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An alternative measure of information leakage for quantum encoding of classical data is defined. An adversary
can access a single copy of the state of a quantum system that encodes some classical data and is interested in
correctly guessing a general randomized or deterministic function of the data (e.g., a specific feature or attribute
of the data in quantum machine learning) that is unknown to the security analyst. The resulting measure of
information leakage, referred to as maximal quantum leakage, is the multiplicative increase of the probability
of correctly guessing any function of the classical data upon observing measurements of the quantum state.
Maximal quantum leakage is shown to satisfy the postprocessing inequality (i.e., applying a quantum channel
reduces information leakage) and independence property (i.e., leakage is zero if the quantum state is independent
of the classical data), which are fundamental properties required for privacy and security analysis. It also bounds
accessible information. Effects of global and local depolarizing noise models on the maximal quantum leakage

are established.
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I. INTRODUCTION

This paper deals with quantifying the “amount” of clas-
sical information that can be leaked from a quantum system
whose state encodes the said classical information. This is
a basic question that arises in security and privacy analysis
of quantum computing systems. In a setting where classical
information is encoded into the state of a quantum system,
e.g., quantum machine learning [1], an adversary may access
the system either legitimately or maliciously (by hacking),
perform measurements on the state of the system, and extract
private or secret information. This has, in part, motivated
development of privacy-preserving quantum computing [2—-6].
This measure of information leakage can also be used to inves-
tigate security in communication or transmission of classical
data over insecure quantum channels, where an eavesdropper
may attempt to extract some classical information by perform-
ing measurements on the communicated qubits. This setup is
akin to quantum wiretap channels [7]; see Sec. VI for more
information.

Any useful measure of information leakage must satisfy
a few requirements [8,9]. First, and foremost, the measure
should possess an operational interpretation. As stated in [10]
(p- 313), “the ultimate test for whether we truly understand an
information measure is if it is the answer to some operational
task.” This will enable a designer or analyst to explain what
guarantees can be extracted from minimizing or bounding the
measure of information leakage. Second, assumptions regard-
ing the adversary must be minimal so that a large family of
adversaries can be modeled and analyzed. For instance, it is
customary to assume that the adversary seeks to estimate the
entire data accurately while, in practice, the adversary might

“farhad.farokhi @unimelb.edu.au

2469-9926/2024/109(2)/022608(10)

022608-1

only be seeking to extract as much information as possible' or
might only be interested in estimating subsets of the data or
specific features that may be unknown to the security analyst.
Third, the measure should satisfy certain properties, such as
the postprocessing inequality (i.e., further processing of the
quantum system by an arbitrary quantum channel must reduce
information leakage) and independence property (i.e., leakage
is zero if the quantum state is independent of the classical
data). The former enables the analyst to make statements that
are independent of the computational power of the adversary,
i.e., postprocessing by advanced computing techniques or
powerful machines should not increase information leakage,
while the latter implies that the measure of information leak-
age is not conservative, i.e., assigning a risk of information
leakage to situations where the adversary is guaranteed to not
gain any insight. Finally, the measure of information leakage
should align with intuition, e.g., noisy quantum circuits must
reduce the information leakage.

Common measures of information leakage, while sat-
isfying some of these properties, often fail to meet all
requirements. For instance, in quantum computing and infor-
mation theory, accessible information and its upper bound,
Holevo information, do not meet the requirement on mini-
mal assumptions on the adversary. They can be only used
in the context that the adversary is interested in estimating
the entirety of the classical data. This is because accessible
information and Holevo information are formulated to study
reliable information transmission [11], not information leak-
age in security analysis. Also, it is well understood that mutual
information is not a good measure of information leakage

' Akin to the so-called fishing expedition, which refers to nonspe-
cific search for information.
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in security and privacy [8]. Again, the operational interpre-
tation of mutual information stems from communication and
compression, which differ from security and privacy. In com-
pression, for instance, we must be able to decode the entire
information without any loss. However, in security, an adver-
sary may not be interested in extracting the entire classical
information. It may merely want to extract some or any private
information. In the classical setting, these observations have
motivated moving away from mutual information for measur-
ing information leakage in privacy and security frameworks
[8,9,12,13].

