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Experimental realization of high-dimensional quantum gates with ultrahigh fidelity and efficiency
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Qudit, a high-dimensional quantum system, can provide a larger Hilbert space, and it has been shown that
the larger Hilbert space has remarkable advantages over the smaller one in quantum information processing.
However, it is a great challenge to realize the high-fidelity quantum gates with qudits. Here we theoretically
propose and experimentally demonstrate the four-dimensional quantum gates (including the generalized Pauli
X4 gate, Pauli Z4 gate, and all of their integer powers) with optical qudits based on the polarization-spatial degree
of freedom of the single photon. Furthermore, we also realize the polarization-controlled eight-dimensional
controlled-X4 gate and all of its integer powers. The experimental results achieve both the ultrahigh average
gate fidelity 99.73% and efficiency 99.47%, which are above the error threshold for fault-tolerant quantum
computation. Our work paves the way for the large-scale high-dimensional fault-tolerant quantum computation
with a polynomial resource cost.
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I. INTRODUCTION

Quantum logic gates are essential building blocks in many
quantum information processing tasks [1]. Some quantum
gates, e.g., two-qubit controlled-NOT (CNOT) gates and some
single-qubit gates, enable the construction of arbitrary quan-
tum operations [2], which bridge a benchmark for routing
to the large-scale universal quantum computation. In recent
years, the realization of quantum gates in many physical plat-
forms has attracted widespread attention and some interesting
proposals have been theoretically developed and experimen-
tally demonstrated [3–9].

In addition to the qubit, a qudit with d-ary (d > 2) digits
has emerged as a richer resource in high-dimensional quantum
systems and it has been extended to high-dimensional logic to
encode and process quantum information [10,11]. Due to the
larger size of the Hilbert space, quantum technologies based
on qudits have shown their remarkable advantages over the
ones in the smaller space. For example, the larger Hilbert
spaces can be used to simplify quantum gates [12–15], im-
prove the efficiency of fault-tolerant quantum computation
[16,17], increase channel capacity [18–21], improve commu-
nication security [22–24], and so on. In addition, they can
also exceed the limitations imposed by the smaller spaces in
stronger violation of Bell-type inequality [25–27] and higher
noise resilience [28–30]. Up to now, qudit-based quantum
information processing has been reported and experimentally
implemented in various physical systems [31–39]. Though
quantum technologies with qudits have made significant
progress, a lot of efforts still are required for improving the
quantum gates fidelity [31,32].
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The photon is a natural candidate for encoding the qu-
dit due to its various degrees of freedom (DOFs). Recently,
many hybrid quantum systems with multiple DOFs have been
used in quantum information processing [40–45]. There are
many experiments that have also been demonstrated in high-
dimensional quantum gates for the qudits, which are formed
by the orbital angular momentum (OAM) [46–49], the time-
frequency DOF [50], or the spatial modes of photons [51,52].
In 2017, Babazadeh et al. the authors experimentally demon-
strated a four-dimensional generalized Pauli X4 gate and all of
its integer powers with a conversion efficiency of 87.3% and
a fidelity of 93.4% using the OAM mode of a single photon
[46]. Later, Wang et al. improved the conversion efficiency to
93% [49]. In 2022, Chi et al. experimentally realized the Pauli
X4 gate with the fidelity of 98.8% and a controlled-X4 gate
with the fidelity of 95.2% on a programmable silicon-photonic
quantum processor [52]. In all of the above works [46–49,52],
the experimental realization of the high-dimensional quantum
gates depends on either the multiple Sagnac-type interferom-
eters or multiple Mach-Zehnder-type interferometers, which
are both faced with the great challenges of phase instability.
Therefore, the fidelity and efficiency of the high-dimensional
quantum gates for the optical qudits are significantly de-
graded, compared to their qubit counterparts [53–55].

