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Dual unitaries as maximizers of the distance to local product gates
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The problem of finding the resource-free, closest local unitary, to any bipartite unitary gate U is addressed.
Previously discussed as a measure of nonlocality, the distance KD(U ) to the nearest product unitary has
implications for circuit complexity and related quantities. Dual unitaries, currently of great interest in models of
complex quantum many-body systems, are shown to have a preferred role as these are maximally and equally
away from the set of local unitaries. This is proved here for the case of qubits, and we present strong numerical
and analytical evidence that it is true in general. An analytical evaluation of KD(U ) is presented for general
two-qubit gates. For arbitrary local dimensions, that KD(U ) is largest for dual unitaries is substantiated by its
analytical evaluations for an important family of dual-unitary and for certain nondual gates. A closely allied
result concerns for any bipartite unitary the existence of a pair of maximally entangled states that it connects. We
give efficient numerical algorithms to find such states and to find KD(U ) in general.

DOI: 10.1103/PhysRevA.109.022610

I. INTRODUCTION

Dual-unitary quantum circuits are of intense current in-
terest to many research communities [1–11] as they provide
nontrivial models of both integrable and chaotic many-body
quantum systems and allow for universal computation. For
example, these have been used for the evaluation of dynamical
correlation functions [3,4], spectral statistics [5], construction
of a quantum ergodic hierarchy [6], entanglement gener-
ation [7], exact emergence of random matrix universality
[12], and measurement-induced phase transitions [13]. It has
been shown to be classically simulatable for short times or
circuit depths for certain initial states and for local expec-
tation values [14]. However, for late times the problem has
been shown to be Bounded-Error Quantum Polynomial-Time
(BQP)-complete, and the dual-unitary circuits are capable of
universal quantum computation, while classical simulation of
the problem of sampling has been shown to be hard [14].

The building blocks of dual-unitary circuits are arbitrary
single-particle gates and two-particle dual unitary operators.
The dual-unitary operators remain unitary on reshuffling the
indices, a property interpreted as a space-time duality [3].
From a quantum-information-theoretic viewpoint these are
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maximally entangled unitaries [15,16]. Nevertheless, their
place in the space of general bipartite unitary operators, U(d2)
in local dimension d , is not understood, and their construction
for d > 2 is incomplete [3]. However, there are numerical
algorithms [15] to generate ensembles of dual-unitary ma-
trices in any dimension d and several analytic constructions
[4,6,8,17].

As local unitary operators are considered to be a free
resource, a basic geometric question is the distance of dual
unitaries and in general any bipartite unitary operator to the
closest local unitary. This has been previously studied as a
“strength measure” of bipartite unitary operators and denoted
as KD(U ) [18] and satisfies the conditions required of a quan-
tum complexity measure. Formally, for a general metric D,
KD(U ) for some bipartite unitary U ∈ U(d2) is defined as

KD(U ) := min
uA,uB∈U(d )

D(U, uA ⊗ uB). (1)

This work uses the Hilbert-Schmidt metric ‖A‖ =
√

tr(AA†),
as it seems both most appropriate and accessible to analyt-
ical considerations. As a strength measure, one can choose
the metric to satisfy desirable properties based on the ap-
plication [18]. It should lead to a function on unitaries that
satisfy (1) f (uA ⊗ uB) = 0, (2) f (UV ) � f (U ) + f (V ), and
(3) f (U ⊗ I) = f (U ). The first two properties are satisfied
by all strength measures, and we show that if we pick the
Hilbert-Schmidt metric, the third property, known as stability,
is satisfied by KD(U ); see Appendix A. A particular appli-
cation of interest is in circuit complexity; one can show that
the strength measure on the operator norm of a bipartite gate
can be used to understand its capacity to create entanglement
when acting upon pure states, based on recent arguments in
Ref. [19].
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FIG. 1. Caricature of the geometry of KD(U ). For a given bi-
partite unitary operator, the projection to the subset of local unitary
products is found, and the distance is calculated.

Thus far there are partial results concerning KD(U ) for
d = 2 and no known results for d > 2. Apart from deriving
several new results concerning general bounds and exact eval-
uations of this measure, we show that the set of dual unitaries
are maximally and equally away from product unitaries for
the case of qubits, d = 2, and we present strong numerical
evidence that this is the case even for d > 2. This motivated
the caricature in Fig. 1, which indicates the special place of
dual unitaries in the space of bipartite operators.

These considerations are intimately related to an interest-
ing property that is easy to see for qubits, but also appears
to hold in general: for any bipartite unitary U in Hd ⊗ Hd ,
there exists a pair of maximally entangled states |�1〉 and
|�2〉 such that U |�1〉 = |�2〉. A dynamical map is devised
that converges to such a pair of maximally entangled states
for any U , which can be used to find the closest local uni-
taries to dual-unitary gates. A closely related procedure works
surprisingly well also for general (nondual) unitaries, which
allows for detailed numerical explorations of KD(U ). We find
KD(U ) analytically for several special families of unitaries,
which also verifies the numerical procedure.

