ (eiγ |b〉〈b| + |d〉〈d|). (9)

Thus, Û (τ ) can be used to construct arbitrarily controlled two-
qubit gates.

In general, the quantum system’s errors are proportional
to the whole evolution time. Therefore, we can obtain the
minimum evolution time by solving the QBE

i∂F̂/∂t = [Ĥeff , F̂ ], (10)

where F̂ = ∂L̂c/∂Ĥeff , L̂c = ∑
j λ j f j (Ĥeff ), ( j =

1, 2, 3, . . . n), λ j is the Lagrange multiplier
[51,52,54–56]. It should be noted here that the quantum
system has a finite energy bandwidth, which means the
effective coupling strength �eff/2 should have an upper
bound value, there would be a constraint which related to the
Hilbert-Schmidt. i.e., f0(Ĥeff ) = [Tr(Ĥ2

eff ) − �2
eff ]/2 = 0.

On the other hand, we can get the phase φ1(t ) =
2(γ − π )t/τ and the corresponding minimum gate time
τ = 2

√
π2 − (π − γ )2/�eff [52,54,56,76] by solving

Eq. (10). (The process is shown in Appendix C.) Additionally,
the evolution time decreases as the geometric phase γ

decreases, when γ is equal to π , the gate time is 2π/�eff ,
which is consistent with the gate time of the conventional
NHQC scheme. After the TOC technique is applied to our
controlled two-qubit model, the arbitrary robust quantum
gates can be obtained and the numerical results are presented
in the next section.

IV. NUMERICAL SIMULATIONS AND DISCUSSIONS

A. Parameter considerations and numerical methods

In this section, we introduce the details of numerical meth-
ods and gate parameters. In 5.2 µK, the lifetime of |r〉c and
|u〉c is about 1900 µs and 638 µs, with thecorresponding decay
rate 0.53 kHz and 1.57 kHz, respectively. The lifetime of |r〉t

and |ν〉t is about 1400 µs and 548 µs, with thecorrespond-
ing decay rate 0.71 kHz and 1.82 kHz, respectively [69].
Other parameters are �c = �b = 2π × 4.6 MHz and � =
2π × 290 MHz. Specifically, the dipole-dipole interaction is
B = 2π × 25 MHz with an atomic distance 3.98 µm, which
can be implemented in experiments [77,78].

The evolution of the quantum system under noises is gov-
erned by the Lindblad equation

ρ̇(t ) = i[ρ(t ), Ĥ (t )] +
4∑

m=1

L̂m(ρ), (11)

where ρ(t ) is the density matrix of the quantum system and
the

L̂1(ρ) =
∑

k=rc,uc

∑
j=0,1

Lc
jkρLc

jk
† − 1

2

{
Lc

jk
†Lc

jk, ρ
}
,

L̂2(ρ) =
∑

k=rt,νt

∑
j=0,1

Lt
jkρLt

jk
† − 1

2

{
Lt

jk
†
Lt

jk, ρ
}
,

L̂3(ρ) =
∑

k=rc,uc

Lc
kρLc

k
† − 1

2

{
Lc

k
†Lc

k, ρ
}
,

L̂4(ρ) =
∑

k=rt,νt

Lt
kρLt

k
† − 1

2

{
Lt

k
†
Lt

k, ρ
}
,

are the Lindbladian operators, where c, t represent the control
and target atoms, respectively, and Lc,t

j,k = √
�k| j〉α〈k|, Lc,t

k =√
�z

k (|k〉α〈k| − |0〉α〈0| − |1〉α〈1|) (α = c, t), �k describes the
spontaneous emission rate of Rydberg states to the ground
states and �z

k represents the dephasing rate. Ĥ (t ) is the three-
step time-dependent Hamiltonian and we define the form of
two-qubit controlled gates as

C-T ≡ |1〉〈1| ⊗ T + |0〉〈0| ⊗ I,

C-
√

H ≡ |1〉〈1| ⊗
√

H + |0〉〈0| ⊗ I, (12)

where T = (1 0
0 eiπ/4 ) and H = 1√

2
(1 1
1 −1) = √

H · √
H , the

standard single qubit π/8 gate and Hadamard gate, respec-
tively. To realize C-T and C-

