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Preparation of bosonic and general cavity quantum states usually relies on using open-loop control to reach
a desired target state. In this work, a measurement-based feedback approach is used instead, exploiting the
nonlinearity of weak measurements alongside a coherent drive to prepare these states. The extension of previous
work on Lyapunov-based control is shown to fail for this task. This prompts for a different approach, and
reinforcement learning (RL) is resorted to here for this purpose. With such an approach, cavity-eigenstate super-
positions can be prepared with fidelities over 98% using only the measurements backaction as the nonlinearity,
while naturally incorporating detection of cavity photon jumps. Two different RL frameworks are analyzed:
an off-policy approach recently introduced called truncated quantile critic (TQC) and the on-policy method
commonly used in quantum control, namely proximal policy optimization. It is shown that TQC performs better
at reaching higher target state fidelity preparation.
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I. INTRODUCTION

Quantum states in the Hilbert space of microwave cav-
ities have been at the forefront of recent efforts towards a
fault-tolerant quantum computer [1–3]. Improvements in the
coherence times of cavities, along with the well-understood
and highly biased noise hints at a scalable path using such
devices. Indeed, a whole class of bosonic codes, that is, en-
coding information in the multiple energy levels of harmonic
oscillators, is being developed [4,5].

Preparation of states with such encodings can, however,
be challenging, using for instance dissipative or adiabatic ap-
proaches for the cat states [6–8]. More general bosonic states,
such as binomial code states or arbitrary superpositions, rely
on open-loop protocols [9–15]. While arbitrary states can
be prepared this way, these techniques do not exploit the
advantages made possible by feedback approaches, namely
their added robustness. Indeed, even if full unitary control is
available, there is no guarantee that one can recover from an
error such as a cavity jump occurring during state prepara-
tion. By repeatedly monitoring the cavity state during state
preparation, one can adjust the control action as necessary in
a feedback loop, while using the same physical architecture as
for an open-loop approach.

Deterministic state preparation using feedback has been
demonstrated through the pioneering work of Haroche’s
group, whereby cavity eigenstates were prepared using the
backaction from weak measurements as a decimation proce-
dure [16,17]. Similar approaches have also been developed
for both superconducting and semiconductor qubits, us-
ing either classically inspired feedback techniques [18] or
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reinforcement learning approaches [19,20]. In these works,
however, only eigenstates are being prepared. Recently,
Porotti et al. [19] extended this idea using continuous-time
multiplexed measurements [21] to prepare both single Fock
states and superpositions. Preparing superpositions, however,
proved to be more challenging with relatively low state prepa-
ration fidelities, and was restricted to a limited set of states.

The present work focuses on preparing cavity-state su-
perpositions in a circuit quantum electrodynamic (cQED)
architecture [22–24], using a generalized version of the mea-
surements used by Haroche’s group. It is shown that careful
choice of these measurements, and therefore of their backac-
tion on the cavity’s state, allows reaching target states with
high fidelity, but at the cost of a more elaborate optimiza-
tion procedure. Indeed, Haroche’s method crucially relied on
having the cavity Fock states being the fixed points (eigen-
states) of the measurement operators. The control problem
was therefore simplified to bring the current cavity state near
the targeted fixed point, with the measurement backaction
playing the role of an attractor, hence allowing asymptotic
convergence [25]. Extending Haroche’s approach to prepare
superpositions of cavity eigenstates is, however, not direct. As
discussed in Refs. [26–29], degeneracies of the measurement
operators eigenvalues, while necessary to stabilize superposi-
tions, makes whole subspaces invariant under these operators.
In such cases, relying on the measurements backaction alone
will only ensure convergence towards the subspace containing
the target state. To counteract this, one would need to add a
second Hamiltonian control term to lift the degeneracies [28].
However, additional control introduces new error pathways,
and makes the whole control protocol more complex. Such
an approach will thus not be pursued here. Since previous
approaches can only converge to subspaces, this raises the
following question: Is it possible to find a controller that
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allows convergence to specific state superpositions with high
fidelity without additional Hamiltonian control terms? This is
the question addressed in the present work.

A further limitation in the present work is that only co-
herent displacements can be applied to drive the cavity. The
limited control problem is interesting in its own right, as it
puts forward the question of how to interact in an optimal
way with the quantum backaction resulting from repeated
weak measurements. A recent research direction addressing
this question has been to make use of reinforcement learning
(RL) [30] as an optimization method to find such optimal
controls [31], through the underlying formalism of quantum-
observable Markov decision processes [32], the quantum
analog of the classical RL framework.

A significant body of work has thus studied RL methods to
optimize the controls of quantum systems without feedback
[33–45], focusing mostly on state transfer and gate synthesis.
To note, Zhang et al. studied different optimization algorithms
and found that deep Q-learning and policy gradient method
to perform best in an open-loop state preparation task with
discretized controls [36]. They, however, did not consider
continuous controls to which off-policy actor critic architec-
tures, which are known to have the best sample efficiency and
performances in continuous actions settings [46–48], but are
more fragile to train [30].

Of greater interest to the present work is another use of
RL methods to design real-time controllers, thereby imple-
menting quantum feedback. Along this line, Reuer et al. [20]
showed the experimental viability with an RL agent doing
real-time feedback during the readout of a superconducting
qubit. RL has also been used to devise a feedback strategy for
noise tailored error correction [49], for parameter estimation
[50], to counteract the drift of a continuously monitored qubit
[51], as well as to mitigate errors induced by nonadiabatic
evolution [52]. Another line of work has been to employ RL to
derive optimal policies for the cooling of potential wells, with
added backaction induced by measurements in the quantum
domain [53,54]. In addition, Refs. [55,56] used the measure-
ment basis as a control variable for the RL agent to steer a
given state to the target, while Porotti et al. [19] exploited
instead the strength of continuous homodyne measurements
to prepare superpositions of Fock states.

In the present work, the large state space along with the
high variance of the dynamics coming from random measure-
ment outcomes makes the preparation of state superpositions
with RL challenging. Another objective of the present paper
is thus also to pinpoint an RL method able to handle such
dynamics and provide for convergence to specific desired
cavity-state superpositions.

The rest of this paper is structured as follows. In Sec. II,
the cQED model considered is defined with its allowed mea-
surements and controls. We develop the theory showing that
with the available measurements, only certain subspaces of
superpositions can be stabilized. Considering this limitation,
the control problem is then considered in the light of RL.
Section III presents results for the ideal decoherence free
setting as well as when decoherence is present. While de-
coherence reduces the state preparation fidelities that can be
achieved, state-of-the-art devices operate in a regime where
our approach allows the stabilization and recovery from

photon jumps in the cavity. In Sec. IV, the learned behavior of
the RL agent is analyzed, comparing its optimal policy with
other approaches, namely an on-policy RL agent along with a
Lyapunov function-based controller.

II. SYSTEM DEFINITION AND CONTROL APPROACH

A. System considered

A standard cQED architecture is considered here, in which
a qubit is dispersively coupled to one mode of a microwave
cavity, with the following Hamiltonian:

Hsystem = ωcN + ωq

2
σz + χN σz, (1)

subject to a resonant control drive on the cavity given by

Hcontrol = i(εa† − ε∗a). (2)

Here, N = a†a is the number operator, with a and a† be-
ing, respectively, the annihilation and creation operators of
the cavity mode, and χ is the dispersive coupling strength
between the qubit and the cavity mode. Associated with the
control Hamiltonian is the displacement operator given by

D(α) = eαa†−α∗a, (3)

with α = εt , the coherent resonant drive amplitude. Assuming
the cavity to be in state |ψ〉, then after application of the
resonant control drive it becomes |ψ ′〉 = D(α)|ψ〉. In the case
the density operator ρ is used to specify the state rather than
the state vector |ψ〉, then the state ρ ′ after application of the
drive is given by

ρ ′ = D(α)ρD(α)† = D(α)ρD(−α). (4)

This transformation of ρ into ρ ′ can be written in superopera-
tor form as [16]

ρ ′ = D(α)ρ. (5)

In the dispersive regime, no energy exchange occurs be-
tween the qubit and the cavity mode. Instead, the cavity
experiences a light shift depending on the state of the qubit,
while the latter experiences a phase shift depending on the
cavity’s state. As detailed below, this interaction is at the core
of the present proposal, with the phase information acquired
by the qubit updating the knowledge about the cavity’s state. It
will be seen that the backaction from qubit measurements then
acts as a decimation procedure to prepare a target quantum
state in the cavity [17]. This backaction is thus a resource for
controlling the cavity.