II. GENERAL CONSIDERATIONS AND BOUNDS
FOR KD(U )

Let the operator Schmidt decomposition of an arbitrary
two-qudit unitary gate U be

U =
d2∑

i=1

√
λi mA

i ⊗ mB
i . (2)

Here the set {mA
i , i = 1, . . . , d2} forms an orthonormal oper-

ator basis in subspace A that is

tr
(
mA

i mA †
j

) = dδi j,

and mB is a similar set in subspace B. The operator Schmidt
coefficients λk are chosen to be in decreasing order, 1 � λ1 �
· · · � λd2 � 0, and from the unitarity of U it follows that∑d2

k=1 λk = 1.

The Schmidt decomposition provides measures of operator
entanglement; for example, one such is the linear entropy

E (U ) = 1 −
d2∑

k=1

λ2
k . (3)

This range is 0 � E (U ) � E (S) = (d2 − 1)/d2, and is 0 iff
U is a product unitary [in which case KD(U ) = 0]. The max-
imum value is attained when for all k, λk = 1/d2, and is
the operator equivalent of Bell states. The swap operator S
(S|kl〉 = |lk〉) achieves this value and is an important example
of a maximally entangled unitary operator. However, S is by
far not the only unitary operator to achieve this value. If an
unitary U is such that E (U ) = E (S), this may also be taken
as the definition of dual-unitary operators. Restriction of a
unitary U to this special set will be generically denoted as
Udual, that is, E (Udual ) = 1. One of our goal is to calculate
KD(Udual ), but we first turn to general statements and bounds.

For the distance measure KD(U ) in Eq. (1), for the rest of
the paper we use the Hilbert-Schmidt metric. Define

K∗
D(U ) := ∥∥U − mA

1 ⊗ mB
1

∥∥ =
√

2d2 − 2d2
√

λ1. (4)

As the Schmidt decomposition already provides the nearest
product operator (for a proof in the case of states, see [20]),
this quantity is the distance to the nearest product operator,
removing the unitarity constraint from the local operators in
Eq. (1). As KD(U ) is the distance to a more constrained set,
the following lower bound follows:

KD(U ) � K∗
D(U ). (5)

Alternatively, the definition in Eq. (1) implies

K2
D(U ) = min

uA,uB

‖U − uA ⊗ uB‖2

= min
uA,uB

(2 d2 − 2Re[tr(U †(uA ⊗ uB))])

= 2 d2 − max
uA,uB

2|tr(U †(uA ⊗ uB))|. (6)

The second equality follows from the fact that the phase can
be absorbed by the local unitaries. Expand local unitaries uA

and uB in the orthonormal bases from the Schmidt decompo-
sition of U in Eq. (2), uA = ∑d2

i=1 αi mA
i , uB = ∑d2

i=1 βi mB
i ,

where
∑

i |αi|2 = ∑
i |βi|2 = 1. This leads to

|tr(U †(uA ⊗ uB))| =
∣∣∣∣∣∣d2

d2∑
i=1

√
λi αiβi

∣∣∣∣∣∣ � d2
√

λ1

×
d2∑

i=1

|αi||βi| � d2
√

λ1. (7)

Here the first inequality holds as λ1 is the largest Schmidt
coefficient, and the second follows from the Cauchy-Schwarz
inequality. Using this in Eq. (6) we obtain the lower-bound as
K∗

D(U ) in Eq. (5)
It is possible to obtain an upper bound as

KD(U ) � K∗
D(U ) +

√
2d2 − 2

∥∥mA
1

∥∥
1

∥∥mB
1

∥∥
1, (8)
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where ‖A‖1 = tr
√

AA† is the trace norm. If mA
1 = uA

√
mA †

1 mA
1

is its polar decomposition and similarly for B, uA,B are the
nearest unitaries to mA,B

1 [21]. The upper bound is obtained as
by definition the distance of U to the product uA ⊗ uB cannot
be less than KD(U ):

KD(U ) � ‖U − uA ⊗ uB‖
= ∥∥U − mA

1 ⊗ mB
1 + mA

1 ⊗ mB
1 − uA ⊗ uB

∥∥
�

∥∥U − mA
1 ⊗ mB

1

∥∥ + ∥∥mA
1 ⊗ mB

1 − uA ⊗ uB

∥∥. (9)

The final step follows from the triangle inequality, and the
upper bound is immediately obtained.

These lower and upper bounds on KD(U ) are dependent
only on the principal Schmidt eigenvalue λ1 and its corre-
sponding Schmidt operators mA,B

1 . These bounds are tight,
and it will be seen that the lower bound is quite good and
is, in any case, far from the average value of the distance
(squared) from local unitaries, which is 2d2. For the most part,
we will concentrate on the lower bound that is maximized
when λ1 is the minimum possible value = 1/d2. This happens
only when all the λi are equal and = 1/d2, which implies
that U is necessarily maximally entangled, which is the same
as dual-unitary. Therefore K∗

D(U ) � K∗
D(Udual ) = √

2d2 − 2d .
For convenience we define

K∗
D := max

U∈U(d2 )
K∗

D(U ) =
√

2d2 − 2d. (10)

Providing a proof for d = 2 and evidence for d > 2, we con-
jecture that

max
U∈U(d2 )

KD(U ) = K∗
D. (11)

