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The classical homotopy optimization approach has the potential to deal with highly nonlinear landscapes,
such as the energy landscape of quantum approximate optimization algorithm (QAOA) problems. Following
this motivation, we introduce Hamiltonian-oriented homotopy QAOA (HOHo0-QAOA), a heuristic method for
combinatorial optimization using QAOA, based on classical homotopy optimization. The method consists of a
homotopy map that produces an optimization problem for each value of the interpolating parameter. Therefore,
HOHo-QAOA decomposes the optimization of QAOA into several loops, each using a mixture of the mixer
and the objective Hamiltonian for cost function evaluation. Furthermore, we conclude that the HOHo-QAOA
improves the search for low-energy states in the nonlinear energy landscape and outperforms other variants of

QAOA.
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I. INTRODUCTION

The speedup of practical applications is yet to be real-
ized for quantum devices as they operate on a small number
of qubits and the devices are noise prone. The limitations
of the available hardware initiated the noisy intermediate
scale quantum (NISQ) era [1]. The NISQ algorithms [2]
can operate on a limited amount of resources, in particular,
by distributing tasks between quantum and classical devices.
Many of those algorithms are represented by a broad class
of variational quantum algorithms (VQAs) [3]. Their generic
structure consists of two subroutines: a parametric quantum
circuit (PQC) is implemented on quantum hardware that gen-
erates a quantum state and classical hardware calculates the
cost function and optimizes the parameters of PQC. One of
the advantages of VQAs is that they can be easily adapted to
various computational problems as long as the Hamiltonian
can be designed whose ground state corresponds to the solu-
tion of the problem. To mention a few, VQAs have potential
applications in finding the ground state of a molecule [4],
solving linear [5] and nonlinear [6] systems of equations,
quantum state-diagonalization [7], and quantum device cer-
tification [8]. A detailed review can be found in [3].

The quantum approximate optimization algorithm
(QAOA) [9] is a variational quantum algorithm dedicated
to combinatorial optimization problems. The PQC in
QAOA is a trotterized adiabatic evolution, i.e., the
circuit consists of interchangeably applied so-called
mixer and problem Hamiltonians. It has a potential
application in solving problems like graph coloring [10-12],
MaxE3Lin2 [13], Max-K-Vertex Cover [14], or the traveling
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salesman problem [12,15]. To improve the performance
of QAOA, multiple optimization strategies have been
introduced [16-24]. This is because, given the limited
resources of quantum computers, it is essential to effectively
explore the landscape of cost function for PQC. However, the
landscape of the energy function in QAOA is highly nonlinear
and to deal with such complicated landscapes, sophisticated
methods are necessary.

This motivates us to formulate a heuristic optimization
strategy that uses classical homotopy optimization for QAOA.
The homotopy optimization has potential applications in deal-
ing with highly nonlinear functions [25]. The homotopy
method comprises a homotopy map, which for each value
of interpolating parameter « € [0, 1] outputs an optimization
problem. In particular, for @ = 0, the problem is easy to solve,
and for ¢ = 1 the homotopy map returns the problem of inter-
est. During the interpolation process, which changes the value
of « from O to 1, the solution continuously changes and is
expected to be optimal, or close to optimal for the intermediate
problems. If the intermediate optimization succeeds, in the
end, we obtain the optimum of the target problem. One can see
quantum annealing as a particular type of homotopy optimiza-
tion. A homotopy optimization for VQE was already proposed
in [26] and improved in [27,28]. However, its applicability for
QAOA was only briefly mentioned in [29].

The introduced Hamiltonian-oriented homotopy QAOA
(HOHo-QAOA), illustrated in Fig. 1, decomposes the opti-
mization into several loops. The homotopy map smoothens
between the mixer Hamiltonian and the problem Hamiltonian
during the optimization and each loop uses the mixture of
these two Hamiltonians for cost function evaluation. In each
loop, the quantum state is optimized with respect to such inter-
mediate cost functions. This strategy simplifies the search for
good QAOA parameters while keeping the PQC unchanged.
To show this, we investigate the weighted Max-Cut problem
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FIG. 1. Schematic representation of HOHo-QAOA. The algo-
rithm starts with choosing an initial value of parameters (y, )
according to some probability distribution P, and optimizing them
for the initial Hamiltonian H for o = «;,; with the chosen classical
optimization procedure. Then, the optimal parameters for the ansatz
are iteratively used as the initial parameters for the consecutive
optimization routines for H with an increased value of «, i.e., @ =
a + Aa. The procedure stops at H = H,; for ajpi = 1, which is the
objective Hamiltonian. Throughout the article, « is referred to as a
homotopy parameter.