The measurement scheme’s full sequence, as shown in
Fig. 1, starts by preparing the qubit in state |+〉 = |e〉+|g〉√

2
by

applying a π/2 pulse on it, where |g〉 and |e〉 are, respectively,
its ground and excited states, and then letting the qubit interact
with the cavity for a given interaction time tint. After the
interaction, the qubit and cavity evolve to the state

|
〉 = 1√
2

(|g〉 ⊗ e− i
2 (φ0a†a+δφ)|ψ〉 + |e〉 ⊗ e

i
2 (φ0a†a+δφ)|ψ〉),

(6)
where φ0 = tint · χ is the phase shift per photon present in the
cavity, which is an experimentally tunable parameter, δφ is a
constant phase shift whose exact form is not important here,
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FIG. 1. Schematic of the measurement scheme for a single feed-
back cycle. A π/2 Ramsey pulse is applied to the qubit initially in
state |e〉 to prepare the qubit’s |+〉 state. After interaction between the
qubit and cavity for a given time (interaction time), the qubit’s state,
which has now become dependent on the cavity’s state that prevailed
prior to the interaction, is projected back onto its energy eigenbasis,
and subsequently measured. This Ramsey protocol implements a
weak measurement of the cavity’s state.

and |ψ〉 is the state of the cavity. Applying a second π/2 pulse
projects the qubit back onto its energy eigenbasis, with the
measurement probabilities determined by the phase between
the two superposed qubit eigenstates, a procedure known as
Ramsey interferometry. In the case the cavity is in one of its
eigenstate |n〉 (number state or Fock state), the state of the
qubit after interaction can be written as

|q〉 = |e〉 + ei(φ0n+δφ)|g〉√
2

. (7)

This can be seen as the cavity state |n〉 imparting a phase
φ0n + δφ to the initial qubit superposition (|e〉+|g〉)√

2
. To each

cavity eigenstate |n〉, there corresponds a direction on the
equatorial plane of the qubit’s Bloch sphere, this direction
being specified by the angle φ0n + δφ. In this case, Ramsey
interferometry allows the weak QND measurement of the
number of photons in the cavity [57]. Such weak measure-
ments combined with coherent drive excitation of the cavity
was the building block of the iterative measurement-based
quantum feedback (MBQFB) control approach pioneered by
Haroche et al. to prepare cavity Fock states using atoms in
Rydberg states as probe qubits [16,17] (also called ancilla or
auxiliary qubits in the error-correction literature).

B. Stabilization scheme

Owing to the dispersive interaction between the microwave
cavity and the qubit, the backaction on the cavity’s state
following a measurement of the state of the qubit giving as
outcome e or g is obtained through the following measurement
operators:

Mg = cos

(
φ0N − ϕR

2

)
, (8)

Me = sin

(
φ0N − ϕR

2

)
. (9)

Here, ϕR = φR − δφ, where φR is the phase of the second
π
2 Ramsey pulse relative to the first one, which is a tunable
parameter. More precisely, assuming the cavity to be in state

|ψ〉 prior to a measurement of the qubit, and given that the
qubit is measured to be in state s, with s = e or g, the state
of the cavity after the qubit measurement is |ψ ′〉 = Ms|ψ〉. If
the density operator is used instead of the state vector, this
becomes

ρ ′ = MsρM†
s

tr(MsρM†
s )

, (10)

which in superoperator form is written as

ρ ′ = Msρ. (11)

To prepare a cavity-Fock-state superposition with an itera-
tive feedback loop protocol in which a measurement operator
Me or Mg affects the cavity’s state in each loop, similarly to
the protocol of Haroche et al. for preparing single Fock states,
it is necessary that the targeted-Fock-state superposition be
left unchanged by the measurement’s backaction so as to keep
stable the state reached upon convergence of the feedback
loops. This means that the Fock-state superposition must be
an eigenstate of both measurement operators. For simplicity,
taking as target the two-state superposition

|ψ target〉 = c1|n1〉 + c2|n2〉, (12)

where without loss of generality n2 > n1, the following con-
ditions must therefore hold:

Mg|ψ target〉 = λg|ψ target〉,
Me|ψ target〉 = λe|ψ target〉.

(13)

These conditions translate to

cos

(
φ0n1 − ϕR

2

)
= cos

(
φ0n2 − ϕR

2

)
,

sin

(
φ0n1 − ϕR

2

)
= sin

(
φ0n2 − ϕR

2

)
.

(14)

Since both cosines and sines must be equal, the arguments
must be equal to within 2πk, with k an integer, which imposes
that the phase shift per photon be of the following form:

φ0 = 4πk

�n
, (15)

with �n = n2 − n1 (k = 1 is used in the sequel). It is to be
noted that only �n matters in φ0. Furthermore, it is eas-
ily seen that the argument for the two-state superposition is
readily generalizable to an arbitrary superposition of Fock
states whose numbers differ by �n. Thus, entire subspaces
containing Fock states with numbers differing by �n can be
stabilized. Specifically, for a given �n that can be chosen,
leading to a specific value of φ0, states in the following sub-
spaces can be stabilized by the measurement operators:

W �n
0 = span{|0〉, |�n〉, |2�n〉, . . .},

W �n
1 = span{|1〉, |1 + �n〉, |1 + 2�n〉, . . .},

...

W �n
m = span{|m〉, |m + �n〉, . . . |m + l�n〉, . . .},

...

W �n
�n−1 = span{|�n − 1〉, |2�n − 1〉, |3�n − 1〉, . . .}. (16)
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FIG. 2. Example of the mapping between stabilizable subspaces
W �n

m and directions in the equatorial plane of the qubit’s Bloch sphere
in the case �n = 5 (φ0 = 4π/5).

These subspaces W �n
m , m = 0, . . . ,�n − 1, will be called

the stabilizable subspaces. It is seen that each basis state in
the generic subspace W �n

m contains a number n of photons
such that n mod �n = m. Only superpositions of Fock states
living inside each of these subspaces can be prepared using
the iterative measurement feedback protocol described above.
While the conditions given in Eq. (13) restrict the state su-
perpositions that can be prepared, the modulo nature of the
number of photons contained in the stabilizable subspaces is
a resource that is exploited in many bosonic codes that allow
for error correction [5].

Similarly to the discussion following Eq. (7) about the
effect on the qubit-state superposition when the cavity is in
a Fock state, here any cavity state in a stabilizable subspace
W �n

m imparts the same phase ��n(m) on a qubit superposition.
Indeed, the qubit state after interaction with the cavity in such
a state is given by

∣∣q�n
m

〉 = |e〉 + ei�(W �n
m )|g〉√

2
, (17)

with �(W �n
m ) ≡ �(m + l�n) = ��n(m) = 4πkm

�n + δφ

(mod 2π ). Hence, each subspace W �n
m is mapped to its own

direction in the equatorial plane of the qubit’s Bloch sphere,
since all basis vectors |m + l�n〉 in this subspace are mapped
to the same angle ��n(m), which does not depend on l .
Figure 2 illustrates an example for �n = 5. It is to be noted
that in the case �n = 2p is even, with p a positive integer,
the subspaces with indices m and m + �n/2 will be mapped
to the same angle ��n(m) (mod 2π ) in the equatorial plane.
Furthermore, if �n = 2p, with p even, that is �n = 4r, with
r a positive integer (r = 1, 2, . . .), stabilizable subspaces
with indices m and m + �n/4 will be mapped to angles
��n(m) opposing in the equatorial plane [i.e., angles that
differ by π (mod 2π )]. Since the case �n = 4r is a particular
case of �n = 2p, it means that in the case �n = 4r, four
subspaces, namely the subspaces with indices m, m + �n/4,
m + 2�n/4, and m + 3�n/4 will be mapped on the same
angle or opposing angle (in fact two on the same angle and
the other two on the opposing angle). The significance of this
is that it is not possible to discriminate subspaces, which are
mapped to the same angle (mod 2π ) through the probabilities
of the measurement outcomes e or g when measuring the
qubit. However, as discussed below, by an appropriate choice
of ϕR, subspaces that are mapped to opposing angles, can be
discriminated through the probabilities of the measurement
outcomes for the qubit (note that for example if ϕR is
taken equal to π/2, that is when the Ramsey interferometer

operates at midfringe as is often done [16], then one cannot
discriminate subspaces with opposing angles).