√
H gates, the parameters are

respectively chosen as

θ = 0, φ = 0, γ = π/4 for C-T,

θ = π/4, φ = π, γ = π/2 for C-
√

H . (13)

To demonstrate the efficiency and robustness of our pro-
posal under various initial conditions, the average fidelity is
adopted [79,80]

F̄ (ε, Û ) =
∑

j tr[ÛÛ †
j U †ε(Ûj )] + d2

j

d2
j (d j + 1)

, (14)

where Ûj is the tensor of Pauli matrices Î Î , Î σ̂x, ..., σ̂zσ̂z. Û is
the ideal two-qubit controlled gate defined in Eq. (9), d j = 4
for a two-qubit gate, and ε(Ûj ) is the trace-preserving quan-
tum operation obtained by solving the master equation (11).

B. Gate performance

First, we numerically simulate the evolution paths of C-T
gate and C-

√
H gate of TONHQC and conventional NHQC

schemes on the Bloch sphere as shown in Fig. 3, shorter paths
than NHQC can be achieved to minimize the influence of

FIG. 3. Geometric illustration of the proposed TONHQC gate on
the Bloch sphere, where the state |rb〉 undergoes a cyclic evolution
following the red path. However, the conventional NHQC takes a
cyclic evolution following the longer black path. Evolution path in
these two schemes of C-T gate in (a) and C-

√
H gate in (b).
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FIG. 4. The dynamics of the quantum system based on our three-
step scheme. The average fidelity (purple line) of C-T gate in (a) and
C-

√
H in (b). The population of |00〉 (pentagrams), |01〉 (blue line),

|10〉 (green line), |11〉 (yellow line) for C-T gate in (a) and C-
√

H
gate in (b).

environmental decoherence. The gate fidelity of C-T , C-
√

H
and the evolution of {|00〉, |01〉, |10〉, |11〉} state varying with
time are shown in Fig. 4, where the population of |00〉 and
|01〉 is always the same and constant, and the population of
|10〉 and |11〉 is 0 during the second step because the control
atom is excited to the Rydberg state. The final fidelity for C-T
and C-

√
H are 0.9976 and 0.9962, respectively.

Next, lasers have inevitable phase noise leading to the
dephasing of Rabi oscillation, which can be described by
the Lindblad equation with Lindbladian operator L̂α

l (ρ) =
L̂α

l ρL̂α†
l − 1

2 {L̂α†
l L̂α

l , ρ} (α = c, t, represents control and tar-
get atoms, respectively), where L̂c

l = √
κ/2(|r〉c〈r| − |1〉c〈1|),

L̂t
l = √

κ/2(|r〉t〈r| − |b〉t〈b|) [6,81–84] and we set the de-
phasing rate κ/2π � 0.1 MHz for both control and target
atoms [5]. The numerical results for laser phase noise are
shown in Fig. 5. We find the fidelity is still higher than 0.85
even though the decay rate of laser phase noise approaches
0.1 MHz, where the strength of laser phase noise is larger than
the current experimental condition [78]. So the high-fidelity of
quantum gates can be realized even though there exist external
noises based on our proposal.

In addition, we simulate the dynamics of the quantum
system with noises of the Doppler shift. The dephasing of
the Rydberg atom is neglected due to it can be efficiently
suppressed [10,85]. The destructive effect of Doppler shift can
be described by a random phase change keffvzt , where keff =
7.63 × 106 m−1 is the effective wave vector of the laser beam
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0.85

0.9

0.95

1

F
id

el
ity

FIG. 5. The average gate fidelities with laser phase noise. Pen-
tagrams (circle) represent the fidelity of C-T (C-

√
H) gate versus

dephasing rate κ .

[29], and the velocity vz of each atom is Gaussian distributed
with variance σvz = √

kBTa/m. kB is the Boltzmann constant,
Ta the atomic temperature, and m the atomic mass. The nu-
merical results of fidelities for both C-T gate and C-

√
H gate

under Doppler shift caused by finite temperature are shown in
Fig. 6. Here the simulation of temperature is much higher than
the current experimental condition, and it should be pointed
out that the temperature of atoms in a tweezer can be cooled
to 5.2 µK [83]. So, the fidelity of quantum gates is still higher
than 95% even though there is a Doppler shift.