III. KD(U ) FOR THE TWO-QUBIT CASE

As KD(U ) is a local-unitary invariant, it is sufficient to
consider the nonlocal part of the canonical decomposition
[22,23]:

U = exp[i(c1 σ1 ⊗ σ1 + c2 σ2 ⊗ σ2 + c3 σ3 ⊗ σ3)]. (12)

As the products of the Pauli matrices in this expression com-
mute we have

U =
3∏

k=1

exp(ick σk ⊗ σk ) =
3∑

k=0

√
μk (eiθk σk ) ⊗ σk . (13)

Here the σ0 is the 2-identity matrix and μk are functions of
ci; for explicit expressions see [24]. This is itself a Schmidt
decomposition, and the λk are found by arranging μk in de-
creasing order, in particular λ1 = max{μ0, μ1, μ2, μ3}. This
implies that for any two-qubit unitary operator, there exists
a Schmidt decomposition where both pairs of orthonormal
bases are unitary as well. Hence,

KD(U ) = K∗
D(U ) =

√
8(1 −

√
λ1). (14)

In this case both the lower and upper bounds coincide and are
exact. It immediately follows that KD(U ) � K∗

D = 2. There-
fore maxU∈U(4) KD(U ) = K∗

D = 2. This is achieved only for
the case of dual-unitary gates. These are parameterized in the
Cartan form by the one-parameter family, c1 = c2 = π/4, and

FIG. 2. Distance to local gates, KD(U ), plotted as a color map in
the space of entangling properties of the gate. The highest values are
attained on the dual-unitary boundary line.

c3 is arbitrary. We will find this to be true for higher dimen-
sions through numerical investigations, as discussed later. In
Fig. 2 the KD(U ) is shown for all possible two-qubit opera-
tors as a function of their entangling power ep(U ) and gate
typicality gt (U ), which are local unitary invariants [25–27].
For completeness, we recall their definitions. The entangling
power is the average linear entropy of U |φA〉|φB〉 when φA,B

are uniformly (Haar) sampled from the subspaces and is
related to the operator entanglement (3). Under appropri-
ate scaling, we take ep(U ) = [E (U ) + E (US) − E (S)]/E (S),
where S is the swap operator and 0 � ep(U ) � 1. If U is
dual-unitary, E (U ) = E (S) and hence ep(U ) = E (US)/E (S).
This is maximum and is equal to 1 iff US is also dual-unitary.
In general if U is dual-unitary, US is defined to be �-dual
(or T-dual), as the partial transpose of the unitary is also
unitary [6]. As the swap does not create any entanglement
ep(S) = ep(I ) = 0, however, E (S) is the maximum possible,
that is, the swap is a very nonlocal gate. A complementary
quantity, the so-called gate typicality gt (U ), is useful in sepa-
rating the nonlocals from the swap and is defined by gt (U ) =
[E (U ) − E (US) + E (S)]/[2E (S)]. This vanishes for U that
is local or identity and is maximum = 1 only for the swap.
For qubits, it is known that the maximum value of ep(U ) is
only 2/3 and not 1; for all other local dimensions the value of
ep(U ) = 1 is achieved.

Returning to Fig. 2, the dual-unitary gates lie on the upper
boundary line, while the �-dual ones make up the lower
boundary. The left boundary is the parabola containing all
the fractional powers of swap, while the vertical right bound-
ary connects the CNOT gate with its “swap partner” obtained
by multiplying it with the swap gate. It is interesting that
the KD(U ) strongly correlated with these invariants and the
“hottest” regions are in the vicinity of the dual-unitary upper
boundary, and the “cool” ones are in the vicinity of the �-dual
and the locals.

IV. KD(U ) FOR DUAL UNITARY U AND ARBITRARY d

Recall that dual-unitary operators have maximal operator
entanglement as their Schmidt decomposition is flat with
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λk = 1/d2 for all k. It is also useful to think of them as re-
taining unitarity under a reshuffling of their elements. Define
the realignment operation R as

〈i j|U R|kl〉 = 〈ik|U | jl〉. (15)

The following may be easily verified: (a ⊗ b)R = |a〉〈b∗|,
where 〈kk′||v〉 = 〈k|v|k′〉 is a vectorization of the matrix v.
Thus, taking the realignment of Eq. (2) we get

U R =
d2∑

k=1

√
λk

∣∣mA
k

〉〈
mB∗

k

∣∣. (16)

If λk = 1/d2, it follows that U RU R† = Id2 , and U R is unitary.
Indeed, U is dual-unitary iff U R is also unitary [15,28].

For dealing with dual-unitary operators it may be desir-
able also to deal with U R, and it is not hard to see that
|tr(U †(uA ⊗ uB))| = |〈uA|U R|u∗

B〉|. Using this we can rewrite
the expression for KD(U ) in Eq. (6) as

K2
D(U ) = 2d2 − 2 max

uA,uB

|〈uA|U R|u∗
B〉|. (17)

Note that except in K∗
D, the asterisk denotes complex con-

jugation. The vectorization of unitary operators such as uA

lead to maximally entangled states |uA〉, with normalization
〈uA|uA〉 = d . In this approach the problem of finding KD(U )
is reduced to finding the maximum overlap of U R with max-
imally entangled states. We now state a property that helps
with evaluating this and is true for d = 2, but is a conjecture
for d > 2.