Odd and even stabilizable subspaces

A 4π factor appears in the numerator of Eq. (15), as op-
posed to the 2π more often seen in usual parity measurements
[58]. This is caused by the necessity of having the same eigen-
value for all superposed states after a measurement, rather
than preserving the same measurement probability for these
states. Indeed, setting the prefactor as 2π would imply to keep
track of an alternating phase between each measurement for
the corresponding Fock states, which have nonzero popula-
tion. Such tracking of the phase is possible in superconducting
circuits, as it is always possible to know when a system mea-
surement is carried out.

To determine the value of the parameter φ0 in the mea-
surement operators, this implies that setting a 4π factor for
odd subspaces leads to an adequate subspace stabilizer, with
no overlapping problem. For even subspaces, the only option
is to choose a 2π factor to prevent the overlapping, and then
resort to phase tracking.

The second parameter defining the measurement operators,
ϕR, is free. Dotsenko et al. [16] is followed here, and its value
is set at midfringe visibility for odd �n subspaces. On the
Bloch sphere representation, this means the projection axis
is perpendicular to the target subspace. For even subspaces,
each vector on the Bloch sphere is always opposing another
one, which prevents the use of a perpendicular projection axis.
Rather, φR is set at an angle of 2π

5 from the target subspace, a
value chosen so that all subspaces can be assigned a different
probability of being measured in either |g〉 or |e〉.

C. Control decision problem

As mentioned in the introduction, conventional con-
trol techniques to stabilize specific superpositions such as
Lyapunov-based control are difficult to implement, and are
bound to get trapped in local minima, as the measurement
backaction stabilizes the whole subspace consisting of super-
positions of states with n mod �n photons. In this context,
designing a Lyapunov function that decreases monotonically
towards the target state rather than the target subspace is not
straightforward, if possible at all. Such an approach would
prevent both large early displacements in the feedback se-
quence that temporarily move the state further from the target,
as well as small displacement corrections within the target
subspace. To overcome this difficulty, a reinforcement learn-
ing (RL) approach is used herein, which in principle can learn
the system dynamics directly in a model-free manner from the
experimental apparatus.

While previous work on feedback RL-based quantum con-
trol in continuous actions spaces has mainly focused on
on-policy architectures [19,52,54], here use is made of the
more sample efficient off-policy learning paradigm. Specif-
ically, an actor-critic architecture is resorted to, where the
actor network updates its policy by deriving optimal state-
action tuples from the Q function learned by the critic. In
contrast to Monte Carlo-based methods such as proximal
policy optimization (PPO), the critic here bootstraps state-
action estimates in the update of its own Q function, which
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reduces the variance in the reward estimate. However, this
also increases sensitivity to bias in the estimator, which can be
problematic in stochastic setting, and lead to overestimation
of the Q function [59]. To prevent this, a distributional RL
approach [60,61] is used here, which learns the Q function
by regressing over the distribution of the returns, rather than
their mean. Although it is still unclear what makes such
an approach more stable, it is believed to help Q learning
when using nonlinear functions approximation [62], by pro-
viding richer information about the environment dynamics.
Additionally, a recent algorithm has been introduced, called
truncated quantile critic (TQC), which builds a distributional
version of the Q function on top of a soft-actor critic algo-
rithm. TQC allows for finer control of overestimation bias, and
has demonstrated superior performance compared to other
state-of-the-art algorithms, particularly in high-dimensional
stochastic environments [48]. Here, the TQC implementation
from STABLE-BASELINES3 [63] is resorted to, whereas the spe-
cific hyperparameters used can be found in Appendix A.

Finally, the reward function must be defined. Its for-
mulation is critical in guiding the agent towards achieving
maximum fidelity with respect to the target state, using as few
feedback cycles as possible. Similar to Porotti et al. [19], it
was found, for the present purposes, that a reward consisting
of higher powers of the fidelity was most effective to prevent
convergence to a local optimum. Defining the fidelity between
two density matrices as

F (t ) = (tr
√√

ρ(t )ρ target
√

ρ(t ))2, (18)

the reward function is chosen to be

r(t ) = (F (t ))4 + 4 (F (t ))25. (19)

The choice of the form of the reward function was guided
by heuristics, and the specific numerical values of the expo-
nents (4 and 25) and coefficients (1 and 4) were empirically
chosen so as to give agents, which reach highest fidelities. The
right-hand side of Eq. (19) includes two terms that influence
the training process. The first term helps to accelerate training
by providing a dense reward to the agent, whereas the second
ensures that the maximum reward available is sharply peaked
near unit fidelity. This borrows from approaches found in cur-
riculum learning [40,64], where the agent is given guidance in
a first step on how to reach the correct subspace, and then in a
second step on how to reach the actual target state inside this
subspace.

D. Quantum filter

To use a neural network to process the sequence of mea-
surement outcomes e or g, it is necessary to incorporate some
form of memory of past inputs into the network. One option is
to use a recurrent neural network, which can process sequen-
tial data by using feedback connections that allow information
to be passed from one time step to the next.

Alternatively, the density matrix of the cavity state can be
used as an input vector, which encodes all past information
about the system. This approach requires using a quantum
filter to estimate the cavity state recursively, using the dis-
placement drive α and measurement outcome as inputs at each
time step. A quantum filter, which provides a state estimator

analogous to a Kalman filter in classical control theory, allows
obtaining in the computer an estimate of the true state of the
physical system of interest in real time.

Here, as input vector, use is made of the vectorized density
matrix of the cavity state, separated into two parts to account
for both real and imaginary components. For target states
that do not contain any imaginary part, only the real com-
ponents are kept to minimize the network dimensions. The
cavity state is therefore estimated recursively using a quantum
filter. Following Haroche’s group previous work [16,17], and
in absence of decoherence, this filter can be expressed in
superoperator form as

ρt+1 = Mt Dt ρt , (20)

with ρt being the cavity density matrix estimated at time step
t , and ρt+1 being the estimate at the next time step t + 1. Mt

and Dt are, respectively, the measurement and displacement
superoperators at time step t associated with the measurement
operators given in Eqs. (8) and (9) and the displacement oper-
ator given in Eq. (3).

For states with a relative phase, the RL agent outputs two
actions, corresponding to the real and imaginary parts of the
displacement amplitude α, which are limited to be in the in-
terval [−1,+1]. In the case of a state without a relative phase,
the agent outputs only one action for the real component of the
displacement. The cavity is initialized as an educated guess
to a coherent state with mean energy similar to that in the
target-Fock-state superposition. The initial cavity state for the
feedback sequence is then

ρt=0 = D
(
αguess

)|0〉〈0|,
where the modulus of αguess is given by the mean photon
number of the target state. its exact form is then given by
αguess =

√
neiθ with θ the relative phase between the super-

posed states. After that initial displacement, the agent is then
allowed to make an additional one before the measurement
sequence in order to fine tune the initial guess.