C. Discussion

Based on the expressions of τ , it can be found that the
fluctuations with �eff [31,86] would induce the ideal time
variant. Here, we consider that the deviation of time from the
ideal case can be expressed as a Taylor expansion

τ ′ = 2
√

π2 − (π − γ )2

�eff (1 + η)

	 τ − ητ + η2τ − η3τ. (15)

When the fluctuation η = 0.05 
 1, τ ′ 	 0.952τ after omit-
ting the high-order terms. However, we still follow the gate
time τ in the actual experiment, so the simplest way to con-
sider the possible deviation of QBE’s solution is to discuss
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FIG. 6. The average gate fidelities at different temperatures Ta.
Pentagrams (circle) represent the fidelity of C-T (C-

√
H ) gate versus

Ta ∈ [0, 40] µK.
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FIG. 7. Robustness of quantum gates (a), (b) C-T and (c), (d)
C-

√
H against (a), (c) the Rabi frequency fluctuation η�b/�b ∈

[−0.1, 0.1] and (b), (d) detuning fluctuation η�/� ∈ [−0.1, 0.1].
The red line represents the time-optimal-control NHQC (TONHQC),
the black line represents the conventional NHQC and the blue line
represents the shortcuts to adiabaticity (STA).

the fluctuations related to �eff , i.e., Rabi frequencies �b and
the detuning � of optical excitation. To demonstrate the ro-
bustness of our proposal, we simulate the dynamics of the
quantum system with the noises, including Rabi frequency
fluctuation, detuning fluctuation, and spontaneous emission of
atoms compared with NHQC and shortcuts to the adiabaticity
(STA) scheme (see Appendix D for details). The numerical
results of Rabi frequency fluctuation and detuning fluctuation
are shown in Fig. 7. The fidelity of the two quantum gates for
the TONHQC is �99% in the range of 10% fluctuations, while
the fidelity for the conventional NHQC and STA dramatically
decreases as the strength of fluctuation increases. We find
the results for our proposal are more robust than the others.
In addition, we list the gate times for three schemes with
the same �max = �eff = 2π × 0.4 MHz, which are shown in
Table I. It should be pointed out that the required time of STA
has no advantage in contrast to TONHQC for this scheme, and
this is accurately the reason why the performance is not better
than TONHQC.

The quantum simulations of spontaneous emission of the
Rydberg state are shown in Fig. 8. We plot the fidelities
for C-T and C-

√
H gates as a function of decay rate � for

three schemes. In Fig. 8, we assume that all �k are equal
and denoted by � for simplicity, and set �0 = 1.5 kHz and
�/�0 ∈ [0.1, 20]. The numerical simulation highlights the

TABLE I. Gate time τ (μs) for three schemes with the same �max.

Gate

Scheme C-T C-
√

H

TONHQC 1.88 2.4
Conventional NHQC 2.74 2.74
STA 5.6 5.6
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FIG. 8. Robustness of quantum gates (a) C-T and (b) C-
√

H
against the decay rate. The red line represents the TONHQC, the
black line represents NHQC, and the blue line represents the STA.

robustness of our proposal compared with the previous
scheme under spontaneous emission. Above all, we can find
that TONHQC has a better higher fidelity and better robust-
ness for γ < π , the smaller γ is, the better the performance.
Compared to NHQC, the TONHQC scheme does not need
to meet the dynamical phase always to be 0 as conventional
NHQC does, and it has better robustness compared to the
other two schemes.

V. CONCLUSION

In conclusion, we propose a universal time-optimal nona-
diabatic holonomic two-qubit controlled-gate scheme realized
by three-step operations. High-fidelity quantum gates are
realized in the Rydberg atoms model. The efficiency and ro-
bustness of our proposal are demonstrated by the numerical
simulations comparing our proposal with the conventional
NHQC and STA under several kinds of noises, including
the Rabi error, detuning error, laser phase noise, Doppler
shift, and spontaneous emission. Furthermore, our scheme is
expected to be able to provide a promising method for the
implementation of multiple-qubit controlled gates in Rydberg
atoms and may pave the way to realize fault-tolerant quantum
computation in the future.
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APPENDIX A: SINGLE-QUBIT GATE WITH TOC

Due to the inadequacy to demonstrate universality by only
implementing controlled arbitrary two-qubit gates, we here
construct single-qubit gate on the target atom to expound
universality. When we simply set � = 0, the Hamiltonian on
the target atom is

Ĥt = 1
2�be−iφ1(t )|r〉〈b| + H.c. (A1)
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FIG. 9. Gate fidelity of X gate for average dynamics with
TONHQC.