on Barabdasi-Albert graphs. First, we empirically analyze the
impact of the choice of the homotopy parameters: the initial
Qipic value and the step parameter oge, which defines the
difference between two consecutive « values. Although theo-
retically, a choice of ajni and o very close to zero provides
a better approximation to the optimal solution, empirically we
show that one can still get a good approximation to the optimal
solution even if oy and ogep are detached from zero. This
hugely reduces the computational cost of HOHo-QAOA. Fi-
nally, we compare HOHo-QAOA with other commonly used
QAOA optimization strategies [9,22].

The rest of the paper is organized in the following way.
In Sec. II, we provide a brief overview of the adiabatic
quantum computing, variants of QAOA, and the homotopy
method. Throughout Sec. III, we numerically investigate the
efficient settings of the homotopy parameters. Furthermore,
we compare HOHo-QAOA with the other variants of QAOA
considered in the literature. Finally, we conclude the article in
Sec. V.

II. PRELIMINARIES
A. QAOA

The core concept of adiabatic quantum computing (AQC)
lies in the adiabatic theorem. Let us consider H(s) = H(/T),

a time-dependent smoothly varying Hamiltonian for all 7 €
[0,T], i.e., s € [0, 1], where T is the total time of evolu-
tion. Let us denote by |E;(s)) an eigenvector of H(s) with
corresponding eigenvalue E;(s), where we assume Ey(s) <
E|(s) < .... The adiabatic theorem roughly states that a sys-
tem that is initially prepared in |E((0)) of H (t = 0), after time
evolution that is piloted by the Schrodinger equation with the
given Hamiltonian H (s), will approximately keep the state of
the system in the |Ey(1)) att = T, provided that the change in
H (s) is “sufficiently slow.” Traditionally, the sufficiently slow
change is given by the condition [30,31]

dH(s)7?
ot

where A = ming[E;(s) — Eo(s)] is the spectral gap. A class
of independent conditions on 7 was discussed in [32-35].
AQC has the potential to take an initial Hamiltonian, say Hx,
whose ground state is easy to prepare to the ground state of a
computationally hard problem Hamiltonian Hop;. A particular
time-dependent Hamiltonian interpolates between the Hpix
and Hop; as

T > A2 max
5€[0,1]

) (D

H(s) = (1 = 5)Hmix + sHow;, 2

AQC in the form of quantum annealing has been used for a va-
riety of applications, including real-world problems [36—41]
and in quantum chemistry [42]. For a rigorous review of AQC,
check [31,43].

The QAOA uses the first-order Suzuki-Trotter transfor-
mation of exp[—iH(s)] as the variational ansatz to solve
combinatorial optimization problems. The trotterization gives
rise to the operators exp(—iy;Hob;) and exp(—if;Hpix ), where
y;j is the parameter corresponding to the objective Hamilto-
nian and B; corresponds to the mixer Hamiltonian for the
jth step. The mixer Hamiltonian is traditionally expressed as
Hpix = — Y_; X;, where X; is the Pauli X operator acting on the
ith qubit and Hy, is the objective Hamiltonian whose ground
state encodes the optimal solution of the problem. This results
in state

L

7. B) = [ [ exp(—iBiHmiJexp(—iy;Hon)|H)=",  (3)
j=1

where N is the number of qubits, L is the number of layers
that defines the number of repeated applications of the mixer
and objective Hamiltonian, and |+)®V is the ground state of
— >, X;. The algorithm utilizes quantum hardware to evalu-
ate the energy expectation value E (¥, B) = (y, B [Howi |7, B).
Then the parameters y and B are optimized using classical
optimization methods so that the energy is minimized. This
energy evaluation along with classical optimization QAOA
is well defined for any combinatorial optimization problems
as long as Hy,y can be implemented efficiently. While the
proposed X mixer combined with the two-local Ising model
is frequently used in the literature, different choices were also
considered [12,15,44-46].