In the absence of quantum jumps and other decoherence
channels, this filtered density matrix corresponds exactly to
the cavity state. Below in Sec. III B, this filter, along with the
cavity-state evolution, will be modified to account for noise
in the system. The general structure of the feedback loop just
described is summarized in Fig. 3.

III. RESULTS

A. Idealized case

An idealized case is first considered, in which measure-
ments are assumed perfect and the cavity is not subjected
to decoherence such as decay and dephasing. Simulations
rely on the stochastic evolution of trajectories, updating the
cavity-state density matrix at every feedback cycle, according
to the recursive quantum filter of Eq. (20). During training, the
maximum number of feedback cycles per episode is limited
to 50, and the cavity Hilbert space is truncated to n = 29
photons. Whenever the photon number population in the Fock
states n = 28 or n = 29 is above a 2% threshold, the episode is
stopped to prevent the RL agent from being biased by Hilbert
space truncation. Figure 4 depicts the training curves for three
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FIG. 3. Schematic of the RL procedure. The cavity state is es-
timated by a quantum filter F , which is fed as input to the actor.
The actor then outputs a displacement amplitude to be applied to
the cavity. At every step, the critic samples from a buffer of past
experiences to approximate the Q function. During policy iteration,
the actor optimizes its policy with the Q function learned by the
critic.

different bosonic states, obtained by averaging final states
fidelities obtained for 600 trajectories.

The state |ψ〉 = (|1〉 + |4〉)/
√

2 is significantly harder to
learn for the agent, in part because it has support on only two
Fock states. As such, it is harder to control leakage to other
states inside the stabilized manifold. This is similar to the
limitations of a Lyapunov-based controller, which stops once
the state reaches the target subspace, rather than the target
state. This state will thus be taken as a benchmark to explore
the behavior of the feedback protocol further on.

Figure 5 shows two examples of trajectories that reach
the target state |ψ〉 = (|1〉 + |4〉)/

√
2, starting from an initial

coherent state of amplitude equal to the square root of the
target state’s mean photon number as mentioned previously.
Both cases converge within about five feedback cycles. The
trajectory in the top panel converges monotonically towards

FIG. 4. Training curves of the TQC RL agent for: (i) a three-
components cat state with mean photon number n = 3 (red), (ii) an
equal superposition of the two kitten binomial logical states (light
blue), and the state |ψ〉 = 1√

2
(|1〉 + |4〉) (dark blue). On the right are

the Wigner functions for prepared states, evaluated after training and
compared with the target state.

FIG. 5. Trajectory examples for the preparation of the state
|ψ〉 = (|1〉 + |4〉)/

√
2, with Hinton plots of the density matrix at

different steps during the preparation sequence. A monotonically
increasing fidelity state preparation is shown in the top panel, and the
bottom panel shows a trajectory that requires stronger control drives
to recover from a sequence of measurements projecting away from
the target state.

the target state, although with the presence of some leakage
to the |n = 7〉 Fock state. The trajectory shown in the bot-
tom panel does not show such leakage, but requires larger
displacements to converge to the target state. This illustrates
a key benefit of reinforcement learning (RL): as it directly
learns the control dynamics from experience, it can handle
nonlinearities in the control space that are essential for fast
convergence, but difficult to handle analytically.

Figure 6(a) shows the time evolution of the fidelity with
a fully trained RL agent. It is seen that the mean fidelity
increases slowly compared to the median, Also, 75% of the
trajectories are above 98% fidelity after about ten feedback cy-
cles. Comparing this RL agent to a Lyapunov function-based
controller (see its derivation in Appendix B), Fig. 6(b) shows
the fidelity distribution at the end of a 50 cycles sequence.
The RL framework outperforms the Lyapunov controller, as
its fidelity distribution is clearly above that obtained with Lya-
punov control. Remarkably, it also does so without increasing
the amount of unsuccessful state preparations. Section IV
further explores the disparities in the two approaches.

Performances of fully trained RL agents for the preparation
of a variety of bosonic states are shown in Fig. 6(c). While
some of the states correspond to an equal superposition of
two photon number states, the logical states presented in the
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FIG. 6. (a) Time evolution of the state for the preparation of
the (|1〉 + |4〉)/

√
2 target state, showing the median with its 25–75

percentile distribution (shaded area) as a function of time, with the
mean converging slower than the median to the target state. Most
of the state preparation occurs within the first ten feedback cycles.
(b) Distribution of the final fidelities in (a) for the RL agent alongside
a Lyapunov function-based controller. In the inset, it can be observed
that the RL procedure converges to higher fidelities, preventing early
stopping due to local optima. (c) Final fidelities distribution for a set
of different cavity states. All states have most of their distributions
above the 95% mark, even for more difficult binomial encodings.
Here, Bin corresponds to the binomial code with support on number
states {0, 3, 6, 9}. The multicomponent cat states are defined on the n
mod 3 = 0 number states for the three-cat state and on n mod 4 = 1
for the four-cat state.

figure all correspond to superpositions of multiple number
states with different amplitudes. It is observed that having
larger superpositions does not necessarily result in increased
difficulties, i.e., lower state preparation fidelities. Based on
the specific states targeted, we rather interpret it in that the
difficulty lies, in part, in how far the envelope of the tar-
get state amplitudes is to that of a coherent state photon
distribution. Indeed, in the absence of any feedback, the mea-
surements employed here act as projection operators onto
a given subspace. For the case of cat states, applying such
projectors to an initial coherent state generates a cat state
of corresponding generalized parity. As such, the feedback
control from coherent displacements is mainly used, for these
cat states, to steer the state towards the right subspace. This
could explain why the two studied cat states show the highest
fidelities. Furthermore, for target states that differ from a cat
state, the controller has to finely control the amplitudes and
leakage, which is a harder task due to the limited control of
the coherent drive. In all cases, average fidelities are above
96.6%, with the median consistently above the average by
about 2%. Similar to the previous case, the distribution is

sharply asymmetric, with only a handful of trajectories fail-
ing to converge towards the target state after 50 cycles. In
a real experiment, as the fidelity of each specific trajectory
is tracked with the quantum filter, one could simply discard
any trajectory that fails to converge after a given prefixed
number of feedback cycles. Such heralded state preparation
has already been realized experimentally [65]. This illustrates
a main advantage of measurement-based feedback over open-
loop control, and the reason why the median fidelity metric is
in this case more representative of the performance than the
mean for the proposed scheme.

Unsurprisingly, states with higher mean photon population
have lower fidelities, which is likely due to the need for
larger displacement drives to prepare these states. These larger
drives tend to populate other Fock states within the stabilized
subspace. This could be improved by varying the phase shift
per photon in time to decimate these in-subspace Fock states,
or by directly leaving the measurement parameters as addi-
tional controls for the RL agent as in Ref. [66].

It was also observed empirically that a smaller �n requires
less feedback cycles, caused by the larger sensitivity of the
measurements to changes in m (i.e., more efficient discrimina-
tion between different subspaces). This makes the backaction
stronger, hence decimating the population in other subspaces
faster. Interestingly, superposition states that contain a |0〉
component have higher fidelities and less dispersion in their
distribution. A possible explanation is that the |0〉 state is a
lower bound of the Hilbert space, in the sense that there cannot
be negative numbers of photons. Along with the nature of the
coherent drive, which has a decreasing exponential envelop,
this possibly lowers the probability of a transition to another
subspace. Such features of the control drive and environment
may make it easier for the agent to find the best policy for
preparing superpositions.

B. Realistic case with decoherence and imperfections

Decoherence adds additional loss channels to the system
Hamiltonian, with the master equation in Lindblad form now
governing the evolution of the state density operator, and
given in the rotating frame by

dρ

dt
= Lρ = κ

(
aρa† − 1

2
(a†aρ + ρa†a)

)
, (21)

where the cavity is assumed to be at zero temperature, so
that only photon decay contributes to decoherence. Because
of the negligible intrinsic dephasing rate of superconducting
cavities, photon loss is therefore the only decoherence channel
affecting the cavity considered here [67].