The evolution operator Û (τ ) can be calculated as

Û (τ ) = eiγ |b〉〈b| + |d〉〈d|, (A2)

and can be spanned in the logical qubit subspace {|0〉, |1〉} as

ei γ

2

(
cos γ

2 − i cos θ sin γ

2 ieiφ sin γ

2 sin θ

ie−iφ sin γ

2 sin θ cos γ

2 + i cos θ sin γ

2

)
, (A3)

based on which one can realize universal single-qubit oper-
ations. For instance, if we want to realize the X gate, the
parameters should be chosen as θ = π/2, φ = π , and γ = π .
Then we simulate the average fidelity of the single-qubit X
gate as shown in Fig. 9. Note that the single-qubit gate here is
also arbitrary to satisfy the universality of single-qubit gates.
In the main text, we also present arbitrary two-qubit holo-
nomic gates, ensuring its universality to perform any quantum
computing task.

APPENDIX B: ROBUST PROPERTIES
OF GEOMETRIC PHASE μa

In Sec. III in the main text, we show Glk = Gμ

lk + Gξ

lk ,
where Gμ

lk = ∑
a i〈�l (t )|∂/∂μ|�k (t )〉(dμa/dt ), and Gξ

lk =∑
b i〈�l (t )|∂/∂ξ |�k (t )〉(dξb/dt ). Below, we briefly describe

the elimination of the dynamical part and the remaining pure
geometric part of holonomic gates in our scheme. Due to

Gξ

lk =
∑

b

i〈�l (t )|∂/∂ξ |�k (t )〉(dξb/dt )

= ieiμa (t )〈�l (t )|∂/∂ξ |ψk[ξb(t )]〉
= eiμa (t )〈�l (t )|i|ψ̇k[ξb(t )]〉, (B1)

and the dynamical part of the above evolution operator Û (τ )
can be giving rise to

Dlk = −〈�l (t )|Ĥ (t )|�k (t )〉
= −i〈�l (t )|Ĥ (t )eiμa (t )|ψk (t )〉
= −ieiμa (t )〈�l (t )|Ĥ (t )|ψk[ξb(t )]〉
= −eiμa (t )〈�l (t )|i|ψ̇k[ξb(t )]〉. (B2)

So, it can be concluded that the dynamical part is partially off-
set by the geometric part Glk , i.e., Dlk + Gξ

lk = 0. A new state
vector can be defined as |�̃(μa, ξb)〉 = ei

∫
fa (t )dt |ψa(μa, ξb)〉,

where |ψa(μa, ξb)〉 = eiμa |ψa(ξb)〉 satisfies the Schrödinger

equation and fa(t ) = 〈ψa(μa, ξb)|Ĥ |ψa(μa, ξb)〉 is used to
counteract the dynamical phase [87]. Then we find

〈�̃a(μa, ξb)|id/dt |�̃a(μa, ξb)〉
= −〈ψa(μa, ξb)|Ĥ |ψa(μa, ξb)〉

+〈ψa(μa, ξb)|id/dt |ψa(μa, ξb)〉
= − fa(t ) + 〈ψa(μa, ξb)|Ĥ |ψa(μa, ξb)〉
= 0. (B3)

The expression dependent on μa is given by

i〈�̃a(μa, ξb)|∂/∂ξb|�̃(μa, ξb)〉dξb/dt + μ̇a = 0. (B4)

Finally, we obtain

μa = −i
∮

〈ψa(ξb)|d/dξb|ψa(ξb)〉dξb. (B5)

Thus, the geometric phase μa is independent of the
Hamiltonian and only depends on the Hilbert space struc-
ture. In addition, the diagonal gate operator Û (τ ) =∑

a eiμa (τ )|�a(0)〉〈�a(0)| satisfies the gauge invariance that
verifies the geometric property of holonomic gates.