A. UBB conjecture

The conjecture is that for any unitary operator V acting on
two particle states of d dimensions each, there exists at least
one pair of maximally entangled state |�0〉 and |�1〉 such that

V |�0〉 = |�1〉. (18)

If this statement is true, then Eq. (17) implies that for a
dual-unitary U , KD(U ) = K∗

D = √
2d2 − 2d . This follows as

in this case U R is also unitary and takes the place of V in
the conjecture, and the maximizing overlap, namely, d , is
achieved. To avoid confusing the unitary U for which we are
interested in finding KD, we denote the generic unitary now as
V . This property is referred to as UBB for “unitary times Bell
is Bell” and implies that the Schmidt decomposition of dual
unitaries can be chosen such that at least one pair (mA

i , mB
i )

can be unitary.
To see this, note that for dual unitaries, as U R is also uni-

tary, all the Schmidt values in Eq. (16) are {λk = 1/d2, 1 �
k � d2}, and we may choose the set of Schmidt vectors
{|mB∗

k 〉/√d, 1 � k � d2} to be any orthonormal set such that
the other set of Schmidt vectors is |mA

k 〉 = U R|mB∗
k 〉. Thus, if

we choose say |mB∗
1 〉/√d to the one of the pair of UBB states

corresponding to U R, then |mA
k 〉/√d will also be maximally

entangled. This implies that |mB∗
1 〉 and |mA

1 〉 are vectorizations
of unitary operators as claimed. This renders the upper bound
in Eq. (5) also to be K∗

D(U ) = K∗
D.

Note that the property UBB is local-unitary invariant
and that the canonical decomposition in the case of qubits,
Eq. (12), is such that the standard Bell states are eigenvectors

and the corresponding eigenvalues have absolute values of 1.
The decomposition in Eq. (13) also shows explicitly that all
four Schmidt operators can be taken to be unitary. Thus, for
d = 2, the UBB property is already proven valid in general. It
is unsurprising that such a basic property as UBB has in fact
been discussed earlier [29], but it is surprising that it remains,
to the best of our knowledge, unproven (or contradicted) in
general for d > 2.

B. A special case where UBB is provable

One important special case for which UBB is easily shown
to hold for all local dimensions d is when V = D is diagonal,
and hence also for all V that is local-unitary connected to
diagonals: V = (uA ⊗ uB)D(u′

A ⊗ u′
B). If

D = diag(eφ11 , . . . , eiφdd ), (19)

this follows as

D|�+〉 = D
(

1√
d

d∑
k=1

|kk〉
)

= |�1〉 = 1√
d

d∑
k=1

eiφkk |kk〉.
(20)

That is, the standard maximally entangled state |�+〉 along
with a phase-decorated state |�1〉, which is also maximally
entangled, is one such required pair. In fact, this can be gen-
eralized to provide a maximally entangled basis that remains
maximally entangled under D. Let

|Wmn〉 = 1√
d

d∑
�=1

e2π im�/d |�, � + n〉. (21)

This is a maximally entangled state and is the vectorization
of Wmn = T m

1 T −n
2 /

√
d , where T1|�〉 = e2π i�/d |�〉 and T2|�〉 =

|� + 1〉 are the clock-and-shift operators or generalized Pauli
matrices. However,

D|Wmn〉 = 1√
d

d∑
�=1

e2π im�/d eiφ�,�+n |�, � + n〉 (22)

is also a maximally entangled state. This is the vectorization
of T m

1 T −n
2 Dn/

√
d , where Dn = diag{eiφ1,1+n , . . . , eiφd,d+n}.

Note though that while D is not dual-unitary (it is �-dual),
SD is dual, where S is the SWAP operator. Such operators have
been extensively used in the study of dual-unitary circuits as
they provide a simple family [8] and in fact are self-dual:
(SD)R = SD [6]. The SWAP S itself is a dual-unitary opera-
tor, and the UBB property clearly holds in this case, as any
maximally entangled states |�0〉 remain maximally entangled.
Therefore we have at least d2 orthonormal maximally entan-
gled states |Wmn〉 that are such that SD|Wmn〉 = |W ′

mn〉, where

|W ′
mn〉 = 1√

d

d∑
�=1

e2π im�/d eiφ�,�+n |� + n, �〉 (23)

is also maximally entangled. A Schmidt decomposition exists
with all mA,B

i being unitary. Thus, we have proved that

KD(SD) = K∗
D (24)

for any diagonal unitary D. Note though that we have not
evaluated KD(D) itself, later we present numerical results for
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these while presenting analytical results for a special class of
diagonal unitaries. More cases where UBB can be analytically
shown are described below, but we now turn to a numerical
procedure that gives us confidence that UBB is true.

V. EVIDENCE FOR THE UBB CONJECTURE

A. The UBB algorithm

Given a unitary operator V that is d2-dimensional, the fol-
lowing algorithm is used to find pairs of maximally entangled
states that satisfy the UBB condition for a given bipartite gate.
Pick a random u0 ∈ U(d ).