In this paper, we experimentally demonstrate the four-
dimensional quantum gates on the single photons carrying
both the polarization and the spatial mode DOFs. The gates
include the four-dimensional Pauli X4 gate, Pauli Z4 gate, and
all of their integer powers, which can efficiently construct any
quantum operations in the four-dimensional state space [46].
The Pauli X4 gate, Pauli Z4 gate, and all of their integer powers
are realized using the polarization-spatial DOF of the single
photons. We also realize the polarization-controlled eight-
dimensional controlled-X4 gate and all of its integer powers.
Our experiments simplify the previous works [46–49,52]
and improve the phase stability. The experimental results

2469-9926/2024/109(2)/022612(9) 022612-1 ©2024 American Physical Society

https://orcid.org/0000-0001-9804-2716
https://orcid.org/0009-0004-7959-5429
https://orcid.org/0009-0002-7936-7050
https://orcid.org/0000-0002-7755-7072
https://orcid.org/0000-0001-6260-3083
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.109.022612&domain=pdf&date_stamp=2024-02-20
https://doi.org/10.1103/PhysRevA.109.022612


MENG, LIU, SONG, WANG, ZHANG, AND YIN PHYSICAL REVIEW A 109, 022612 (2024)

FIG. 1. Schematic of the experimental setup for realization of the generalized four-dimensional Pauli X4 gate, Pauli Z4 gate, and all of their
integer powers. (a) The preparation of a heralded single-photon source. The experimental setups for the realization of (b) X4 gate, (c) X 2

4 gate,
and (d) X †

4 gate, where the optical elements before the mirrors present the initial state preparation and the optical elements after the mirrors
describe the gate operations. (e)–(g) The experimental setups for the realization of Pauli Z4, Z2

4 , Z†
4 gates. (e) The initial state preparation of

the Z4, Z2
4 , Z†

4 gates. (f)–(g) The implementation of the Pauli Z4, Z2
4 , Z†

4 gates and the measurement of the phase differences in spatial modes a
and b, c and d , b and c. The effective coincidence window (including the jitter of the detector) is about 2 ns.

show both ultrahigh (∼99.5%) gate efficiency and fidelity,
which are above error threshold for fault-tolerant quantum
computation [56,57].

II. HIGH-DIMENSIONAL QUANTUM GATES

A qudit quantum gate is described in a d-dimensional
Hilbert space Hd that is spanned by a set of orthogonal bases
{|0〉, |1〉, . . . , |d − 1〉}. The most important d-dimensional
quantum gates are the generalized single-qudit Pauli Xd gate,
Pauli Zd gate, two-qudit controlled-Xd gate, and all their
integer powers. The transformations of the d-dimensional
single-qudit n (an integer number) powers of Pauli Xd (X n

d )
gate and n powers of Zd (Zn

d ) gate on the d-dimensional
quantum state are expressed by [58]

X n
d |l〉 = |l ⊕ n〉modd , Zn

d |l〉 = ωn·l |l〉. (1)

Here l ∈ {0, 1, . . . , d − 1}, |l ⊕ n〉modd=(l + n) modulo d ,
and ω=exp(2π i/d). The X n

d gate is a cyclic operation in which
each quantum state is transformed to its nth nearest state in a
clockwise direction. The Zn

d gate is a phase operation in which
each quantum state is introduced by a state-dependent phase.
The generalized n powers of Pauli Yd (Y n

d ) gate can be given
by Y n

d = X n
d Zn

d . When n = 1 and d = 2, they would simplify
to the qubit Pauli X gate, Pauli Y gate, and Pauli Z gate.
In addition, an important two-qudit gate is the controlled-X n

d
(Cd X n

d ) gate in a d2-dimensional Hilbert space (Hc
d ⊗ Ht

d ),
which is formulated as [11]

Cd X n
d (|k〉|l〉) = |k〉|k ⊕ l ⊕ (n − 1)〉modd . (2)

Here Hc
d and Ht

d denote the Hilbert spaces of the controlled
qudit and the target qudit, respectively. The Cd X n

d gate realizes
a cyclic operation on the target qudit |l〉 by manipulating the
value of the controlled qudit |k〉 and leaves it unchanged on the
controlled qudit. |k〉 and |l〉 are the d-dimensional quantum
states in the Hilbert spaces Hc

d and Ht
d , respectively. In the

two-qubit version, the Cd X n
d gate becomes the well-known

CNOT gate.

III. EXPERIMENTAL SETUP

Quantum gates X4, X 2
4 , X †

4 (X †
4 = X 3

4 ) and Z4, Z2
4 , Z†

4

(Z†
4 = Z3

4 ) are sufficient to construct arbitrary quantum op-
erations in the four-dimensional state space [46]. The
experimental setup for the realization of these elementary
gates is shown in Fig. 1, where the gate qudit is encoded
on the polarization-spatial DOF of the single photons, i.e.,
|0〉 ↔ |Ha〉, |1〉 ↔ |Hb〉, |2〉 ↔ |Hc〉, and |3〉 ↔ |Hd〉. The
horizontally H-polarized DOF of photons controls the spatial
mode DOF (a, b, c, d) of photons to route the photons into
the corresponding logic gates by using some linear optical
elements. Note that the polarization state of the biphotons
can also be used to encode the qudit and process quantum
information with high-dimensional Hilbert space [59–62].