APPENDIX C: ANALYTIC SOLUTION OF QBE

According to the authors of Ref. [51], we first provide the
time functional required to transition from one state to another
in quantum space, to find a suitable state and Hamiltonian to
optimize it. The time functional is given as follows:

S[ψ, Ĥ , φ, λ] =
∫ √〈∂tψ |(I − P)|∂tψ〉

�E︸ ︷︷ ︸
(I)

+ (−i〈φ|∂tψ〉 + 〈φ|Ĥ |ψ〉︸ ︷︷ ︸
(II)

− i〈ψ |Ĥ |φ〉 + 〈ψ |Ĥ |φ〉)︸ ︷︷ ︸
(III)

+ λ1[Tr( ˆ̃H )/2 − ω2] +
m∑

j=2

λ j f j (Ĥ )dt

︸ ︷︷ ︸
(IV)

,

(C1)

where φ and λ are Lagrange multipliers, P = |ψ〉〈ψ |, ∂t =
d/dt , I is the unit operator, and �E =

√
〈Ĥ2〉 − 〈Ĥ〉2

is de-
fined as variance, ω is a constant which can be interpreted
as the energy uncertainty associated with the transition. It
is worth noting that Ĥ here refers to Ĥeff in the main text.
Necessarily, we explain the meanings of the four terms, which
together form the constraints of the functional.√〈∂tψ |(I − P)|∂tψ〉 in (I) represents the quantity ds in a
quantum mechanical term and it is the quantum line element
on the space in which quantum states live, which can be
measured by the Fubini-Study metric [88,89].

(II) and (III) represent the constraint imposed on a quan-
tum state, that is, the Schrödinger equation always needs to be
satisfied. Comprehensively, we consider both the contribution
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of Schrödinger equation and its Hermitian conjugate to the
action.

The first term in (IV) represents that we take the con-
straint that the energy uncertainty �E is bounded by using
Lagrangian multipliers and it can be limited by selecting the
appropriate Hamiltonian Ĥ . The second term denotes some
specific experimental conditions that may exist that limit the
Hamiltonian operators acting on quantum states.

In line with Ref. [51], we perform the variation of all
variables in Eq. (C1) and obtain

0 = ( ˙̂F + i[Ĥ, F̂ ])|ψ〉, (C2)

where the operator F̂ involves the constraint functions f j (H )
and is given by

F̂ =
M∑

j=1

λ j∂H f j (Ĥ ). (C3)

Particularly, Eq. (C2) indicates that F̂ |ψ〉 satisfies the
Schrödinger equation, which leads to

˙̂F = −i[Ĥ, F̂ ]. (C4)

According to the solution of Ref. [90], and consider
the initial state |ψ (0)〉 = |rb〉 = (1

0), ˆ̃H (0) can be

expressed as ( 0 ω(cos φ − i sin φ)
ω(cos φ + i sin φ) 0 ). Thus, Ĥ (t ) =

ˆ̃H (t ) = ei(�σ̂z )t ˆ̃H (0)e−i(�σ̂z )t = ( 0 ωe−i(φ0−2�t )

ωei(φ0−2�t ) 0 ) =
ω cos φ1(t )σ̂x + ω sin φ1(t )σ̂y, where φ1(t ) = −2�t + φ0,
in which � = λ2/λ1, and σ̂x, σ̂y are Pauli operators under
the basis {|rb〉, |uν〉}. Based on the target evolution operator
ÛF = R(ẑ, θ ′), θ ′ ∈ (0, 2π ), i.e., Eq. (8) in the main text, we
can derive

τ = 2
√

π2 − (π − γ )2

�eff
, (C5)

φ1(t ) = 2(γ − π )/τ. (C6)

This result is consistent with the result in Ref. [56] when δ =
0, θ ′ = −2γ , � = (−2π + θ )/2τ .