This paper presents a metric or measure for information
leakage from quantum systems referred to as maximal quan-
tum leakage. The measure is built upon a similar classical
notion of information leakage known as maximal leakage [8].
The adversary has access to a single copy of the state p¥
of quantum system A that encodes some classical data X,
which is assumed to be private and must be kept secure. The
adversary is interested in guessing or estimating a general,
possibly randomized function of the original classical data X,
called Z. The adversary’s intention or target, i.e., the under-
lying randomized function of the classical data, is not known
to the designer or analyst. Therefore, the measure of infor-
mation leakage must be maximized over all possible choices
of this function. This motivates the use of the term maximal
in maximal quantum leakage. This threat model captures a
large family of potential adversaries and thus minimizes the
assumptions made regarding the adversary’s intent. The ad-
versary can perform measurements on the state of the quantum
system to observe a random variable Y, i.e., the outcome of the
measurements. The adversary then attempts to guess Z based
on Y and verify whether the choice is correct. For instance,
in the security framework, this could model guessing an in-
dividual’s password and attempting to log in using the guess
[8]. However, other interpretations can be provided, e.g., this
could capture guessing someone’s private information to use
for phishing attacks against them. The adversary’s goal is to
maximize the probability of correctly guessing Z. That is, the
adversary attempts to extract some information regarding X,
modeled by Z, with high certainty. The information leakage
measures the worst-case (i.e., maximal) ratio of the proba-
bility of correctly guessing Z with access to Y and without
access to Y. Therefore, the measure investigates cases where
the probability of correctly guessing Z increases considerably
based on access to Y, i.e., Y leaks considerable information
about Z, which is in turn a function of the private data X . This
provides a natural interpretation for the information leakage:
The multiplicative increase in the probability of correctly
guessing any general random or deterministic function of the
private data upon access to the quantum encoding of the data
is upper bounded by the maximal quantum leakage.

Important properties for the maximal quantum leakage are
established. First, maximal quantum leakage is zero if the
quantum encoding is indistinguishable, i.e., if the quantum
state is independent of the classical data. This is a natural
property as otherwise the measure of leakage acts conser-
vatively, i.e., it assigns a nonzero leakage to a scenario that
possesses no risk. Second, maximal quantum leakage admits
the postprocessing inequality, i.e., maximal leakage reduces
if the state of the quantum system is manipulated by an

arbitrary quantum channel. This is a useful property in privacy
and security analysis because it implies that we only need to
compute the information leakage at the beginning of the data
analysis chain to establish the risk of data breach, and further
computation cannot increase the risk. Finally, the effect of
quantum noise models, such as global and local depolarizing
channels, on the maximal quantum leakage is investigated. As
expected, quantum noise reduces information leakage. This
is not surprising given previous observations on the effect
of noise in quantum devices on data privacy [2,3]. However,
establishing such results is important in ensuring that the pro-
posed notion of information leakage accords with intuition.

Before moving on to the technical content of the paper, a
few remarks must be stated regarding the relationship between
the framework of this paper, its classical counterpart [8], and
the relevant literature on accessible information [14—16]. The
main difference with the classical results in [8] stems from the
fact that the conditional probability of measurements given
private classical data can be written explicitly in terms of
quantum states (i.e., the quantum encoding of the classical
data) and the positive operator-valued measure (POVM) mod-
eling the measurement process using Born’s rule. This implies
a degree of freedom that is missing in the classical counter-
part. That is, in [8], the conditional probabilities are fixed, but,
in this paper, the adversary can changes the conditional proba-
bilities by varying the POVM, i.e., the adversary can select the
optimal measurement process for extracting as much informa-
tion as possible. This implies an additional optimization over
the POVMs, which can be potentially unbounded. To alleviate
this difficulty, we use methods developed for accessible infor-
mation [14-16] to show that the number of elements in the
POVM is bounded and can be computed iteratively.

The remainder of the paper is organized as follows. We fin-
ish this section with some preliminary definitions and useful
notations for quantum systems. Maximal quantum leakage is
formally defined and a semiexplicit formula for its computa-
tion is presented in Sec. II. Properties of the maximal quantum
leakage, i.e., the independence property, postprocessing in-
equality, and upper and lower bounds for the leakage, are
established in Sec. III. The effect of depolarizing noises in-
herent to quantum devices on maximal quantum leakage is
investigated in Sec. IV. To minimize interruptions to the flow
of the paper and to focus on definitions and properties with-
out getting bogged down in the mathematics, the proofs of
all the results in Secs. II-IV are presented across different
subsections in the Appendix. An iterative algorithm using sub-
gradient ascent for computing maximal quantum leakage is
presented in Sec. V. Finally, Sec. VI presents some concluding
remarks and avenues for future research.

Preliminary definitions and notations

The basic definitions and useful notations presented in this
review section are mostly borrowed from [10].

The state space of a quantum system is modeled by
complex Hilbert space H. Dirac’s notation is used to
denote pure quantum states. A pure quantum state is
an element of Hilbert space H with unit norm, e.g.,
vy € H with ||[Y) |l = /(¥|¢) = 1. The smallest non-
trivial quantum system is a qubit corresponding to a
two-dimensional Hilbert space. Combination of any two

022608-2



MAXIMAL INFORMATION LEAKAGE FROM QUANTUM ...