Heuristic learning of QAOA was explored in trajectories
QAOA (T-QAOA) [22]. T-QAOA is a heuristic strategy that
utilizes the interpolation-based prediction of good QAOA
parameters. With the random initialization, the cost for op-
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FIG. 2. Illustration of the highly nonlinear energy landscape of QAOA for Max-Cut for ten nodes with weighted Barabdsi-Albert graph for
(a) objective Hamiltonian and (b) mixer Hamiltonian. E,om 1 @ normalized energy of the objective Hamiltonian, described in Eq. (11), so that

the eigenvalues lie in [0,1].

timization of QAOA is exponential in the number of layers of
QAOA [22]. However, with the increased number of layers,
Hyix may gradually turn off while the Hy,; turns on, which
is reminiscent of AQC. However, QAOA could learn via
following a diabatic path to achieve higher success probabil-
ity [31,47,48], which is beyond the adiabatic process natural
for AQC. This fact was used in T-QAOA by reusing the
optimal angles found for L layers in the (L 4 1)-layers PQC.

The T-QAOA variant considered in this paper runs as
follows. It starts with a number of layer Ly and finds the
locally optimal parameters (y%0, BL). Then it uses the optimal
parameters of layer Ly to construct the initial parameters for
the layer Ly 4+ 1 by sampling the last entries of $%*! from
a uniform random distribution and setting gL' = 0. With
such initialization, the (Ly + 1)-th layer PQC is optimized
and the procedure is repeated until a final number of layer
L is reached. Note that different interpolation methods can be
used [22].

Note that, for QAOA, the energy landscape with respect to
a single parameter 6 is related to the following process. First,
an initial quantum state is prepared. Then, if applicable, all
the unitary operations that precede the 9-dependent operation
are applied, which transforms the initial state into a different
state (possibly a mixed state for noisy evolution). Afterwards,
under an assumption of pure evolution, a unitary exp(—i6H)
for the mixer or objective Hamiltonian H is applied. Finally,
the remaining operations are applied and the energy estima-
tion with respect to the observable is conducted. As shown in
Appendix B, the energy function with respect to 6 takes the
form

c+2A,-,,- cos[0(E; — E;) + B; 1, “

i>J

in which {E;} is the set of all eigenvalues of the operator H
and real parameters C, A; ;, B; ; depend on the initial state,
observable, and f-independent quantum operations. Note that
Eq. (4) is highly nonlinear, therefore, its optimization may be
difficult in practice. This is in contrast to the typically used

VQE approaches in which the parameter-dependent unitary
can be reduced to a single-qubit gate, which, in turn, may
result in a simple, yet powerful gradient-free optimization
technique [49,50].

Unfortunately, the number of cosines in Eq. (4) may grow
quadratically with the number of distinct eigenvalues of the
considered Hamiltonian. In the case of the objective Hamil-
tonian, the number may be particularly high. While for many
simple problems like unweighted Max-Cut or Max-SAT the
number of different eigenvalues usually grows polynomially
with the size of the data, for weighted Max-Cut each partition
may result in a different objective value, which may give
O(2") different energies in general. A complicated energy
landscape can be seen already even for a small and simple in-
stance, see Fig. 2. For problems generating such complicated
landscapes, more sophisticated methods may be at hand.

B. Homotopy optimization method

One of the well-known methods to solve a system of highly
nonlinear problems is homotopy optimization, where a homo-
topy map is constructed between two systems. The solution
corresponding to one of the systems is transformed into the
solution of the other system. For example, consider the func-
tion fiure(x) which encodes a computationally hard problem,
and fipit(x) which is a problem with an easy-to-find solution.
Then the particular homotopy map between the systems can
be given as

Fla,x) = gl(a)ﬁarg(x) + ga(@) finit (%),

where

0<ax<l1, 5

g10)=0, £0)=1,
gih)y=1, &@1)=0. (6)

Here, we get a family of problems corresponding to
min, F(«, x) = 0 for each « value from O to 1. We track the
optimized solutions starting from (¢, x) = (0, xp), as &« moves
from O to 1, which, for a successful homotopy map, leads to
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(o, x) = (1, x1), where x; is ideally the optimal solution of
frarg:

gThe state-of-the-art approach is to start from (Qinit, Xinit)
with Xy minimizing F(0, x) = finic(x). Then the problem
min, F (o + agep, x) = 0 is iteratively solved using the solu-
tion of min, F(c, x) as a starting point for sufficiently small
Qgep > 0 [25].