(1) Find |v′
0〉 = V |u0〉.

(2) From polar decomposition of v′
0, v′

0 = v0
√

v0
′†v′

0, find
the unitary v0 ∈ U(d ). Let this step be denoted v0 = P[v′

0].
(3) Find 〈u′

1| = 〈v0|V .
(4) Evaluate the nearest unitary u1 ∈ U(d ) from u1 =

P[u′
1].

(5) Iterate from Step 1, with u0 being replaced with u1.
Note that the primed operators v′

0 and u′
1 are not unitary

in general. The projection into the unitary space using polar
decomposition, denoted P, yields the closest unitary matrices
[21]. This procedure iterated n times yields the pair (un, vn)
and as n → ∞ their vectorization corresponds to a required
pair |�0〉 = |u∞〉 and |�1〉 = |v∞〉, provided v′

n and u′
n them-

selves tend to unitary matrices. In this case v∞ = v′
∞ and

u∞ = u′
∞. In cases where this is not satisfied, the seed u0 is

changed. We found without exception that this always verified
the UBB property for arbitrary choices of V .

B. Convergence and entanglement growth under the algorithm

That the algorithm converges for V unitary is supported by
the following observation: for a given maximally entangled
seed state |u0〉, define the distances

d0 = ‖V |u0〉 − |v0〉‖2, d ′
0 = ‖V †|v0〉 − |u1〉‖2,

d1 = ‖V |u1〉 − |v1〉‖2

(25)

where |v0〉, |u1〉, and |v1〉 are maximally entangled (ME)
states that minimize their respective expressions, and
‖|v〉‖2 = √〈v|v〉 is the vector Euclidean norm. The distances
satisfy d0 � d1 as

d0 = min
|θ〉∈ME

‖V |u0〉 − |θ〉‖2

= ‖V |u0〉 − |v0〉‖2 = ‖|u0〉 − V †|v0〉‖2

� min
|w〉∈ME

‖|w〉 − V †|v0〉‖2 = d ′
0. (26)

Similarly d ′
0 � d1, and hence the result follows. In general this

shows that {dn = ‖V |un〉 − |vn〉‖2, n = 0, 1, . . . } is a nonin-
creasing sequence. Implications of this for entanglement in the
states which is our main quantity of interest is now studied.

Let

ρA
n = trB(V |un〉〈un|V †)/d (27)

be the reduced density matrix at step n; ideally this must
tend to be maximally mixed for V |un〉 approaching a maxi-
mally entangled state. Let V |un〉 be the vectorization of, say,
Mn, then ρA

n = MnM†
n/d . From vn being the closest unitary

FIG. 3. UBB demonstrated for a sample of random bipartite uni-
taries V with d = 3. The inset shows the approach to the maximum
entropy 2/3 via the difference �n = 2/3 − (1 − trρ2

n ).

to Mn, the polar decomposition gives Mn = vn

√
MnM†

n vn =√
dρA

n vn. Thus,

dn = ‖V |un〉 − |vn〉‖2 = ‖Mn − vn‖

= ∥∥√
dρA

n vn − vn

∥∥ = ∥∥√
dρA

n − 1d

∥∥, (28)

where the fact that the Hilbert-Schmidt norm of matrix ver-
sions of vectors coincides with their Euclidean norms is used.
The nonincreasing property of the distances dn then implies
that ‖√ρA

n − 1d/
√

d‖ is also nonincreasing, and hence that
the Rényi entropy of order 1

2 : S1/2 = 2 ln(tr
√

ρA
n ), is nonde-

creasing. These statements make it plausible that under this
algorithm ρA

n → 1/d as n → ∞.
Numerical results show that all Rényi entropies typically

grow monotonically; Fig. 3 shows this for the case of the
linear entropy 1 − tr(ρA

n )2. The approach of ρA
n to being max-

imally mixed and hence V |un〉 being maximally entangled
is shown for local dimension d = 3, the smallest dimension
in which the UBB is a conjecture. However, starting from
random seeds, for d = 3, 4 one step reduction of the linear
entropy is observed in about 10% of cases and for 1% of cases
in two consecutive steps. Further evidence that the algorithm
introduced is convergent comes from the fact that only fixed
points are allowed cycles; see Appendix B.

VI. KD(U ) FOR GENERAL U AND d:

A. Generalized algorithm

When U is dual-unitary, with V = U R, the UBB algorithm
converges such that u∞, v∞, u′

∞, and v′
∞ are all unitary. For

general U , not necessarily dual, with V = U R, remarkably
enough, the same algorithm still converges, although now
V is not in general unitary. Crucially, generally u′

∞ and v′
∞

are not unitary, and the overlap |〈v∞|v′
∞〉| = |〈u′

∞|u∞〉| =
|〈v∞|U R|u∞〉| determines the KD(U ). It is found that a vari-
ation of a few seeds u0 typically yields the maximum value
of this overlap, and hence KD(U ). It was verified that for dual
unitaries this algorithm yields KD(U ) = √

2d2 − 2d , as well
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FIG. 4. KD(U ) obtained from the algorithm vs the corresponding
analytical lower bound K∗

D(U ). This is displayed for random unitaries
sampled from the CUE of size d2 = 9 and random unitaries in the
neighborhood of dual unitaries (also magnified in the inset); number
of samples taken in each case is 103. The horizontal solid line is at
K2

D(U ) = K∗2
D = 12.

as gives consistent results for the qubit case, KD(U ) = K∗
D(U ),

and for the nondual-unitary cases in d > 2 where exact eval-
uations are available, such as the cases discussed below.