APPENDIX D: SCHEME BASED ON SHORTCUTS
TO ADIABATICITY

The shortcuts to adiabaticity (STA) technique has been
developed rapidly [91–94], which also has made it a popu-
larly optimized method. To demonstrate the superiority of our
scheme, we provide a comparison between the STA based
on Lewis-Riesenfeld (LR) invariant method [49,67,95,96]
and our proposed TOC scheme as well as conventional
NHQC here. According to Eq. (6) satisfing the Schrödinger
equation i∂t |ψk (t )〉 = Ĥeff |ψk (t )〉, we inversely engineer the
driving Hamiltonian [97]. |ψk (t )〉 in the subspace {|rb〉, |uv〉}
could be parameterized as

|ψk (t )〉 = e−iχ (t )/2

(
cos �(t )

2 e−iβ(t )/2

sin �(t )
2 eiβ(t )/2

)
, (D1)

in which �(t ), β(t ) are two time-dependent angles and χ (t ) is
a parameterized phase. To make the initial state of the system
cyclically evolved along the |ψk (t )〉 under the driving of the
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0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

1
(b)

FIG. 10. The Rabi frequency �b (solid red line) and φ1 (black
dashed line) versus t/τ of STA for the (a) C-T gate and (b) C-

√
H

gate, respectively, in which �max = 2π × 0.4 MHz and τ = 5.6 µs.

Ĥeff , we can choose a suitable set of parameters β(t ) and �(t )
inversely to derive �b(t ) and φ1(t ) following as

φ1(t ) = arctan[�̇(t ) cot �/β̇(t )] − β(t ),

�b(t ) = −�̇(t )/ sin[β(t ) + φ1(t )].
(D2)

Specifically, we use the shape of �b(t ) in Eq. (D2)
shown in Fig. 10 with �max = �eff = 2π × 0.4 MHz. To
achieve a cyclic evolution, a simple choice is setting �(t ) =
π sin2(πt/τ ) to satisfy the boundary conditions β(0) =
β(τ ) = 0, where τ is the total evolution time and τ = 5.6 µs
for both C-T gate and C-

√
H gate. In addition, to satisfy the

condition
∫ τ

0 〈ψk (t )|Ĥeff |ψk (t )〉dt = 0, we set

χ (t ) = [2�(t ) − sin(2�(t ))]/4, t ∈ [0, τ ], (D3)

β(t ) =
{ − ∫

χ̇ (t ) cos �(t )dt, t ∈ [0, τ/2],
− ∫

χ̇ (t ) cos �(t )dt − γ , t ∈ (τ/2, τ ]. (D4)

From the above, we can obtain the same evolution operator
as Eq. (9). The evolution paths of C-T and C-

√
H gates

are shown in Fig. 11. According to the evolution paths of
STA scheme, we can find that the gate time of STA is not
short.

FIG. 11. Geometric illustration of the STA gate on the Bloch
sphere, where the state |rb〉 undergoes a cyclic evolution following
the red path. Evolution path of C-T gate in (a) and C-

√
H gate in (b).
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Controlling quantum many-body dynamics in driven Rydberg
atom arrays, Science 371, 1355 (2021).

[36] M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D. Jaksch,
J. I. Cirac, and P. Zoller, Dipole blockade and quantum infor-
mation processing in mesoscopic atomic ensembles, Phys. Rev.
Lett. 87, 037901 (2001).

022613-9

https://doi.org/10.1016/S0375-9601(99)00803-8
https://doi.org/10.1103/PhysRevLett.58.1593
https://doi.org/10.1103/PhysRevLett.52.2111
https://doi.org/10.1103/PhysRevApplied.18.044042
https://doi.org/10.1103/PhysRevA.97.053803
https://doi.org/10.1103/PhysRevA.101.043421
https://doi.org/10.1016/0375-9601(88)91010-9
https://doi.org/10.1088/1367-2630/14/10/103035
https://doi.org/10.1103/PhysRevLett.109.170501
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1103/PhysRevResearch.5.013059
https://doi.org/10.1038/s41467-018-05664-w
https://doi.org/10.1038/ncomms5870
https://doi.org/10.1038/nphoton.2017.40
https://doi.org/10.1103/PhysRevLett.119.140503
https://doi.org/10.1364/OL.43.002380
https://doi.org/10.1103/PhysRevApplied.14.054062
https://doi.org/10.1103/PhysRevLett.110.190501
https://doi.org/10.1103/PhysRevApplied.12.024024
https://doi.org/10.1007/s11433-017-9058-7
https://doi.org/10.1088/1402-4896/aab084
https://doi.org/10.1103/PhysRevApplied.11.014017
https://doi.org/10.1038/s41467-017-01156-5
https://doi.org/10.1103/RevModPhys.82.2313
https://doi.org/10.1063/PT.3.3626
https://doi.org/10.1088/1361-6455/ab52ef
https://doi.org/10.1103/PhysRevA.101.062309
https://doi.org/10.1103/PhysRevA.103.022424
https://doi.org/10.1103/PhysRevLett.124.070503
https://doi.org/10.1038/s41586-023-06481-y
https://doi.org/10.1007/s00340-013-5709-6
https://doi.org/10.1364/JOSAB.27.00A208
https://doi.org/10.1103/PhysRevA.101.012347
https://doi.org/10.1126/science.abg2530
https://doi.org/10.1103/PhysRevLett.87.037901