III. METHODS
A. Hamiltonian-oriented Homotopy QAOA

The Hamiltonian-oriented homotopy QAOA decomposes
the optimization process of the objective Hamiltonian into
several optimization loops. Each loop optimizes the energy

Eo(7. B) = (7. BIH(@)7. B). ™)
where H («) encodes the homotopy map
H(a) = g1(a)Hmix + g2(c)Hopj,

For o =1 the expectation value in Eq. (7) is the energy
corresponding to the Hgy,;. There is a freedom in the choice
of g; and g, with the necessary conditions H(0) = Hy,x and
H (1) = Hgpj. The simplest and most frequent formulation of
g1 and g, is [25,51]

0<a< L (®)

g2(a) = c. 9

During the optimization process, we choose an initialization
of mixer and objective parameters (at « = 0) in such a way
that the parameters corresponding to the mixer are sampled
from the uniform random distribution U(a, b) in an interval
[a =0,b=2nx] and the objective parameters are all set to
0. With this initialization, we make sure that the homotopy
starts from the exact ground state of the mixer on a noise-free
setting, as the application of the mixer on its eigenstate does
not change the state. For o’ > « > 0 the initial parameters are
chosen as

gil@)=1-a,

7. Bl = 7. B (10)
here * denotes the optimal parameters for o.

Note that, by the very definition of the homotopy process,
the initial quantum state should be a ground energy of the
Hamiltonian H(0) = Hpx. This suggests that not all gener-
alizations of QAQOA are a suitable choice for this kind of
problem, as, for example, in [44] the authors started with an
arbitrary feasible state. However, one can still find an example
of quantum states and mixers that could be used here, like the
XY mixer [46] defined for one-hot vectors or even the Grover
mixer for a general initial state [45]. In addition, it is required
that estimating the energy of the Hy,ix can be done efficiently,
which is true for both referenced models [45,46].

It should be noted that each run of HOHo-QAOA follows
the generic structure of the homotopy process as in Eq. (8)
where the “run-time” of HOHo-QAOA is characterized by the
Qiep, for a fixed ajpi. The parameter ajni fixes the initial «
value. Generally, it can be inferred that a better approximation
to the optimal solution can be achieved if we choose a suffi-
ciently small value of agep and ajp. They can be described in
amore elaborate way as follows. The small value of o, helps

us realize the homotopy of Eq. (8) and at the same time if we
initiate with ;e — 0, it becomes easier to find the ground
state for the first step. To show this, throughout the paper, we
investigate the normalized energy

_ Ey(¥, B) — minH (a)
" maxH («) — minH (&)’

Evorm[Ea (¥, B), @] (11
with respect to the parameters of HOHo-QAOA, where
Eiorm(a) = 0 is the normalized ground energy for any « €
[0, 1], and min H () (max H («)) denotes the minimum (max-
imum) of H(«). It should be noted that, for each value of «,
the homotopy method generates a new Hamiltonian and we
get a new optimal energy. Hence, without normalization, we
would not be able to see how close to the ground energy of
the intermediate Hamiltonian we are. In addition, normalizing
the energy allows a fair comparison of the values obtained for
different problem instances.

B. HOHo-QAOA initialization strategy

In the following, first, we numerically discuss proposed
settings for initial QAOA parameters (j, B )"t With this set-
ting, we show that the homotopy parameters, i.e., Qinit, Qstep
can be chosen detached from zero without compromising the
efficiency of the method. We consider an optimized energy
Ey . or in the case of HOHo-QAOA also an intermediate
optimized step energy E . (o). In the numerical results the
E} ... 1s averaged over 100 noiseless simulations. Each noise-
less simulation of HOHo-QAOA is uniquely characterized
by the random graph G = (V, E), which is chosen from the
Barabasi-Albert distribution with 6, 8, ..., 18 nodes and with
m = 2, where m defines the number of edges to be attached
from a new node to existing ones. The weights corresponding
to the edges are picked up from a uniform set of integer
weights w;; € {1, ..., 10} for each edge {j, j'}.