Figure 1(a) illustrates a heralded single-photon source in
which a continuous-wave diode laser (CW laser) is employed
to generate a pump laser beam with a central wavelength of
405 nm and an output power of 20 mW. This pump laser
is utilized for the production of photon pairs at a wave-
length of 810 nm through type-II spontaneous parametric
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down-conversion in a periodically poled potassium titanyl
phosphate (PPKTP) crystal. A half-wave plate (HWP0) and a
polarization beam splitter (PBS1) are used to regulate optical
power, and two lenses (L1 and L2) placed before and after the
PPKTP crystal are used to focus and collimate beams. Then,
the photon pairs are filtered at a long pass filter (LP) to elimi-
nate any residual pumped laser light and they finally are split
at PBS2. During this process, one photon from each pair is
detected at the single-photon avalanche photodiode (SPAD0)
to serve as a herald idler photon, and the other photon from
pairs as signal photon H is injected into a four-dimensional
Pauli X4 gate in Fig. 1(b).

As shown in Fig. 1(b), the |H〉 photon first goes through
a HWP in spatial mode 1 to evolve the H-polarized photon
into the superposition of the horizontally H-polarized photon
and vertically V -polarized photon. Then a PBS reflects the
V -polarized photon into the spatial mode 2 and transmits the
H-polarized photon into the spatial mode 3. Subsequently, the
photons in spatial modes 2 and 3 go through HWPs, PBSs,
and HWPs respectively, in which the PBSs divide the photons
into the spatial modes a, b, c, d . Because the parameters of
the HWPs can be adjusted arbitrarily, the four-dimensional
Hilbert space is spanned by the trajectories of photons in
a, b, c, and d , which generates a general superposition of
polarization-spatial states (see Appendix A)

α|Ha〉 + β|Hb〉 + γ |Hc〉 + δ|Hd〉. (3)

Here the complex coefficients α, β, γ , and δ satisfy the nor-
malization condition |α|2 + |β|2 + |γ |2 + |δ|2= 1. After the
initial state is prepared, the photon is routed to a X4 gate that
is composed of three PBSs, which evolves the initial state in
Eq. (3) as

α|Hb〉 + β|Hc〉 + γ |Hd〉 + δ|Ha〉. (4)

From Eq. (3) to Eq. (4), one can see that the X4 gate is
accomplished. In this way, the X 2

4 gate and X †
4 gate also can

be realized by routing the photon to different spatial modes
using the PBSs, and the corresponding experimental setups
are presented in Figs. 1(c) and 1(d), respectively.

Our four-dimensional quantum gates exhibit advantages
over quantum walk. In our experiment, the X gate can transit
from the spatial mode d to the spatial mode a using merely
three PBSs. The quantum walk scheme requires three steps to
complete, which is an operation that requires 15 PBSs and 30
HWPs. This is primarily due to the fact that the number of
optical elements required for quantum walk increases polyno-
mially with the number of steps. In the quantum walk scheme,
a d-dimensional Pauli Xd gate and C2Xd gate can be real-
ized by using (1.5d2 − 2.5d + 1) PBSs and (3d2 − 5d + 2)
HWPs [63–65].

We also experimentally realize the Pauli Z4, Z2
4 , and Z†

4
gates shown in Figs. 1(e) to 1(g). Specifically, Fig. 1(e)
presents the initial state preparation using the beam displacers
(BDs) and HWPs, which can modeled as a general state in
Eq. (3). In this case, it is equivalent to the method of using
PBSs and HWPs for the initial state preparation of the X4

gate. Figures 1(f) to 1(g) show the gate operations and the
relative phase measurements, where a combination of two
quarter-wave plates (QWPs) and one HWP is usd to introduce
the state-dependent phase operations in corresponding spatial

TABLE I. The in-out efficiency P (i, j) for the X4, X 2
4 , and X †

4

gates in our experimental setups.