Errors coming from the probe qubit are, however, taken
into account, as these impact the resulting backaction on the
cavity, given by the updated filter terms in Eq. (20) [see also
the upcoming Eq. (25), which takes measurement errors into
account]. Since qubit T2 errors commute with the interaction
Hamiltonian, they can be considered as occurring after the
interaction. Such errors have an effect that is similar to mea-
surement errors, since both are induced by the σz operator. As
for qubit T1 errors, which would dephase the cavity, an error
transparency method is considered, where relaxation events
do not impact the cavity state [68]. So, it is assumed here that
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our protocol is T1 fault tolerant. In summary, qubit errors are
modeled in the simulation as an effective σz type error, with
the effective decoherence rate being the sum of measurement
and T2 errors.

1. Quantum filter and simulation

As the agent input should consist of the best possible esti-
mate of the true quantum state of the cavity, the filter update
equation [Eq. (20)] needs to be adapted to account for the de-
coherence channels mentioned above. In the simulations, two
distinct density matrices are evolved. One evolution concerns
the true cavity state, where photon loss events correspond
to discrete quantum jumps. This is thus a simulation of the
true physical system. The other evolution provides a filtered
estimated state of the cavity, which does not have access to
these discrete jumps. This filtered estimated state is indeed the
only information available about the actual state in practice
for control purposes (built from measurements of the true
system), since having full information about the state is im-
possible. The latter evolution estimates the cavity relaxation
using a first-order expansion of the Lindblad dissipator given
in Eq. (21), which can be added to the filtering equation with
a superoperator of the form

Tρ = (1 + TcavL)ρ, (22)

where Tcav is the cavity lifetime. In the case of a discrete
jump, the filter will then move away from the actual cavity
state, while subsequent measurements obtained from the true
cavity simulation will update the filter until it converges back
towards the real cavity state. This is the beauty of quantum
filtering, which is analogous to Kalman filtering in classical
control theory, as it is able to improve the estimate of the
state as information is accumulated over time, consisting of
the known measurements results obtained and the actions
performed on the system.

Due to the finite measurement accuracy of the probe qubit,
the resulting estimated state is a statistical mixture of the
two possible outcomes. This is taken into account with the
following superoperators

Peρ = (1 − Pf ,e)Meρ + Pf ,eMgρ, (23)

Pgρ = (1 − Pf ,g)Mgρ + Pf ,gMeρ, (24)

where the weights Pf ,e and Pf ,g of each measurement operator
depend on the erroneous state assignation probabilities ηe|g
and ηg|e in a measurement. Following Ref. [17], in the case
of a measurement that delivers e, whereas it should have been
g, the weight is given by Pf ,g = ηe|gPe/[(1 − ηe|g)Pg + ηe|gPe],
where Pe = tr(MeρM†

e ) and Pg = tr(MgρM†
g ). In the other

case that a measurement delivers g, whereas it should have
been e, the weight is Pf ,e = ηg|ePg/[(1 − ηg|e)Pe + ηg|ePg].
The estimated state is then updated using the following modi-
fied recursive filtering equation:

ρt+1 = Pt T Dt ρt . (25)

It is to be noted that only the filtered state is given as input to
the agent, as this would be the only information available in a
real experiment.

2. Simulation results

Following a procedure similar to that in Sec. III A, 3000
trajectories are simulated, each consisting of 2000 feedback
cycles (the smaller number of total trajectories simulated here
compared to than in Sec. III A is due to the need to simulate
more feedback cycles for each trajectory in the present case).
In these simulations, a time of 1 μs is considered for one
feedback cycle (300 ns for the cavity-qubit interaction time,
while leaving 700 ns for qubit measurement and rotations;
according to literature, these values are well within current
device performances [14,69]). The cavity lifetime considered
here is 1 ms [58,67]. The errors in qubit state measurement
assignments are ηe|g = 0.01 and ηg|e = 0.02.

Figure 7 shows state evolution and preparation results with
decoherence, with Fig. 7(a) depicting trajectory examples
with noticeable photon loss events and subsequent recovery.
In this case, the agent is able to recover from photon loss
events with a delay depending on the speed at which the filter
recognizes the loss event. An interesting behavior is shown in
the bottom panel of Fig. 7(a), where no photon loss events are
registered; the cavity state instead evolves deterministically
inside the stabilized subspace as indicated by the small and
slow decay of the fidelity between jumps. This decay is due to
the slow population transfer from the |4〉 state to the |1〉 state;
this comes from the Zeno dynamics induced by the backaction
of the measurements [70], whereby the evolution of the state is
slowed down by the measurements. The out-of-subspace leak-
age from the deterministic evolution of the stochastic master
equation between quantum jumps is hence being suppressed
by the measurements. To correct this slow fidelity decay, the
RL agent has limited control. Indeed, between jumps, the
controller shows a jittering behavior of growing amplitude
lasting over 0.1 ms as the fidelity decays. This is distinct from
the behavior following a photon loss, where the correction
applied appears as an isolated sharp peak in the control ampli-
tude. This phenomenon will be discussed further in Sec. IV,
where it will be shown that small corrections once near the
target state are not the primary means to achieve high fidelity.
Figure 7(b) shows the behavior of an ensemble of trajectories,
for the same loss parameters as above. Unsurprisingly, the
mean is significantly lower, as photon loss events, occurring
randomly, drag it downwards. The median stabilizes around a
fidelity of 95.5%, after having reached fidelities of 98%. This
drop can be explained by the RL agent failing to recover fully
from photon losses on average.

To compare with the situation corresponding to no control
(free evolution), the green (dashed) curve shows the average
evolution where perfect state preparation is assumed at time
t = 0. This shows that the approach proposed here, even with
limited control, namely measurement backaction combined
with coherent driving in a feedback loop, helps stabilize the
target state.

IV. DISCUSSION

A. Robustness to noise

To further analyze the robustness of the TQC agent
proposed here, its performance is studied with a fully
trained agent for ranges of cavity lifetimes and probe qubit
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FIG. 7. Preparation and stabilization of the (|1〉 + |4〉)/
√

2 state
under decoherence. (a) The RL agent is able to recover from photon
loss events, as shown in top panel. When no photon loss occurs
(bottom panel), Zeno dynamics take place, with population trans-
fer occurring only inside the target subspace (due to measurement
backaction suppression of population leakage out of the subspace),
but which does not prevent the slow decay of the fidelity. The control
amplitude α (green curve) is 0 for most of the sequence, except when
the filter [orange (light gray) curve] detects a photon loss, or when the
fidelity goes below certain value (bottom panel). (b) Time evolution
for a cavity lifetime T1 of 1 ms and a feedback cycle time of 1μs. Me-
dian fidelities are still able to reach values similar to the ideal case,
although they stabilize around about 95% when multiple photon loss
events occur. The mean fidelity remains at 90% throughout, pushed
down by the momentary photon loss. With perfect initialization at
t = 0, the average state fidelity would have decayed according to the
master equation, as shown by the green curve.

imperfections. Note that all results were obtained using the
same RL agent, trained on the ideal model. It was found that
such a model usually performs better than one trained on a
lossy system. One possible explanation is that the Markovian
nature of the quantum filter combined with the exploration
properties of the RL training are sufficient to learn an optimal
policy. Indeed, as the RL agent learns about the environment,
it explores states similar to those resulting from quantum
jumps. However, contrary to the case with significant deco-

FIG. 8. Maximum fidelities reached by the RL agent during state
preparation as a function of decoherence parameters, with the hor-
izontal and vertical axes corresponding, respectively, to the cavity
lifetime and the probe qubit’s errors.

herence, it is also able to explore high-fidelity states, which
then makes it a more complete agent, able to perform well
under different system dynamics. In Fig. 8, the lifetimes are
expressed as the ratio of the total feedback cycle operation
time (1 μs is considered here) and the cavity lifetime (which
is varied to include currently experimentally realistic values).
Also, as mentioned in Sec. III B, errors from the probe qubit
are summarized into an effective error denoted εprobe, consist-
ing of the sum of all individual qubit decoherence channels.
Figure 8 shows the maximum median and average fidelities
attained during a 50-cycles state preparation procedure, as a
function of both cavity decay and qubit errors for the (|1〉 +
|4〉)/

√
2 and (|0〉 + |4〉)/

√
2 states, which, respectively, have

an odd and even �n.
For the median fidelity metric, it is seen in Fig. 8 that

both states are robust to a large range of parameters, with
a drop in fidelity being seen in the top right corner corre-
sponding to high error rates in both cavity and qubit. The
impact of decoherence is unsurprisingly more pronounced for
the mean fidelity metric, indicating that while the majority of
state preparation sequences lead to high-fidelity states, a small
fraction, however, completely fail to reach high fidelity.