SONG, WEI, XU, YAN, FENG, SU, AND CHEN PHYSICAL REVIEW A 109, 022613 (2024)

[37] D. Møller, L. B. Madsen, and K. Mølmer, Quantum gates and
multiparticle entanglement by Rydberg excitation blockade and
adiabatic passage, Phys. Rev. Lett. 100, 170504 (2008).

[38] P. Scholl, A. L. Shaw, R. B.-S. Tsai, R. Finkelstein, J. Choi,
and M. Endres, Erasure conversion in a high-fidelity Rydberg
quantum simulator, Nature (London) 622, 273 (2023).

[39] N. Lorenz, L. Festa, L.-M. Steinert, and C. Gross, Raman side-
band cooling in optical tweezer arrays for Rydberg dressing,
SciPost Phys. 10, 052 (2021).

[40] E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz,
T. G. Walker, and M. Saffman, Observation of Rydberg block-
ade between two atoms, Nat. Phys. 5, 110 (2009).

[41] L. Béguin, A. Vernier, R. Chicireanu, T. Lahaye, and A.
Browaeys, Direct measurement of the van der Waals interaction
between two Rydberg atoms, Phys. Rev. Lett. 110, 263201
(2013).

[42] D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D.
Lukin, Fast quantum gates for neutral atoms, Phys. Rev. Lett.
85, 2208 (2000).

[43] D. Schrader, I. Dotsenko, M. Khudaverdyan, Y.
Miroshnychenko, A. Rauschenbeutel, and D. Meschede,
Neutral atom quantum register, Phys. Rev. Lett. 93, 150501
(2004).

[44] S. Ma, G. Liu, P. Peng, B. Zhang, S. Jandura, J. Claes, A. P.
Burgers, G. Pupillo, S. Puri, and J. D. Thompson, High-fidelity
gates and mid-circuit erasure conversion in an atomic qubit,
Nature (London) 622, 279 (2023).

[45] Y. Liang, P. Shen, T. Chen, and Z.-Y. Xue, Composite short-path
nonadiabatic holonomic quantum gates, Phys. Rev. Appl. 17,
034015 (2022).

[46] F.-Q. Guo, J.-L. Wu, X.-Y. Zhu, Z. Jin, Y. Zeng, S. Zhang,
L.-L. Yan, M. Feng, and S.-L. Su, Complete and nondestructive
distinguishment of many-body Rydberg entanglement via ro-
bust geometric quantum operations, Phys. Rev. A 102, 062410
(2020).

[47] C.-Y. Guo, L.-L. Yan, S. Zhang, S.-L. Su, and W. Li, Optimized
geometric quantum computation with a mesoscopic ensemble
of Rydberg atoms, Phys. Rev. A 102, 042607 (2020).

[48] S.-B. Zheng, C.-P. Yang, and F. Nori, Comparison of the sen-
sitivity to systematic errors between nonadiabatic non-abelian
geometric gates and their dynamical counterparts, Phys. Rev. A
93, 032313 (2016).

[49] Y.-H. Kang, Z.-C. Shi, B.-H. Huang, J. Song, and Y. Xia, Flex-
ible scheme for the implementation of nonadiabatic geometric
quantum computation, Phys. Rev. A 101, 032322 (2020).

[50] Y.-H. Chen, W. Qin, R. Stassi, X. Wang, and F. Nori, Fast
binomial-code holonomic quantum computation with ultra-
strong light-matter coupling, Phys. Rev. Res. 3, 033275 (2021).