PHYSICAL REVIEW A 109, 022608 (2024)

quantum states |¢) and |i¢) is denoted by their tensor
product |¢) ® |¥). A mixed quantum state is character-
ized by ensemble {(p1, V1)), ..., (pk, [¥i))}, where p; > 0
for all i € {1,...,k} and Zi pi = 1. The mixed state sig-
nifies that the quantum system is in pure state |y;) with
probability p;. The density operator for the mixed quan-
tum state {(p1, [¥1)), -, (Prs 1Y)} is o := D2, pila) (Y.
Thus, tr(p) = 1. Any pure quantum state |¢) can be modeled
using rank-1 density operator p = |¢)(¢|. Therefore, without
loss of generality, the density operator can denote the state of
a quantum system. Combination of any two density operators
p and o is denoted by their tensor product p ® o.

When the postmeasurement state of the quantum system
is of no interest (e.g., the quantum system is discarded after
measurement), a measurement for a quantum system can be
modeled using a POVM, which is a set of positive semidefi-
nite matrices F = {F;}; such that ), F; = I. In this case, the
probability of obtaining output i when taking a measurement
on a system with quantum state p is tr(pF;) = tr(F;p).

A quantum channel is a mapping from the space of density
operators to potentially another space of density operators
that is both completely positive and trace preserving. Fol-
lowing the Choi-Kraus the Choi-Kraus theorem (Theorem
4.4.1) of [10], for each quantum channel &, there exists a
family of linear operators {E;}; satisfying j EJTE ;=1 such

that £(p) =) JEj pE; for all density operators p. For any

matrix A, AT denotes its conjugate transpose or Hermitian.
The tensor product of quantum channels £ and &, is defined
as & ® &(p1 ® p2) := E1(p1) ® E2(py) for all density oper-
ators p; and p;.

II. DEFINITION AND COMPUTATION
OF MAXIMAL QUANTUM LEAKAGE

The classical data that must be kept private or secure are
modeled by discrete random variable X with finite support
set X. Assume that px(x) := P{X =x} > 0 for all x € X.
This assumption is without loss of generality as the set X can
always be trimmed so that this assumption holds. Knowledge
of the support set of secret variables is referred to as domain
knowledge and is postulated to be required for developing
privacy-preserving mechanisms [5]. As shown later, the maxi-
mal quantum leakage is not a function of py and is thus robust
to the choice of the secret prior. This aligns with the require-
ment to keep the assumptions on the measure of information
leakage minimal.

For each realization of discrete random variable X = x €
X, a quantum system A in mixed state py € D(H,) is pre-
pared, i.e., ensemble & := {px(x), p}}rex is prepared. The
quantum state A is handed over to an adversary without
revealing the realization of the classical random variable
X. The expected density operator is then py = E{p{} =
Y cex Px(x)pj. This is the state of the quantum system from
the perspective of someone who does not know the realization
of X, i.e., the adversary.

The objective of the adversary is to estimate or guess a pos-
sibly randomized discrete function of the random variable X,
denoted by random variable Z, by performing measurements
on the quantum system A. The adversary performs a POVM

F = {F}}, on the quantum system A. Random variable ¥ with
finite supportset Y = {1, ..., |F|} denotes the outcome of the
measurement. The probability of obtaining outputY =y € Y
when taking a measurement on quantum state p; is given by
tr(p} F;). Therefore,

P{Y =y|X =x} =tu(oyF), YVxeX,yeY. (1)

Upon observing the measurement outcome Y, the adversary
takes a one-shot guess of the random variable Z denoted by
the random variable Z. The adversary then attempts to verify
whether Z is correct or not.

Definition 1 (maximal quantum leakage). The = maximal
quantum leakage from random variable X through quantum
encoding of the data via ensemble {py (x), p} }xex 1S

P{Z =7}
max P{Z = z}
€

QX — A),, := supsuplog, ., @

(FYy 2.2

where the inner supremum is taken over all random variables
Z and Z with arbitrary support set Z and the outer supremum
is taken over all POVMs F = {F,},.

The maximal quantum leakage, as characterized in Defini-
tion 1, captures the multiplicative increase in the probability
of correctly guessing any general random or deterministic
function of the private data upon accessing the quantum en-
coding of the data. The probability of correctly guessing the
realization of random variable Z with access to measurement
Y is P{Z = Z}. Without access to any measurements, the
adversary’s best guess of the realization of random variable Z
would have been the most likely or probable realization Z :=
argmax_ ., P{Z = z}. Therefore, the probability of correctly
guessing the realization of random variable Z without access
to any measurements is P{Z = Z} = max,.z P{Z =z}. A
large maximal quantum leakage implies that there exist fea-
tures of the private data that can be guessed more reliably by
accessing the quantum state. This demonstrates information
leakage along those features. Noting that those features can
be potentially exploited by the adversary, an analyst, who is
not aware of the target of the adversary, has to investigate and
mitigate the weak point.