For generating the objective Hamiltonian, we started by
generating graph objects which we later converted to Pauli
operators objects and Hamiltonian matrices with QISKIT [52].
We generated 100 graphs for each number of nodes. Then
we sampled the initial optimization parameters ¥, B in one of
the ways introduced in the next paragraph. We took an exact
expectation energy and gradient of the state during the opti-
mization. We choose the L-BFGS [53] algorithm implemented
in Julia’s OPTIM package as a subroutine. The optimization
has no periodic or bound conditions. We set OPTIM with
absolute tolerance, relative tolerance, and absolute tolerance
in a gradient equal to 107°. We allow steps that increase
the objective value and the maximum number of iterations is
10 000.

For the numerical investigation of optimal QAOA parame-
ters, which is illustrated in Fig. 3, we consider three possible
initialization choices of the mixer and objective parameters at
o = ajp;; as follows.

(1) Random random (RR): When the parameters corre-
sponding to the mixer and objective Hamiltonians are chosen
from a uniform random distribution U (0, 27), i.e., y}“i‘ ~
U(0,2r), B~ U(0, 27).

(2) Near-zero random (NZR): The parameters correspond-
ing to the mixer Hamiltonian are chosen from U (0, 2rr), but
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FIG. 3. The impact of different methods of initialization of y;, 8; on HOHo-QAOA for (a) RR (Random Random), (b) NZR (Near-Zero
Random) with parameter v = 0.05, and (c) ZR (Zero Random) initialization, respectively, see Sec. III B for details. It is visible that the ZR
outperforms the other two initializations. The ajy,; is chosen between 0.0 (blue) to 0.5 (red) in an interval of 0.05 and the blue to red color
scheme, and the moment lines start w.r.t. the X axis, represents the different values of ;. The performance of NZR and ZR are comparable
for ainie < 0.3, but for aiy > 0.3, the minima for NZR scatters in the region 0.05 < Eyom < 0.15 whereas the minima for ZR clusters in a very
narrow Ep,, width. For the purpose of this work, we chose v = 0.05, which turned out to be a good transition case from the RR to the ZR

initialization.

the objective parameters are sampled from the values very
close to zero, i.e., y}““ ~ U(0, v), ﬂ}“i‘ ~ U(0,2m),

(3) Zero random (ZR): Mixer parameters are sampled
from U(0, 2) chosen and the objective is all zeros, i.e.,
yM =0, B ~U(0,2m) as proposed before.

From Fig. 3 we conclude that ZR gives the best approxima-
tion to the ground state. This is because, under the ZR setting,
the initial parameters of QAOA always start corresponding
to the exact ground state of Hy;x while the Hy,; is turned
off. This is within the spirit of the homotopy optimization,
in which starting with the optimal solution of the initial sys-
tem is critical. Hence this good approximation to the initial
parameters leads us to a better solution to the ground state
of Hoyj. Keeping in mind that if we sample ajy; in the range
0 < aiit < 0.2, we see that NZR shows comparable perfor-
mance to ZR and the choice of initialization of y;, 8; can be
either one of them, relaxing the conditions on the choice of ¥
and ﬁ In the remainder of this paper, all the numerical results
are initialized with the ZR setting.

Now we move to the analysis of the choice of suitable apy.
In Fig. 4 we investigate the i dependency of the EJ .
where the energy is averaged over 100 noiseless simulations.
From Fig. 4(a) we take three layers of HOHo-QAOA and
observe that the mean optimal energy and the corresponding
standard deviation remain unchanged (which we term as the
region of stability) with respect to aip;¢ in the range 0 < djpir <
0.5. With an increase in the number of nodes from 6 to 16,
the region of stability shifts upwards but remains in the range
0 < ajpir < 0.5. This observation leads us to conclude that
Qinit can be chosen detached from zero without degrading the
performance of HOHo-QAOA, or that at least the region of
stability does not shrink rapidly with the increased size of the
problem. So setting oy in the region of stability along with
" =0, g™ ~ U(0, 27) yields a solution with particularly
small energy value.