Figure 4 shows numerically converged values of KD(U )
for a sample of random realizations of U sampled from the
Circular Unitary Ensemble (CUE) and random unitaries in
the neighborhood of dual unitaries for d = 3. Crucially this
algorithm allows us to verify that there are no U such that
KD(U ) > K∗

D. The KD(U ) for random unitaries in the imme-
diate neighborhood of dual unitaries (near duals in Fig. 4) all
have values less than K∗

D as accentuated in the inset. Thus,
extensive numerical calculations support what seems intuitive:
the maximally entangled dual-unitary operator set is farthest
from product unitaries, and all of them are equally distant,
with KD(U ) = K∗

D. This justifies the concentric rings in Fig. 1.
Some partial analytical results in this context can be obtained;
for example, we show in Appendix C 1 that KD(U ) < K∗

D if U
is block-diagonal.

B. Case of diagonal unitaries

Diagonal unitary matrices have been studied from the point
of view of using them as approximate sources of 2-designs
[30], their entangling powers [31], and as important con-
stituents of quantum algorithms [32] such as Grover’s search.
In the context of this paper, they provide a simpler set of matri-
ces which are not dual-unitary, but share some properties with
these. In particular there is a special subset that has maximal
operator entanglement allowed for diagonal unitaries, whose
KD(U ) can be analytically calculated with a generalized ver-
sion of the UBB being explicitly valid. The special subset
consists of diagonal unitaries of size d2 constructed from a
(d × d) complex Hadamard matrix (CHM) [33] which are
unitary matrices filled with phases (up to normalization)

(uCHM) jk = eiφ jk /
√

d, (29)

with φ jk all real. A well-known important example of a com-
plex Hadamard matrix is the discrete Fourier transform, Fd =∑d

j,k=1 e2π i jk/d | j〉〈k|/√d , but the analysis below applies to
any CHM.

For a given d-dimensional uCHM, let

DH =
d∑

j,k=1

eiφ jk | jk〉〈 jk| (30)

be the corresponding diagonal unitary in Hd ⊗ Hd . Then

DR
H =

d∑
j,k=1

eiφ jk | j j〉〈kk| =
√

d uCHM ⊕ 0d2−d , (31)

where the d2-dimensional space is split into a direct sum
of the d-dimensional subspace {| j j〉, j = 1, . . . , d} and the
complementary d2 − d-dimensional space. It follows that
DR

HDR†
H = d Id ⊕ 0d2−d , and hence, from Eq. (2) and Eq. (16),

the Schmidt decomposition of DH is of rank d:

DH = 1√
d

d∑
j=1

mA
j ⊗ mB

j , DR
H = 1√

d

d∑
k=1

∣∣mA
j

〉〈
mB∗

j

∣∣, (32)

and all the nonzero Schmidt numbers are λi = 1/d , i =
1, . . . , d .

We now invoke the remarkable result [34] that for any
unitary matrix u, there exists a pair of unimodular vectors
|e1〉, |e2〉, consisting of pure phases, such that u|e1〉 = |e2〉.
Let |e1〉, |e2〉 be such a pair for uCHM. Define the d2 di-
mensional vector |e′

1〉 by 〈 jk|e′
1〉 = 0 if j 
= k and 〈 j j|e′

1〉 =
〈 j|e1〉, and similarly define |e′

2〉. It follows that DR
H |e′

1〉 =√
d|e′

2〉. Thus, we can take |mB∗
1 〉 = |e′

1〉 and |mA
1 〉 = |e′

2〉. The
other d − 1 orthogonal vectors |mB∗

j 〉, j > 1, can be taken to
be orthogonal to |e′

1〉, and |mA
j 〉 are defined by the action of DR

H

on them. Note that mA
1 and mB

2 are unitary as they are diagonal
and have only phases in them. Thus, in the Schmidt decompo-
sition of DH at least one pair (mA

i , mB
i ) may be chosen unitary.

Hence for this family of diagonal unitaries the lower bound
for KD(U ) in Eq. (5) is tight, and

KD(DH ) =
√

2d2 − 2d
√

d (33)

is strictly less than the distance of dual unitaries from nearest
products, namely, K∗

D, in Eq. (10).
In Fig. 5 K2

D(U ) is plotted for a random ensemble of diag-
onals D and perturbed DH diagonal unitaries for d = 3. The
perturbed DH diagonal unitaries are obtained by multiplying
the diagonal unitary obtained from a complex Hadamard ma-
trix (for example, a Fourier matrix) with diagonal unitaries
that are close to the identity matrix. For small values of
K∗

D(U ), there is a one-to-one mapping between K∗
D(U ) and

KD(U ) as the largest Schmidt value almost entirely determines
the nonlocal properties. For large values of KD(U ), there is a
correlation with K∗