Input mode |Ha〉 |Hb〉 |Hc〉 |Hd〉
X4 gate 99.58% 99.13% 99.60% 99.31%
X 2

4 gate 99.19% 99.84% 99.96% 99.46%
X †

4 gate 99.33% 99.81% 99.77% 99.11%

modes, and finally measuring the relative phase between two
pairwise locations by the interference of the photons from the
spatial modes a and b, c and d , b and c, respectively. Note that
we utilize BD as a substitute for PBS in the realization of Z
gates, which can improve the phase stability and the fidelity
of Z gates. Due to the interchangeability of BD and PBS in
linear optical systems, it becomes feasible to implement all
U(4) unitaries using PBS within our established framework.

In experiments, the output signal photons after the gate
operations are detected by a measurement device consisting
of four SPADs (SPAD1, SPAD2, SPAD3, SPAD4) and a
time-correlated single photon counting (TCSPC). This allows
the photon number statistics in each output spatial modes to
count the probabilities of all four elementary output bases for
the Pauli X4, X 2

4 , X †
4 gates, and it also ascertains the relative

phases between pairwise output spatial modes for the Pauli
Z4, Z2

4 , Z†
4 gates. This measurement process is sustained over a

duration of 10 seconds by registering the coincidence between
the SPAD1, SPAD2, SPAD3, SPAD4 and triggering SPAD0,
respectively. For each measurement, we record the detection
of approximately 9000 heralded single photons by registering
the clicks over a duration of 1 second.

IV. EXPERIMENTAL RESULTS

The conversion efficiency and gates fidelity can be used to
evaluate the performance of the quantum gates. The conver-
sion efficiency of the gate is defined as P (i, j) = ni j/

∑
k nik .

Here ni j denotes the output photon number in the jth spatial
mode when the input photon is in the ith spatial mode, and∑

k nik denotes the summation over the photon number in all
possible output spatial modes when the input photon is in the
ith spatial mode. We reconstruct the truth tables for the X4, X 2

4 ,
and X †

4 gates plotted in Fig. 2, which describe the population
of all computational basis output states to each of the com-
putational basis input states. We calculate the efficiencies of
the X4, X 2

4 , and X †
4 gates and list them in Table I. The average

efficiencies of the X4, X 2
4 , and X †

4 gates are 99.41%, 99.61%,
99.50%, respectively.

To check the transformations are quantum gates instead of
classical gates, we need to input the four-dimensional state
in a quantum superposition way. In experiments, we send the
photons prepared in an equal superposition state into the gate
operations and then measure the output state. We calculate
the gate fidelity F (ρe, ρt ) = Tr(

√√
ρeρt

√
ρe) between the

experimental output state ρe and the theoretical output state
ρt = UρiU † (ρi is input sate and U is the transformation of
the gates) [1]. We find that the fidelities for X4, X 2

4 , and X †
4

gates are FX4 = 99.70%, FX 2
4

= 99.80%, and FX †
4

= 99.75%,
which significantly go beyond the maximum fidelity for these
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FIG. 2. Truth tables for (a) X4 gate, (b) X 2
4 gate, and (c) X †

4 gate. After preparing a qudit in one of the four input computational basis from
|Ha〉 to |Hd〉, the probabilities of all output basis states are measured in tens. The average conversion efficiencies of truth tables for X4 gate,
X 2

4 gate and X †
4 gate are 0.9941, 0.9961, and 0.9950, respectively.

classical gates bounded by Fcl = 49.82% in our experiments
[46]. These results suggest the gates run with ultrahigh quality
in a coherent way and it can also obtain the similar outcome
for the other possible coherent superpositions.

We experimentally demonstrate the state-dependent phase
gates and illustrate the quality of these gates. Figure 3 shows
the experimental density matrix for the Z4 gate in an input
equal superposition state, where the real and imaginary parts
are reconstructed in Figs. 3(a) and 3(b), respectively. The
density matrices for the Z2

4 gate and Z†
4 gate can be found

in Appendix B. We obtain the fidelity of the Z4, Z2
4 , and Z†

4
gates FZ4 = 99.81%, FZ2

4
= 99.55%, and FZ†

4
= 99.83%. The

experimental results of these quantum logic gates are in good
agreement with the theoretical expectations.