In Fig. 4(b), we investigate how the efficiency of the opti-
mization depends on the ogep. During this investigation, we
take ten layers of HOHo-QAOA. We observe that. in the
range 107 < agep < 0.5, the approximation to the ground
energy and the corresponding standard deviation with increas-
ing ogep — 0 remains almost unchanged, giving rise to a
region of stability concerning a.ep. Several factors could con-
tribute to the observed stability, such as the specific problem
instances or the optimization algorithm utilized (in our paper,
L-BFGS). Moreover, it is possible that, within the specified
number of layers, the HOHo-QAOA method attains the op-
timal achievable energy for the ansatz. Consequently, altering
the agep may only marginally enhance the optimized states.
Still, the behavior of E — with oy, is similar to what we
observe for a;,;;. This leads us to a conclusion that one can
choose oep detached from zero for HOHo-QAOA.

Meanwhile, we can also observe a sharp increase in the
normalized energy in Fig. 4(b) when the oy, changes from
0.5 to 1. This is because at ajp; = 0 no optimization is done
as the ansatz starting in ZR initialization is already in the
ground state of the mixer, and then for o = oy + otgeep = 1
the Hamiltonian H (&) is just an objective function. However,
the optimized expectation value at age, = 0.5 suddenly de-
creases. This confirms that, even for such large o, when we
conduct just a single optimization of homotopy parameters,
our algorithm gives a clear benefit.

It should be noted that, due to the high simulation cost
for 16, qubits are halted at the ogep = 1072, whereas the
investigation for six and ten qubits is extended to 10™*.

The discussion and numerical results from the previous
paragraphs give us the following initialization rules of HOHo-
QAOA, which leads to a high efficiency of the method.

(1) The parameters of the mixer and objective should
be initialized with the ZR setting, i.e., y}“i‘ =0, ,8}““ ~
U, 2m).
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FIG. 4. We illustrate the dependency of E; = with ojpi and aep. In () the variation of Ejf,  with ay;; for three layers of HOHo-QAOA is
presented, with y™* = 0, 8" ~ U(0, 2). In the figure, we see a region of stability of HOHo-QAOA with respect to ey in the range 0.0 to

0.50. In (b) we présent E*

norm

Versus o, using ten layers of HOHo-QAOA. Just like in the case of oy, for o, a similar region of stability can
p g Y p 8

be observed. This gives us the preference on the choice of step parameter while utilizing HOHo-QAOA. It should be noted that the y axis in
(a) is in linear scale whereas in (b) it is in log scale. The lines in both the plots are taken i and o, Wise and are the mean of 100 noiseless
simulations. The areas under the plots are the standard deviation of energies.

(2) Although one can infer that i, — O along with
agep — 0 gives the best result, our investigations show that
one can choose the homotopy parameters detached from zero.
This greatly reduces the cost of simulating HOHo-QAOA.

IV. RESULTS

In this section, we analyze the performance of the intro-
duced algorithm with respect to other optimization strategies
introduced above. While it is natural for HOHo-QAOA to
initialize using ZR strategy, it is unclear whether this choice
will improve or worsen the results for QAOA or T-QAOA.
Therefore, before comparing state-of-the-art methods to the
introduced one, we verify whether there is any difference in

the performance of QAOA and T-QAOA with respect to the
initialization of the optimized angles. In Fig. 5 we investigate
state-of-the art methods for parameters (y;, B; )it initialized
with RR and ZR strategy. We observe that the performance of
QAOA and T-QAOA is not influenced by the chosen strate-
gies. This justifies using the ZR strategy when comparing
QAOA, T-QAOA, and HOHo-QAOA.

Note that for QAOA we are observing undesired nonmono-
tonic behavior with respect to the number of layers. We claim
that this is caused because of a complicated landscape of the
energy function, which makes it difficult to optimize it if no
information about the problem instance is used during the
initialization from a large number of nodes. This argument
complies with the good performance of T-QAOA where the

QAOA T-QAOA
=—e— rand-rand == rand-rand
0\‘.\4_‘ zero-rand =& zero-rand
0.3 1 P
.
] ﬂ\_ IIQ \\0 a . o
o . * ‘;\'_
+2 0.2 # \_\V‘\"-‘an \4\:‘- —
’l \_r(\ - ﬂ\gm R
I 0
1 / ”y
0.1 1 (] g \g‘
P 4
a2 v ars
25 50 75 100 25 50 75 100