D(U ), but also the numerical results point to
the role of other local unitary invariants as well. The value of
K2

D(DH ) in this case is ≈7.6, and we notice that all numerical
values are less than this, making it possible that KD(D) �
KD(DH ); that is, the CHM-based diagonal unitaries have the
largest value of KD within the subset of diagonal unitaries.
Indeed, they have the largest possible operator entanglement
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FIG. 5. KD(U ) obtained from the algorithm vs the correspond-
ing analytical lower bound K∗

D(U ). This is displayed for random
diagonal unitaries of size d2 = 9 and random unitaries in the neigh-
borhood of DH (also magnified in the inset); number of samples
taken in each case is 103. The horizontal solid line is at K2

D(DH ) =
18 − 9

√
3 ≈ 7.6.

E (U ); for a study of the operator entanglement in diagonal
unitaries, see [31].

C. KD(U ) for fractional powers of swap

Another family of unitary gates in d � 2 for which the
lower bound K∗

D(U ) is as tight as that of fractional powers
of SWAP defined as Sα = cos(πα/2) Id2 + i sin(πα/2) S; α ∈
[0, 1]. Unlike the previous example, (Sα )R is full-rank (except
for α = 0), with the largest singular value being distinct and
the others are equal. As the largest singular value corresponds
to the maximally entangled standard Bell state, we get that the
lower bound is still exact and

KD(Sα ) =
√

2d2 − 2d
√

d2 cos2(πα/2) + sin2(πα/2), (34)

which interpolates between 0, when α = 0, corresponding to
the identity operator, and the maximum K∗

D when α = 1 and
the SWAP gate is dual-unitary. Although in the examples above
KD(U ) = K∗

D(U ), it is important to note that such an equality
does not hold in general. This is shown for a class of unitaries
in Appendix C 2 where KD(U ) can be calculated analytically
and is strictly larger than K∗

D(U ).

VII. SUMMARY AND OUTLOOK

The distance of a general bipartite unitary on symmetric
subspaces to product unitaries has been considered here. This
has been considered as a resource from early on. Here we
relate this to dual-unitary operators showing in d = 2 that they
maximize the distance to nearest product unitaries. In d > 3,
we provide strong numerical evidence that this continues to
hold. This is equivalent to the proving a conjecture that every
bipartite unitary preserves the entanglement of a maximally
entangled state. We have presented a simple Sinkhorn-like
algorithm for finding such states for any bipartite unitary.

This is referred to as UBB in this paper, but was noted
earlier in the literature [29] where “mutually entangled states”
were considered. It is worth mentioning that this property
has been discussed therein from a geometric perspective of
nondisplacable manifolds. A recent work [35] has also found
use for the UBB property in the construction of unital gener-
alized transpositions.

A generalized version of the UBB, wherein the input ma-
trix is the realignment of unitary matrices, is also seen to exist
wherein a pair of maximally entangled states and nonmaxi-
mally entangled states form a periodic orbit under a algorithm.
The exploration of the existence of limit sets of these algo-
rithms is of interest as they in general seem to converge. It
indicates that a generalized version of UBB holds whenever
the operator (not necessarily unitary) is maximally entangled
or, equivalently, its realignment is unitary.

The case of diagonal unitary matrices presents a proxy
for the larger group; however, even in this limited subset
the KD(U ) problem is not fully resolved. The diagonals
constructed from complex Hadamard matrices form the equiv-
alent of the general dual-unitary matrices. In this case we
have been able to explicitly evaluate the distance to the near-
est product unitary, due to a remarkable result concerning a
Sinkhorn-like decomposition of a unitary matrix. However,
even here it is left unresolved that these maximize the dis-
tance to the nearest product unitaries, although again there is
excellent numerical evidence that such is the case.

Possible future directions, apart from proving the UBB
property, include the behavior of KD(U ) for other norms and
the preferred role of dual unitaries found here. It can be shown
that KD(U ) over the Hilbert-Schmidt distance is not smaller
than KD(U ) over other Schatten-p norms, p � 2, making it an
useful bound on circuit complexity. The case of multipartite
unitary gates is of natural further interest.
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APPENDIX A: STABILITY OF KD(U ) USING THE
HILBERT-SCHMIDT NORM

We prove the claim that the normalized Hilbert-Schmidt
strength measure is a stable function, i.e., f (U ⊗ I) = f (U ).
For simplicity, we show stability by adding a single ancillary
party to a bipartite unitary gate, but the extension to multi-
partite gates is trivial. If U is a unitary operator of dimension
d2 × d2 and Id ′ is an ancillary Identity operator of dimension
d ′, we have that

K2
D(U ⊗ Id ′ ) = min

uA, uB ∈ U(d )
uC ∈ U(d ′ )

2d2d ′

− 2Re[tr(U †(uA ⊗ uB ⊗ uC ))]. (A1)

022610-7



SHRIGYAN BRAHMACHARI et al. PHYSICAL REVIEW A 109, 022610 (2024)

Since we are interested in maximizing the function in the ex-
pression on the right, we can add a phase to the local unitaries
appropriately and make the expression real. Thus,

K2
D(U ⊗ Id ′ ) =2d2d ′− 2 max

uA,uB,uC

|tr((U † ⊗ I)(uA ⊗ uB ⊗ uC ))|

= 2d2d ′ − 2 max
uA,uB,uC

|tr(U †(uA ⊗ uB))tr(uC )|

= 2d2d ′ − 2d ′ max
uA,uB

|tr(U †(uA ⊗ uB))|.