The drop in the median fidelity value as measurement
errors are more prominent can be attributed to a state esti-
mation problem for the controller. When measurement errors
are high, the quantum filter needs more measurement results
to construct an accurate estimate of the true cavity state. On
some occasions, the displacement applied to the cavity can
increase the deviation between the estimated state and the true
cavity state in such a way that the former fails to converge
back to the cavity state. Such instances of deviation between
the cavity and the estimated states happen more frequently
following a photon loss, which could also explain why the
state (|1〉 + |4〉)/

√
2 is more subject to decoherence, as it has
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FIG. 9. Structure of the trajectories calculations presented in
Fig. 10. At each additional feedback cycle, the binary tree is
expanded by a factor of two, corresponding by two possible mea-
surements outcomes in each branch.

a slightly larger mean photon number, and also contains the
state |1〉, which can still decay down to |0〉 as compared to the
state (|0〉 + |4〉)/

√
2 in which |0〉 cannot further decay down.

B. Understanding the trained policies

Attention will now be turned to the policies learned by
different types of agents. The TQC agent proposed herein
will be compared with two other approaches: the RL-based
PPO and the Lyapunov-based controller mentioned previ-
ously. This controller chooses the best displacement drive by
performing a line search over a linearization of the Lyapunov
fidelity following application of the displacement operator to
the current cavity state, see Appendix B.

The policy space has the form of a binary tree with 2N

possible trajectories as each measurement leads to two distinct
possibilities in the decision tree. Here, N is the depth of the
tree corresponding to the number of feedback cycles, which
in this case is chosen to be 10 as a compromise so that
the computation time does not become prohibitive since here
all trajectories are exhaustively examined. Figure 9 provides
details on the procedure and how the results in Fig. 10 are

obtained. Starting from a given initial state, the cavity states
of all possible combinations of g and e measurement outcomes
are computed at every feedback cycle. The corresponding
metric, that is, the fidelity between the cavity state and the
target state, is given by

F (Msk Dsk , ..., Ms2 Ds2 , Ms1 Ds1 |ψ0〉, |ψ target〉). (26)

To each measurement outcome corresponds a probability of
occurrence, with the product of these individual probabilities
for a given trajectory being the probability of occurrence of
the whole trajectory.

Figure 10 shows such trajectory distributions, with the
color scale corresponding to the fidelity after a measurement
at a given time step (feedback cycle), lighter colors corre-
sponding to higher fidelities. Displaying the fidelity in this
manner provides a high-level view of the policies learned, and
tells how far from the target state (and thus out of subspace)
the agent can go in order to maximize the final fidelity.

1. Starting from a coherent initial state

Trajectories are shown in the top row of Fig. 10, with the
initial state of the feedback sequence being the same initial
coherent state used during training of the RL agents. There
are differences between the agents in the structure of their
trajectories. For instance, the Lyapunov controller has well-
defined paths in the fidelity space, influenced by previous
measurements results. This behavior is similar for the PPO
agent, although less pronounced. These branchings are much
less apparent for the TQC agent. This indicates a better ability
to exploit the combined effect of measurement backaction
and coherent drive. In other words, RL agents, and especially
the TQC agent, appear to be less influenced by the measure-
ment outcomes than they are exploiting them. It is seen in
Fig. 10, especially in the top part corresponding to a first
ground-state measurement, that both RL agents learn to do
penalizing displacements in the early feedback cycles, that

FIG. 10. Comparison of policies learned by different agents to prepare the state |1〉+|4〉√
2

. Top row, left: Schematic of the exhaustive trajectory
search in the form of a binary tree. The initial state is a coherent state with a mean photon number of 2.5; each branch corresponds to a specific
trajectory outcome. The rest of the top row shows the evolution of the fidelity along each of the 210 trajectories, for Lyapunov-based control,
the TQC and PPO RL agents. Also shown are the probabilities of occurrence of the different trajectories plotted on a log scale. RL-based
methods perform best, owing to their strong initial displacements allowing us to reach higher final fidelities. Bottom row: Same as in top row,
but initializing with the state |0〉+|3〉√

2
, which is in a stabilizable subspace different than that of the target state. Lyapunov and TQC agents are

both able to reach the target subspace. The PPO agent fails at learning any policy, which indicates a lack of exploration during training.
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FIG. 11. First feedback cycles for the cavity initialized as a coherent state, showing how the cavity states evolve at each step of
measurements and displacements. For each agent, two different trajectories are shown, consisting of a sequence of g-e or e-g measurement
outcomes (respectively, top and bottom row). The α value at the left before the first measurement corresponds to the first control, adjusting the
initial αguess value. While the bottom row is similar for all agents, it is seen in the top row that the TQC agent opts for a drastically different
strategy by performing a large displacement to reset the cavity in a state similar to a coherent state.

will, however, allow reaching higher fidelities later on, and
significantly more so for the TQC agent. Although the first
few time steps have lower fidelities compared to the other
two approaches, the TQC agent is nevertheless able to reach
high-fidelity states early on in the control sequence.

2. First feedback cycles

The aforementioned behavior of the first few feedback
cycles is depicted in Fig. 11, where the evolution of the cavity
density matrix is shown for all approaches. In situations
where the current state is far from the target, a Newton-
based line-search method, such as that used in the Lyapunov
control approach implemented here (see Appendix B), will
not optimally determine the displacement needed to be ap-
plied to the cavity state. This is a consequence of the locally
convergent behavior of line-search methods. Indeed, it was
found that the Lyapunov control was constantly selecting large

displacements in such cases, which prevented further con-
vergence to high-fidelity states. This required us to limit the
maximum allowed displacement for the Lyapunov control.
This was here done by optimizing over a range of candidate
maximum amplitudes, and choosing the one maximizing the
median fidelity to the target state. The α = ±0.3 displace-
ment performed by the Lyapunov control approach shown
in Fig. 11 is the result of such optimization. Compared to
the RL methods, this is a serious drawback as the choice
of the large displacement to be applied early in the control
sequence is crucial to adequately balance the amplitudes of the
resulting state after the control sequence, and should ideally
be conditioned on a specific state, rather than be optimized
over all trajectories.

For RL agents, it is indeed found that they select dis-
placements of similar amplitudes applied to the cavity after
the first excited state qubit measurement, but which is better
adapted as it takes into account the impact it may have in
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future feedback cycles. This is even more striking in the case
following a ground-state measurement at the beginning of the
sequence. Here, the TQC agent performs a large displacement
of amplitude 0.77, which effectively does an operation akin to
a state reset. On a short time scale, this is penalizing as shown
in the states that follow in the sequence, which are farther from
the target state than for the other approaches. However, as seen
in the top row of Fig. 10, this opens the way to states with high
fidelity, and indeed higher fidelities are reached than with the
other approaches. The TQC agent is thus better at exploiting
the effect of the measurement backaction to reach its target
state.

One can also notice the larger initial displacement, in abso-
lute value, taken by the RL agents, correcting the initial αguess

value. RL agents are able to infer, simply by retropropagating
future fidelities observed, that the initial state, even though
it is one with the best overlap with the target state, is not
the optimal one when taking into account the measurement
dynamics, and when considering the global objective to be
reached on a longer horizon.