Number of layers

FIG. 5. Comparison of different initialization for QAOA and T-QAOA. In (a) we illustrate how the E  changes with increasing number
of layers in QAOA under the RR and ZR settings whereas in (b) we conduct the experiment with similar settings for T-QAOA. The solid line
is the median energy over 100 noiseless simulations, meanwhile, the dashed line represents the best case, taken layer-wise and node-wise by
choosing the minimum energy among all the results. The areas are delimited by the first and third quartiles.
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FIG. 6. Performance of HOHo-QAOA compared to QAOA and T-QAOA. In both figures, for all the QAOA methods, we applied the ZR

settings. The areas are delimited by the first and third quartiles. The solid line presents E*

 m edian over 100 noiseless simulations for the

left figure and 50 for the right figure, and the dashed line represents the best case, taken layer-wise and node-wise by choosing the minimum
energy among all the simulations. In (a), the number of nodes is fixed to 10. Meanwhile in (b), the number of layers is fixed to 5 and the
Max-Cut instances are chosen within 6 to 18 nodes. The homotopy parameters are set as cjyic = 0 and agp, = 0.01. One can see that in both
cases the averaged energy as well as the best case of HOHo-QAOA outperforms the other variants of QAOA.

initial parameters of the (L + 1)-layer step are evaluated based
on local optimal solutions of the L-layers step.

In Fig. 6 we compare the performance of HOHo-QAOA
with the other variants when (y;, B;)™! are initialized using
the ZR setting. In the first simulation, we run the algorithms
with a fixed number of nodes while increasing the number of
layers. In the second, the number of layers is fixed while we
vary the number of nodes. The plots present optimized energy
values, averaged respectively over 100 and 50 instances. The
data show that the introduced HOHo-QAOA gives us signif-
icantly smaller energy in both setups. Good improvements
remain as more layers of the HOHo-QAOA are used and
also outperform the other variants of QAOA for a higher
number of nodes. These conclusions remain valid also for the
best case chosen (dashed line). It should be noted that the
HOHo-QAOA outperforms QAOA and the T-QAOA in each
and every layer starting from the initial layer 5 to the final
layer 100.

V. CONCLUSION

In the article, we present a combination of homotopy
optimization with an application in QAOA suitable for com-
binatorial optimization. In our method, the observable used
for computing the energy is changed during the optimization
process. The process starts with the observable being a mixer,
for which the initial state of QAOA is a grounds state, and
is slowly moved into the objective Hamiltonian. In addition,
we verify that, although traditionally in the homotopy method,
the initial value of the transition parameter « should be 0 and
the step should be as small as possible, for QAOA the value
of the considered parameters can be detached from 0. Our in-
vestigation of different initializations of HOHo-QAOA helped
us to conclude that the zero random (ZR) initialization is the

optimal choice for the weighed Max-Cut problem. However,
the optimal choice of the hyperparameters, or whether we
can indeed detach «j,i from O, may depend on the particular
problem at hand and the size of its instances.

A homotopy optimization is an algorithm dedicated to
nonlinear optimized functions, and since even a simple QAOA
landscape is a linear combination of many (for some problems
exponentially many) sinusoidal functions, our approach is
well motivated for such energy function. This is in contrast
to the typical VQE optimization process in which the function
landscape with respect to a single parameter is just a sine. By
comparing our approach and QAOA algorithm with the typi-
cal choice of optimization strategies we numerically confirm
that our method outperforms state-of-the-art approaches.

While our algorithm was only presented for QUBO and
the X mixer, it is not restricted to it. In particular, if the transi-
tion function is of the form H () = g1(at)Hmix + g2(c)Hop;,
we only require the energy of the Hpixr to be efficiently
computable and the ground state to be easily prepared. Both
the XY mixer [46] and the Grover mixer [45] satisfy these
conditions. Moreover, our approach remains also valid for
higher-order binary problems [11,15,54] and more advanced
pseudo-code-based QAOA Hamiltonian implementation [12].

The introduced HOHo-QAOA uses the same quantum cir-
cuit as the standard QAOA, yet it allows reaching quantum
states with much lower expectation values. Hence, using this
method does not increase the impact of the noise. Compared
to T-QAOA, where new layers are added one by one, our
algorithm is from the very beginning working on the full
circuit. One could expect therefore that HOHo-QAOA over-
shoots with the number of QAOA layers, as it is not chosen
adaptively as for T-QAOA. However, as we observed for the
given number of layers, HOHo-QAOA explores the ansatz
much better than T-QAOA. Hence, repeating HOHo-QAOA
from scratch with a gradually increasing number of layers may
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lead in fact to shorter (and thus more noise-robust) quantum
circuits compared to the T-QAOA method.