It is a great challenge to realize the two-qudit controlled
gates because the d2-dimensional Hilbert space (Hc

d ⊗ Ht
d )

is involved. We note that our experiments can realize the
controlled-cyclic gates in a 2d-dimensional Hilbert space
(Hc

2 ⊗ Ht
d ) where the controlled qubit is in a two-dimensional

Hilbert space Hc
2 and the target qudit is in a d-dimensional

Hilbert space Hc
d . Specifically, the experimental setup in the

Figs. 1(a) to 1(d) can realize the polarization-controlled eight-
dimensional CX n

4 gates (we denote C2X n
4 as CX n

4 ) and all of
its integer powers by adjusting the angles of the HWPs for
the initial state preparation. The controlled qubit of the CX n

4
gate is encoded on the polarization states and the target qudit
is encoded on the spatial mode states. The CX n

4 gate in an
eight-dimensional hybrid Hilbert space is expressed by

CX n
4 = |V 〉〈V | ⊗ I4 + |H〉〈H | ⊗ X n

4 . (5)

FIG. 3. The reconstructed density matrix ρZ4 for the Z4 gate.
(a), (b) are the real part and the imaginary part of the density matrix
for the Z4 gate, respectively. The fidelity of the Z4 gate is 99.81%.

Here I4 is a four-dimensional identical operation. When the
controlled qubit is a V -polarized photon, the CX n

4 gate pre-
forms an I4 operation and when the controlled qubit is an
H-polarized photon, the CX n

4 gate preforms an X n
4 operation.

We initiate the preparation of a qudit in one of the eight
elementary basis input states from |Va〉, . . ., |V d〉, |Ha〉, . . .,
|Hd〉, and execute a measurement procedure to count the
probabilities of all eight elementary output states. The ex-
perimental truth table of the CX4 gate is presented in Fig. 4
with an average conversion efficiency of 99.25%. The aver-
age efficiencies of the CX 2

4 and CX †
4 gates are 99.56% and

99.47%, and their truth tables can be found in Appendix C.
We also obtain the fidelities for all these gates in an equal
superposition input state, which are given by FCX4 = 99.62%,
FCX 2

4
= 99.78%, and FCX †

4
= 99.73%. The experimental er-

rors mainly stem from the imperfections of the single-photon
source, wave plates, and the photon detectors.

V. CONCLUSION

We investigated the implementations of four-dimensional
generalized Pauli X4 gate, Z4 gate, and all of their integer pow-
ers based on the polarization-spatial DOF of the single photon.
These quantum gates can construct arbitrary four-dimensional
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FIG. 5. Schematic proposals for realizing the four-dimensional Pauli X4 gate, Z4 gate, and all of their integer powers. (a) The initial state
preparation and the realization of the X4 gate. A horizontally polarized photon |H〉 is injected in the spatial mode a′ to prepare a general initial
state by using three spatial variable beam splitters (VBSs). Then the photon is routed to a X4 gate composed of three polarized beam splitters
(PBSs). The PBSs change the spatial mode of the incident photon from (|Ha〉, |Hb〉, |Hc〉, |Hd〉) to (|Hb〉, |Hc〉, |Hd〉, |Ha〉) because each
PBS transmits the H -polarized photon and reflects the vertically V -polarized photon. (b) The realization of the X 2

4 gate where the spatial mode
of the photon is changed from (|Ha〉, |Hb〉, |Hc〉, |Hd〉) to (|Hc〉, |Hd〉, |Ha〉, |Hb〉). (c) The realization of the X †

4 gate where the spatial mode
of the photon is changed from (|Ha〉, |Hb〉, |Hc〉, |Hd〉) to (|Hd〉, |Ha〉, |Hb〉, |Hc〉). (d) The realization of the Z4 gate. (e) The realization of
the Z2

4 gate. (f) The realization of the Z†
4 gate. PSθ denotes a phase shifter with the angle θ , which introduces a mode-dependent phase eiθ in

the corresponding spatial modes.

quantum operations [46]. In addition, we also realized the
polarization-controlled CX n

4 gates. Our experimental setups
greatly simplified the implementations of these gates and the
experimental results showed both the ultrahigh fidelity and
efficiency, which improves significantly the previous works
based on OAM [46–49].