This follows from the inequality, |tr(u)| = |tr(Iu)| �
tr|I| = d , where u ∈ U(d ) and equality holds when u = Id .
Therefore,

K2
D(U ⊗ Id ′ ) = d ′(2d2 − 2 max

uA,uB

|tr(U †(uA ⊗ uB))|)
= d ′K2

D(U ).

By appropriate normalization, K ′
D(U ) = KD(U )/

√
dim(U ),

the resultant function will be a stable strength measure.

APPENDIX B: FIXED POINTS IN THE UBB MAP

In this section we show that if the UBB algorithm discussed
in the main text converges to a cycle, the cycle is a fixed point.
Let us assume that the map has reached a period-n cycle for
some n. Each step has a corresponding projective distance,
and if this sequence decreases at any step of the cycle, it must
increase at some stage of the cycle which follows from the
periodicity of the cycle. As shown in the main text, these
projective distances are nonincreasing. Thus, in any period
cycle the projective distances are all equal.

Now, let us say that the map begins from the state that
corresponds to the first step of a period cycle. Then

d0 = min
|θ〉∈ME

‖U |φ0〉 − |θ〉‖2 = ‖U |φ0〉 − |φ1〉‖2. (B1)

However,

‖U |φ0〉 − |φ1〉‖2 = ‖|φ0〉 − U †|φ1〉‖2

� min
|w〉∈ME

‖U †|φ1〉 − |w〉‖2

= d1 = ‖|φ2〉 − U †|φ1〉‖2. (B2)

On expanding this expression, we see that this is equivalent to

|〈φ0|U †|φ1〉| = max
|w〉∈ME

|〈w|U †|φ1〉|.

It can be shown that there exists an unique maximally en-
tangled state obtained from the unitary part of the polar
decomposition that maximizes this expression [21]. This
means that in order for d0 = d1, |φ0〉 minimizes the r.h.s. of
the above equation and therefore, |φ2〉 = |φ0〉. This implies
that the map has reached a fixed point. In short, we show that
if there exists a period cycle in this map, it is a fixed point.

APPENDIX C: ANALYTICAL CONSIDERATIONS OF KD(U )
FOR BLOCK-DIAGONAL UNITARIES

1. Upper bound of KD(U ) for block-diagonal unitaries

We illustrate a proof that KD(U ) �
√

2d2 − 2d = K∗
D for

the special family of block-diagonal unitaries. Let U be a

block-diagonal consisting of d × d unitary blocks ui, i =
1, . . . , d:

K2
D(U ) = 2d2 − 2 max

uA,uB

|tr(U †(uA ⊗ uB))|,

= 2d2 − 2 max
uA,uB

|trA(trB(U †Id ⊗ uB)uA)|,

= 2d2 − 2 max
uA,uB

|M uA|,

where M is a d × d diagonal whose ith diagonal element is
tr(u†

i uB). Using the inequality maxu |tr(A u)| = ‖A‖1,

K2
D(U ) = 2d2 − 2 max

uB

d∑
i=1

|tr(u†
i uB)|.

From here, it is clear that for all v ∈ U(d ),

K2
D(U ) � 2d2 − 2

d∑
i=1

|tr(u†
i v)|.

Let v = u1, the first block in U for instance, then

K2
D(U ) � 2d2 − 2d − 2

d∑
i=2

|tr(u†
i v)| � 2d2 − 2d,

which concludes our proof. In fact, it can be shown that
K2

D(U ) < 2d2 − 2d , which is consistent with the fact that no
block-diagonal unitary is dual [6].

2. KD(U ) for a near-Identity class of block-diagonal unitaries

In this subsection we discuss a simple class of block-
diagonal unitaries which are Identity, except for one of the
elements, which is changed to −1. Let

UCZ = Id2−1 ⊕ −1 = Id2 − 2|d2〉〈d2|.
Note that for d = 2, UCZ it is the well-known controlled Z
(CZ) gate. For UCZ

K2
D(UCZ) = 2d2 − max

u∈U(d )

d−1∑
i=0

(d − 1)|tr(u)| + |tr(Mu)|,

where M = Id − 2|d〉〈d| is the nontrivial (last) block in UCZ.
The maximization in this case is analytically tractable, and

it can be shown that

KD(UCZ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2
√

2 − √
2 ≈ 1.53 for d = 2,√

18 − 10
√

2 ≈ 1.96 for d = 3,

2 for d � 4.

(C1)

Note that for d > 2, KD(UCZ) > K∗
D(UCZ) and the lower

bound for KD(U ) is not tight; KD(U ) > K∗
D(U ) for all d > 2.

It is remarkable that KD(U ) becomes independent of d for d >

3. In fact it can be shown that K∗
D(U ) = 2 − 2/d + O(1/d2),

and approaches KD(U ) for large d .
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