3. Out-of-subspace initial state

Finally, the bottom row of Fig. 10 shows results of a se-
quence initialized with the state |
〉 = (|0〉 + |3〉)/

√
2, which

has amplitudes similar to those of the target state, but which
is in another subspace. This case is perhaps the most inter-
esting, as the different approaches show drastically different
behaviors. PPO is not able to learn how to leave the subspace,
as shown by the higher probabilities for trajectories that are
associated to low-fidelity states. Indeed, it was found that it
only performs small displacements of about α = 0.03, which
are not sufficient to transfer enough population to the target
subspace, with the backaction simply annihilating all target
subspace populations at every step. In this situation, Lyapunov
control performs better. In this case, it applies the maximum
allowed displacement α = 0.3 at the beginning (this cannot
be seen from the figure; it is the value given by the algorithm),
which allows it to eventually reach the target subspace. The
TQC agent, however, appears to find the best policy (α = 0.54
is applied at the first cycle of feedback, value from the al-
gorithm), transferring 40% of subsequent trajectories towards
high-fidelity values. It is also able to learn how to bring a
large portion of the remaining 60% towards higher fidelities.
In fact, as the TQC policy evolved during training, it was seen
to opt for a tradeoff. In early stages, it was performing a larger
initial displacement, which favored a higher probability for a
measurement to bring it back to the target subspace. However,
it did so at the expense of the remaining trajectories, which
never reached the target state. As training evolved, it lowered
the initial displacement, so as to still handle the remaining
states resulting from the other measurement outcomes. It
should also be emphasized that during training, the agent was
never initialized in the (|0〉 + |3〉)/

√
2 state, but only in the

coherent state as mentioned above. As such, the policy found
by the TQC agent is a result of its higher exploration and
generalization capabilities.

This analysis shows that the simple extension of the task
of preparing a single Fock state to that of preparing su-
perpositions translates into a qualitatively different control

problem. Whereas the former only needs the state to be steered
towards the desired eigenstate of suitably chosen measure-
ment operators, the latter requires a complex interaction
between measurement outcomes and displacement operations.
In some cases, even something akin to a state reset is neces-
sary in order to maximize the achievable fidelity.

It should also be noted that while an on-policy was com-
pared to an off-policy method here, it is still unclear what is
the role of adding a distributional approach on top of a soft-
actor critic algorithm. Nevertheless, compared to the standard
soft-actor critic implementation [47], it was found in the
present work that the distributional version is more robust to
hyperparameters tuning and more stable during training. More
work would, however, be needed, such as ablation studies, to
better understand the role of the distributional procedure in
the quantum setting.

V. CONCLUSION

In this work, a measurement-based quantum-feedback pro-
tocol was proposed and analyzed to prepare and stabilize
superpositions of Fock states in a superconducting cavity.
By using a generalization of parity measurements, states in
a target subspace with Fock basis states with equally spaced
number of photons can be stabilized, but also prepared using a
coherent drive as the only control. It was shown that a classical
control technique such as Lyapunov-function-based control,
which was previously developed for the stabilization of Fock
states [16,17], fail to prepare superposition due to their lack of
exploitation of the measurement backaction.

Here, using an RL method proved useful in overcom-
ing this limitation. Indeed, by exploring the optimal policies
learned by different algorithmic methods, the measurement
backaction could be emphasized as a useful resource in itself
to create the nonlinearities required to prepare quantum state
superpositions. It also highlighted the interaction between
control actions with weak measurements in a way that takes
into account the impact of the control actions later in the
feedback cycle, in order to reach a target state with high
fidelity. Because such measurements are the same as those
used in some error-correction procedures, our proposed pro-
tocol could easily be integrated in the bosonic computation
paradigm.

From an RL point of view, the ability of TQC to reuse
past experiences, and thus learn a more general policy than,
for instance, PPO-like algorithms, might prove useful as fu-
ture quantum control experiments scale up in complexity. We
believe that further exploration of these different behaviors
already noticed in the low-complexity settings considered
here would be an interesting and potentially fruitful avenue
of investigation.
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TABLE I. Hyperparameters for TQC.

Hyperparameter Value

Number of Layers 2
Actor Neurons per Layer 256
Critics Neurons per Layer 512
Discount (γ ) 0.95
Batch size 1024
Activation Function tanh
Entropy coefficient 0.09
Number of critics 5
Learning Rate 0.0001
Target update interval (τ ) 0.001

APPENDIX A: NEURAL NETWORKS
HYPERPARAMETERS

Tables I and II give the hyperparameter values used for
both the TQC and PPO agents. All others hyperparameters not
presented here are those by default in the STABLE-BASELINES3
implementation.

APPENDIX B: DERIVATIONS FOR
LYAPUNOV-FUNCTION-BASED CONTROL

In Lyapunov-function-based control, a positive-definite
function V of the state ρ is used, so that the minimum of
V , which is necessarily zero owing to positive definiteness,
is reached for a targeted state ρ target. Control actions are
performed iteratively in a feedback loop, whereby the goal
of each iteration’s control action on ρ is to reduce the value
of V , ultimately reaching the minimum, hence the targeted
state [26]. The essential details of this approach in the present
specific context will now be provided.

1. Positive-definite and Lyapunov functions and their
significance in control

Given two arbitrary states ρ1 and ρ2, a positive-definite
function d (ρ1, ρ2) will be considered in the sequel, that is with
the following properties:

d (ρ1, ρ2)

{
> 0 for ρ1 	= ρ2,

= 0 ⇔ ρ1 = ρ2.
(B1)

This is akin to a distance function, but it is not required here
that d obeys the triangle inequality (which is one of the axioms
that a distance function must satisfy). Given such a function

TABLE II. Hyperparameters for PPO.

Hyperparameter Value

Number of Layers 2
Neurons per Layer 256
Discount (γ ) 0.95
Number of steps 2048
Batch size 256
Activation Function tanh
Learning Rate 0.0001

and a targeted state ρ target, one can in turn define a positive-
definite function over the set of states ρ by

V target (ρ) = d (ρ target, ρ). (B2)

The significance of such a function in the present context is
that if α in Eq. (5) is chosen so that

V target (ρ ′) < V target (ρ), (B3)

then by performing a series of steps k = 1, 2, . . ., whereby
at each step this inequality is satisfied, i.e., V target (ρk+1) <

V target (ρk ), then the state will converge to the targeted state
since the value of V target (ρk ) will eventually reach zero, and,
by hypothesis, for V target (ρk ) to equal zero the only possibil-
ity is that ρk = ρ target. Such a function decreasing over the
evolution of a system is known in the control literature as a
Lyapunov function [71].

2. Fidelity-based positive-definite and Lyapunov functions

One of the simplest positive-definite functions that can be
considered in quantum mechanics is based on the Frobenius
scalar product between two operators, which for density oper-
ators is given by

Fr(ρ1, ρ2) = tr(ρ1ρ2), (B4)

which for pure states ρ1 = |ψ1〉〈ψ1| and ρ2 = |ψ2〉〈ψ2|
amounts to Fr(ρ1, ρ2) = |〈ψ1|ψ2〉|2. The Frobenius scalar
product is also sometimes simply called the fidelity [16] [note
that this fidelity is different from that defined in Eq. (18)].
Since 0 � Fr(ρ1, ρ2) � 1 with Fr(ρ1, ρ2) = 1 ⇔ ρ1 = ρ2

and ρ1 is pure, one can define the positive-definite function

dFr(ρ1, ρ2) = 1 − Fr(ρ1, ρ2), (B5)

which satisfies the conditions given in Eq. (B1). This will be
called the Frobenius distance, although it does not formally
satisfies all the axioms of a distance. This leads to the positive-
definite function defined over states

V target
Fr (ρ) = 1 − Fr(ρ target, ρ) = 1 − tr(ρ targetρ). (B6)