These elementary high-dimensional quantum gates have
important applications in many high-dimensional quantum
information processing tasks, such as the preparation of high-
dimensional entangled states [66], high-dimensional quantum
key distribution [67], high-dimensional quantum teleportation
[68], and quantum information transfer [69]. Our experi-
ments can easily scale up more spatial modes to realize
any higher-dimensional quantum operations. In this way, a
d-dimensional Pauli Xd gate and CXd gate can be realized
by using d − 1 PBSs, and a d-dimensional Pauli Zd gate
can be realized by using d HWPs and 2d QWPs. The work
opens up a way to construct a large-scale qudit-based pho-
tonic chip quantum processor with a polynomial resource cost
[52].
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APPENDIX A: PROPOSALS FOR THE REALIZING
OF THE FOUR-DIMENSIONAL X4 GATE, Z4 GATE,

AND ALL OF THEIR INTEGER POWERS

Figure 5 shows the theoretical proposals for realizing the
four-dimensional Pauli X4 gate, Z4 gate, and all of their integer
powers by encoding the gate qudit on the polarization-spatial
degree of freedom of the single photons, i.e., |0〉 ↔ |Ha〉,
|1〉 ↔ |Hb〉, |2〉 ↔ |Hc〉, and |3〉 ↔ |Hd〉. Here H is the hori-
zontally polarized state of photons and a, b, c, d are the spatial
modes of the photon. As shown in Fig. 5(a), a horizontally
polarized photon |H〉 is injected into the spatial mode a′ to
prepare the initial state. The |Ha′〉 photon first goes through a
variable beam splitter (VBS1) to be divided into two arms b′
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TABLE II. The angles of the wave plates group to achieve the
relative phase in our experimental setups.

Phase eiθ QWP1 HWP1 QWP2

θ = 0 0◦ 0◦ 0◦

θ = π/2 90◦ 0◦ 0◦

θ = π 0◦ 90◦ 0◦

θ = 3π/2 90◦ 90◦ 0◦

and c′, which evolves the photon state as

|Ha′〉 → r1|Hb′〉 + t1|Hc′〉. (A1)

Here the coefficients r1 and t1 are determined by the reflectiv-
ity and the transmittance of the VBS1, respectively, and they
satisfy |r1|2 + |t1|2 = 1. The photons in spatial modes b′ and
modes c′ are transmitted and reflected at VBS2 and VBS3 to
span a four-dimensional Hilbert space in spatial modes a, b, c,
and d . The VBS2 and VBS3 change the state in Eq. (A1) as

r1|Hb′〉 + t1|Hc′〉 → r1t2|Ha〉 + r1r2|Hb〉
+ t1r3|Hc〉 + t1t3|Hd〉. (A2)

Here the coefficients r2, r3, t2, and t3 are determined by the
reflectivity and the transmittance of the VBS2 and VBS3,
respectively, and they satisfy |r2|2 + |t2|2 = |r3|2 + |t3|2 = 1.
Because the reflectivity and the transmittance of the VBS1,
VBS2, and VBS3 can be adjusted arbitrarily [70], we denote
α = r1t2, β = r1r2, γ = t1r3, and δ = t1t3, then Eq. (A2) is
rewritten as

|ϕ1〉 = α|Ha〉 + β|Hb〉 + γ |Hc〉 + δ|Hd〉. (A3)

Therefore, the initial state preparation is completed. In
Figs. 1(b) to 1(d) of the experimental setups in the main
text, we realize the same functionality as VBS by using a
combination of HWP, PBS, and HWP. The HWPs positioned
before the PBS serve to modulate the polarization according
to coefficients r1 and t1. This modulation is mathemati-
cally represented as |H〉 → cos 2θ |H〉 + sin 2θ |V 〉, |V 〉 →
sin 2θ |H〉 − cos 2θ |V 〉, where θ signifies the angle of the
optical axis of the HWP. Given that the PBS reflects the V -
polarized photon and transmits the H-polarized photon, it can
differentiate between the spatial modes of photons based on
the ratio of H and V components. The HWP positioned after
the PBS then transforms the polarization states of different

FIG. 6. The reconstructed density matrices ρZ2
4

and ρZ†
4

for the Z2
4 gate and Z†

4 gate, respectively. (a), (b) are the real part and the imaginary

part of the density matrix for the Z2
4 gate, respectively. (c), (d) are the real part and the imaginary part of the density matrix for the Z†

4 gate,
respectively. The fidelities of the Z2

4 gate and Z†
4 gate are 99.55% and 99.83%, respectively.
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TABLE III. The in-out efficiency P (i, j) for the CX4, CX 2
4 , and CX †

4 gates in our experimental setups.