[51] A. Carlini, A. Hosoya, T. Koike, and Y. Okudaira, Time-optimal
quantum evolution, Phys. Rev. Lett. 96, 060503 (2006).

[52] A. Carlini, A. Hosoya, T. Koike, and Y. Okudaira, Time-optimal
unitary operations, Phys. Rev. A 75, 042308 (2007).

[53] B.-J. Liu, Z.-Y. Xue, and M.-H. Yung, Brachistochrone non-
adiabatic holonomic quantum control, arXiv:2001.05182.

[54] A. Carlini, A. Hosoya, T. Koike, and Y. Okudaira, Time optimal
quantum evolution of mixed states, J. Phys. A: Math. Theor. 41,
045303 (2008).

[55] A. Carlini and T. Koike, Time-optimal transfer of coherence,
Phys. Rev. A 86, 054302 (2012).

[56] J. Geng, Y. Wu, X. Wang, K. Xu, F. Shi, Y. Xie, X. Rong, and J.
Du, Experimental time-optimal universal control of spin qubits
in solids, Phys. Rev. Lett. 117, 170501 (2016).

[57] K.-Y. Liao, X.-H. Liu, Z. Li, and Y.-X. Du, Geometric Rydberg
quantum gate with shortcuts to adiabaticity, Opt. Lett. 44, 4801
(2019).

[58] S.-L. Su, L.-N. Sun, B.-J. Liu, L.-L. Yan, M.-H. Yung,
W. Li, and M. Feng, Rabi- and blockade-error-resilient all-
geometric Rydberg quantum gates, Phys. Rev. Appl. 19, 044007
(2023).

[59] J.-F. Wei, F.-Q. Guo, D.-Y. Wang, Y. Jia, L.-L. Yan, M. Feng,
and S.-L. Su, Fast multiqubit Rydberg geometric fan-out gates
with optimal control technology, Phys. Rev. A 105, 042404
(2022).

[60] E. Sjöqvist, Nonadiabatic holonomic single-qubit gates in off-
resonant λ systems, Phys. Lett. A 380, 65 (2016).

[61] Y. Xu, W. Cai, Y. Ma, X. Mu, L. Hu, T. Chen, H. Wang, Y. P.
Song, Z.-Y. Xue, Z.-qi Yin, and L. Sun, Single-loop realiza-
tion of arbitrary nonadiabatic holonomic single-qubit quantum
gates in a superconducting circuit, Phys. Rev. Lett. 121, 110501
(2018).

[62] E. Herterich and E. Sjöqvist, Single-loop multiple-pulse nona-
diabatic holonomic quantum gates, Phys. Rev. A 94, 052310
(2016).

[63] P. Z. Zhao, G. F. Xu, Q. M. Ding, E. Sjöqvist, and D. M.
Tong, Single-shot realization of nonadiabatic holonomic quan-
tum gates in decoherence-free subspaces, Phys. Rev. A 95,
062310 (2017).

[64] G. T. Genov, D. Schraft, N. V. Vitanov, and T. Halfmann,
Arbitrarily accurate pulse sequences for robust dynamical de-
coupling, Phys. Rev. Lett. 118, 133202 (2017).

[65] S. Ravets, H. Labuhn, D. Barredo, L. Béguin, T. Lahaye, and A.
Browaeys, Coherent dipole–dipole coupling between two single
Rydberg atoms at an electrically-tuned förster resonance, Nat.
Phys. 10, 914 (2014).

[66] S.-L. Su, E. Liang, S. Zhang, J.-J. Wen, L.-L. Sun, Z. Jin, and
A.-D. Zhu, One-step implementation of the Rydberg-Rydberg-
interaction gate, Phys. Rev. A 93, 012306 (2016).

[67] H. R. Lewis, Jr. and W. B. Riesenfeld, An exact quantum theory
of the time-dependent harmonic oscillator and of a charged par-
ticle in a time-dependent electromagnetic field, J. Math. Phys.
10, 1458 (1969).

[68] I. I. Beterov and M. Saffman, Rydberg blockade, förster reso-
nances, and quantum state measurements with different atomic
species, Phys. Rev. A 92, 042710 (2015).
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