Since trρ = 1, this can be written as

V target
Fr (ρ) = tr((I − ρ target )ρ) = tr(ϒ targetρ), (B7)

where I is the identity operator, and ϒ target = I − ρ target. Here
the superscript “target” on ϒ reminds that ϒ depends on
the targeted state. Such a Lyapunov function will be called
a fidelity Lyapunov function, and will be denoted V target

ϒ (ρ) in
the sequel, hence

V target
ϒ (ρ) = tr(ϒ targetρ). (B8)

3. Second-order expansion of the Lyapunov function with
actuator action

It will now be assumed that a Lyapunov function given
in the generalized form of Eq. (B8) is defined. The objective
of the feedback law can now be stated by requiring that, for
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a given state ρ, α must be chosen such that V target
ϒ (ρ ′) <

V target
ϒ (ρ), that is

V target
ϒ [D(α)ρ D(−α)] < V target

ϒ (ρ). (B9)

Obtaining such a condition is similar to a line search in nu-
merical minimization [72] and a common way is to develop
to second order in α the left-hand side of this inequality, and
use the approximation thus obtained to find a value of α that
will allow satisfying this condition. To do this, Eq. (4) is first
expanded to second order in α by resorting to an expansion of
D(α) to second order. This leads to

ρ ′ = D(α)ρ D(−α)

≈ ρ + [αa† − α∗a, ρ] + 1

2
[[ρ, αa† − α∗a], αa† − α∗a].

(B10)

With this, V target
ϒ (ρ ′) can be approximated to second order by

V target
ϒ (ρ ′) = tr(ϒ targetρ ′)

≈ V target
ϒ (ρ) + T (1)(α) + 1

2
T (2)(α), (B11)

where T (1)(α) is the first-order term given by

T (1)(α) = tr(ϒ target[αa† − α∗a, ρ]), (B12)

and T (2)(α) is the second-order term given by

T (2)(α) = tr(ϒ target[[ρ, αa† − α∗a], αa† − α∗a]). (B13)

By expanding the commutator and reordering terms, the
first-order term can be rewritten as

T (1)(α) = −tr([αa† − α∗a, ϒ target]ρ). (B14)

This form is more convenient since it leads to commutators
that can be precomputed. Indeed, so expressed, the first-order
term can be further expanded as

T (1)(α) = −α tr([a†, ϒ target]ρ) + α∗ tr([a, ϒ target]ρ). (B15)

Defining

B = [a, ϒ target]ρ, (B16)

then

B† = ρ†[a, ϒ target]† = −ρ[a†, ϒ target], (B17)

hence

tr(B†) = −tr(ρ[a†, ϒ target]) = −tr([a†, ϒ target]ρ). (B18)

Now, since tr(B†) = (trB)∗, then

tr([a†, ϒ target]ρ) = −[tr(B)]∗. (B19)

With these developments, and setting

ζ = trB = tr([a, ϒ target]ρ), (B20)

T (1)(α) can simply be rewritten as

T (1)(α) = αζ ∗ + α∗ζ . (B21)

It is convenient for the sequel to define the commutator

Cϒ target = [a, ϒ target], (B22)

which can be precomputed; with this

B = Cϒ target
ρ (B23)

and

ζ = tr(Cϒ target
ρ). (B24)

Now, by similar reasoning as for T (1)(α), T (2)(α) can be
rewritten as

T (2)(α) = tr([αa† − α∗a, [αa† − α∗a, ϒ target]]ρ)

= tr(Kρ), (B25)

where

K = [αa† − α∗a, [αa† − α∗a, ϒ target]]. (B26)

Developing this operator, and using Jacobi’s identity
[A, [B,C]] + [C, [A, B]] + [B, [C, A]] = 0 along with
[a, a†] = I, one obtains

K = α2[a†, [a†, ϒ target]] + α∗2[a, [a, ϒ target]]

−2|α|2[a†, [a, ϒ target]]. (B27)

Setting

Gϒ target = [a, [a, ϒ target]] = [a,Cϒ target
], (B28)

Eϒ target = [a†, [a, ϒ target]] = [a†,Cϒ target
], (B29)

and using that

(Gϒ target
)† = [a†, [a†, ϒ target]] (B30)

leads to

K = α2(Gϒ target
)† + α∗2Gϒ target − 2|α|2Eϒ target

, (B31)

and hence

T (2)(α) = tr(Kρ)

= α2tr((Gϒ target
)†ρ) + α∗2tr(Gϒ target

ρ)

−2|α|2tr(Eϒ target
ρ). (B32)

It can be shown that T (2)(α) is a real quantity (the develop-
ment will not be provided here).

tr((Gϒ target
)†ρ) = tr((Gϒ target

)†ρ†)

= tr((ρGϒ target
)†)

= tr((ρGϒ target
))∗.

Defining

γ = tr(Gϒ target
ρ), (B33)

and

χ = tr(Eϒ target
ρ), (B34)

where χ can be demonstrated to be real, T (2)(α) can be written
as

T (2)(α) = α2γ ∗ + α∗2
γ − 2|α|2χ. (B35)

With the previous developments, the second-order expan-
sion of the Lyapunov function can be rewritten as [refer back
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to Eq. (B11)]

V target
ϒ (ρ ′) ≈ V target

ϒ (ρ) + αζ ∗ + α∗ζ

+1

2
(α2γ ∗ + α∗2

γ − 2|α|2χ )

= V target
ϒ (ρ) + q(α), (B36)

with q(α) being the following quadratic form:

q(α) = αζ ∗ + α∗ζ + 1

2
(α2γ ∗ + α∗2

γ − 2|α|2χ ). (B37)

Recall that it is required to determine α according to the
inequality given in Eq. (B9), which means that q(α) must be
negative, i.e.,

q(α) < 0, (B38)

and ideally q(α) shall be as negatively large as possible.
There are different ways in which q(α) < 0. One standard

possibility is equivalent to gradient steepest descent, and a
second one is equivalent to a Newton method in numerical
optimization, which is resorted to, as it has faster convergence
properties.

4. Newton method

The quadratic form q(α) is first be represented in terms of
real quantities. First, q(α) is written as follows:

q(α) = 2 Re αζ ∗ + Re α2γ ∗ − |α|2χ. (B39)

The complex quantities appearing in q(α) are written as

α = x + iy, (B40)

ζ = u + iv, (B41)

γ = g + ih. (B42)

This allows writing the quadratic form as

q(α) ≡ q(x, y) = [
x y

]
Q

[
x
y

]
+ 2L

[
x
y

]
, (B43)

with

Q =
[

g − χ h
h −(g + χ )

]
, L = [

u v
]
. (B44)

The Newton approach in optimization is to take the direction
[x y]T, which minimizes the quadratic form. This leads to

Q

[
x
y

]
= −LT,

which is equivalent to
[

x
y

]
= −Q−1LT. (B45)

The inverse of Q is easily obtained and given by

Q−1 = 1

(g2 + h2 − χ2)

[
g + χ h

h −(g − χ )

]
. (B46)

Reexpressing everything in term of the complex quantities ζ ,
γ , and χ gives

[
x
y

]
= −Q−1LT = 1

χ2 − |γ |2
[

Re{χζ + γ ζ ∗}
Im{χζ + γ ζ ∗}

]
, (B47)

hence

α = 1

χ2 − |γ |2 (χζ + γ ζ ∗). (B48)

Equation (B48) is therefore the one defining the update rule
for the control amplitude parameter in the feedback procedure.
For Newton’s method, it is necessary that the matrix Q be
positive definite [72]. This is true if both eigenvalues of Q
are positive. These eigenvalues are easily found to be

λ± = −χ ± |γ |. (B49)

Hence, for Q to be positive definite the following must hold:

χ < −|γ |. (B50)

This condition is numerically verified. For the values of x and
y given through Eq. (B45), the value of q(x, y) is found to be

q(x, y) = −L Q−1LT, (B51)

which is negative whenever Q is positive definite, since in this
case Q−1 is also positive definite.
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