One could expect that the HOHo-QAOA algorithm will
be the slowest method of all the considered ones because of
the classical optimization being executed for all intermediate
«. However, if the functions g, g» which defines the combi-
nation of mixer and objective Hamiltonians are not varying
extensively, one should expect that the ground states for most
of the intermediate Hamiltonians should be close to neigh-
boring ones. Therefore, the number of steps to be taken by
the classical optimizer with each « change is expected to be
much smaller compared to adding a new layer as in T-QAOA
with randomly chosen QAOA parameters. Whether this phe-
nomenon will make up for the fact that the total optimization
time will be comparable to the time required for T-QAOA
would require investigating larger instances.

Data and code available at [55].
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APPENDIX A: CODE FOR NOISELESS SIMULATION

To enable the simple reproduction of our results, we pub-
lish our code in [55]. The algorithms for generating data
and plotting were implemented in JULIA and PYTHON pro-
gramming languages. Versions of the software and additional
packages are listed in [56].

T-QAOA

For T-QAOA implementation, we initialize with a min-
imum number of levels Ly =4 and run the optimization
similarly to the state of art QAOA with the given parameters’
initiation strategy. The method proceeds to check the conver-
gence of the solution and moves to the next layer Ly + 1, using
the previously optimized parameters with the addition of a
zero for the mixer Hamiltonian and a value sampled from a
uniform random distribution U (0, 27).

APPENDIX B: PROOF OF NONLINEAR LANDSCAPE FOR QAOA

Theorem 1. Let o be an arbitrary quantum state, H be an arbitrary Hamiltonian with spectrum set {E}, .

arbitrary observable. Then

.., Ex}, and O be an

trlexp(—i0H)o exp(i0H)O] = C + ZA,;]‘ cos[0(E; — E;) + B; ], (BI)

for some real values C, A; ;, B; ;.

i>j

Proof. Let U be a unitary that diagonalizes the Hamiltonian H. Then we have

k k
trlexp(~i0H)g exp(i9H)O] = tr| Y (Ue *HliXU e Y_(U*®|j)UN0
i=1

k k

j=1

= >3 HMEEUiNU|TeU U IOl

i=1 j=1

k k )
=22 ulliNel 1701

i=1 j=1

k k
= 3D ETE' ) (7101, 52)

i=1 j=1

where o' = UTpU and O' = UTOU. Since ¢’ is a hermitian operator and therefore (i|o|j) = (j|ol|i), and similarly for O’,
therefore for any 7, j the term for i > j is a conjugate of the term i < j. Hence

k k k
DO ETENj) (10 =Y (ile'liN(ilO']i) +2 ) Re[e” I ilg’| j){j10'1i)]. (B3)

i=1 j=1 i=1 i>j

Note that the left-hand side sum in the above above is a free term and is a real number. Starting from now we will assume that the
Hamiltonian H is nondegenerate, otherwise, the corresponding element of the right sum will contribute to the free term. Taking
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X j +1iyij = (ilo|j){jlO’|i) for some real x; ;, y; ; we have

Re[e”®~5)(i[¢| j)(j|O']i)] = Re{cos[(E; — En)] + isin[6(E; — ENI}(x;.j + iyi ;)
= Xi,j COS[@(EJ‘ - El)] — Vi,j sin[O(Ej — E,)]

Xi,j
= |
’ ' 2 2
VX TV

Vi, j

2 2
V¥ Vi

cos[0(E; — Ep)] — sin[0(E; — E;)]

= /xi%j + yﬁj{cos(ai,j)cos[G(Ej — E;)] — sin(a; ;) sin[0(E; — E)]}, (B4)

where «; ; is such a real number for which the above transformation holds. Note that such a number « can always be found as
the replaced fraction squared sum to 1 and one can use Pythagorean trigonometric identity. Finally, we have

\ /xl%j + yij{cos(ai,j) cos[O(E; — E;)] — sin(e;, ;) sin[0(E; — Ei)]} =, /xi%j + y%j cos[0(E; — E;) + o 5], (BS)

which proves the statement of the theorem.

Note that the case of Hamiltonian with two different eigenvalues was already presented in [49,50].
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