Input mode |Va〉 |V b〉 |V c〉 |V d〉 |Ha〉 |Hb〉 |Hc〉 |Hd〉
CX4 gate 98.95% 99.10% 99.70% 99.10% 99.19% 99.12% 99.56% 99.30%
CX 2

4 gate 99.03% 99.92% 99.61% 99.49% 99.19% 99.84% 99.96% 99.45%
CX †

4 gate 99.30% 99.88% 99.47% 99.42% 99.32% 99.79% 99.50% 99.09%

spatial modes into the same H polarization, thereby fulfilling
the role of a VBS.

The complex coefficients α, β, γ , and δ are determined by
the reflectivity and the transmittance of the VBSs and satisfy
the normalization condition |α|2 + |β|2 + |γ |2 + |δ|2= 1. Af-
ter the initial state is prepared, the photon is routed to an X4

gate that is composed of three polarized beam splitters (PBS1,
PBS2, and PBS3). Because the PBS transmits H-polarized
photon and reflects vertically V -polarized photon, the PBS1,
PBS2, and PBS3 evolve the initial state as

|ϕ1〉 → α|Hb〉 + β|Hc〉 + γ |Hd〉 + δ|Ha〉 = |ϕX4〉. (A4)

From Eq. (A3) to Eq. (A4), one can see that Fig. 5(a) realizes
a X4 gate. In this way, the X 2

4 gate and X †
4 gate also can

be realized by routing the photon to corresponding spatial
modes using the PBSs, and the corresponding proposals are
presented in Figs. 5(b) and 5(c), respectively.

The proposals for realizing the Z4, Z2
4 , Z†

4 gates are shown
in Figs. 5(d) to 5(f), respectively. To realize these mode-
dependent phase gates, we set some phase shifters (PSθ )
rotated to an angle θ in the spatial modes to introduce a
relative phase eiθ . As shown in Fig. 5(d), three phase shifters
with the angles π

2 , π , and 3π
2 are placed respectively in the

modes b, c, and d to realize the Z4 gate. After the photon goes
through three PSs, the initial state in Eq. (3) is changed as

|ϕ1〉 → α|Hb〉 + iβ|Hc〉 − γ |Hd〉 − iδ|Ha〉 = |ϕZ4〉. (A5)

In this way, the X 2
4 gate and X †

4 gate also can be realized
and they are presented in Figs. 5(e) and 5(f), respectively.
In Figs. 1(f) to 1(g) of the experimental setups in the main

text, we use the sandwich structure of the wave plates group
QWP1-HWP1-QWP2 to realize the PSs. The angles of the
wave plates group required to achieve PS are presented in
Table II.

APPENDIX B: RECONSTRUCTED DENSITY MATRICES
FOR THE Z2

4 GATE AND Z†
4 GATE

To assess the relative phase imparted by the Z2
4 gate and Z†

4
gate, we introduce an initial state |ϕ〉 = 1/2(|Ha〉 + |Hb〉 +
|Hc〉 + |Hd〉). We subsequently perform interferometry mea-
surements on the spatial modes in pairs, such as a and b, c
and d , b and c. The relative phase between two spatial modes
is measured by the probability P = 1/2(1 + cos θ ) obtained
from these measurements. In this way, we measure the exper-
imental coefficients α, β, γ , δ by the interference of photons
in spatial modes a and b, c and d , b and c for a input equal
superposition state and plot the reconstructed density matrices
for the Z2

4 gate and Z†
4 gate in Fig. 6. The fidelities of the Z2

4

gate and Z†
4 gate are 99.55% and 99.83%, respectively.

APPENDIX C: PERFORMANCE OF THE CX4 GATE,
CX 2

4 GATE, AND CX †
4 GATE

We check the conversion efficiencies of the CX4 gate, CX 2
4

gate, and CX †
4 gate by preparing a qudit in one of the eight

input computational basis |Va〉, . . ., |V d〉, |Ha〉, . . ., |Hd〉.
The probabilities of all output basis states are measured in
tens. The results of the conversion efficiencies are presented
in Table III and the truth tables of them are plotted in Fig. 7.
The average efficiencies of the CX 2

4 gate and CX †
4 gate are

99.78% and 99.73%, respectively.

FIG. 7. Truth tables for the (a) CX 2
4 gate and (b) CX †

4 gate. The average efficiencies of the CX 2
4 gate and CX †

4 gate are 99.78% and 99.73%,
respectively.
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