Theorem 1. The maximal quantum leakage is given by

Q(X%A»A:sg]glogz g%mﬁm NG

Proof. See Appendix 1. |

Theorem 1 provides a semiexplicit formula for computing
maximal quantum leakage. This is done by removing the
inner maximization over random variables Z and Z. Inter-
estingly, Theorem 1 shows that Q(X — A),, is independent
of the prior for the secret py. Therefore, maximal quantum
leakage is immune from or robust to incorporating a wrong
assumption on the secret random variable X . The same cannot
be said about accessible information, quantum mutual infor-
mation, or Holevo information. In Theorem 1, however, the
outer maximization on {F,} still remains. This is a particularly
troubling problem as the number of outcomes in POVM (F}
is not bounded, i.e., it can range to infinity. The next theorem
shows that we can restrict our search to POVMs that have
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at most dim(#4)> outcomes. Note that, because we cannot
exchange the sum over y and the maximization over x in (3),
the information leakage is nonzero in general.

Theorem 2. Let H4 have finite dimension d4. The maximal
quantum leakage is attained by POVM F = {F\}{" | withm <
dﬁ, such that F; are rank-1 operators.

Proof. See Appendix 2 L}

Maximal quantum leakage in Definition 1 considers a sce-
nario where the adversary only makes and verifies a single
guess. This might not be entirely realistic in practice. An
adversary might be able to make several guesses. For instance,
the adversary might devise multiple privacy or security attacks
based on various plausible guesses of the random variable Z.
Therefore, we may assume that, upon observing the measure-
ment outcome Y, the adversary makes k guesses of the random
variable Z denoted by the random variable Z;, ..., Z; and
then attempts to verify them. In this scenario, we can modify
maximal quantum leakage to compute k-maximal quantum
leakage, defined below.

Definition 2 (k-maximal quantum leakage). The k-guess
maximal quantum leakage from random variable X through
quantum encoding of the data via ensemble {px (x), p}}rex 1S

oM(X — A),,

:=sup sup log, P3j:2 = /Z\j} , @
(F), 2.2....2 s pax  PizeZ)

where the inner supremum is taken over all random variables
Z, 7y, ...,7Z; with arbitrary support set Z and the outer supre-
mum is taken over all POVMs F = {F}},.

Theorem 3. QW (X — A),, = QX — A),,.

Proof. The proof follows from Theorem 4 of [8] and the
proof of Theorem 1. |

Theorem 3 implies that the number of guesses that the
adversary can make is immaterial in measuring information
leakage. Therefore, the choice of one-shot guesses in maximal
quantum leakage is without loss of generality.

II1. PROPERTIES OF MAXIMAL QUANTUM LEAKAGE

In this section, properties of maximal quantum leakage are
established. Maximal quantum leakage satisfies the indepen-
dence property (i.e., leakage is zero if the quantum state is
independent of the classical data) and postprocessing inequal-
ity (i.e., applying a quantum channel reduces information
leakage). We can also bound maximal quantum leakage based
on the dimension of the quantum system and the cardinality
of the support set of the secret random variable. We start with
the independence property. To do so, we must define indistin-
guishably to establish when the quantum state is independent
of the classical data.

Definition 3 (indistinguishability). (0} )yex 18
guishable if p§ = o for all x, x' € X.

Indistinguishability implies that, for various realizations
of the classical data X, the quantum state remains the same.
Therefore, an adversary cannot obtain any measurements
from the quantum states that correlate with the classical data.
Therefore, there is no leakage of classical data. This is estab-
lished in the next result.

indistin-

Proposition 1. Q(X — A),, > 0 with equality if and only
if (0})ex 1s indistinguishable.

Proof. See Appendix 3. ]

In the next proposition, we provide an upper bound for
maximal quantum leakage based on the dimension of the
quantum system d4 = dim(?,) and the cardinality of the sup-
port set of the secret random variable |X|. A discrete random
variable X with a support set of size |X| has no more than
log, (|X]) bits of information to be leaked. Therefore, Q(X —
A),, can never be larger than log, (|X]).

Proposition 2. Let H, have finite dimension d. Then,
QX — A),, < min{log,(IX|). log,(d3)}.

Proof. See Appendix 4. |

Another important property is the data-processing inequal-
ity stating that quantum maximal leakage can be only reduced
by application of an arbitrary quantum channel. This implies
that we only need to compute the information leakage at the
beginning of the data analysis chain to establish the risk of
data breach, and further computation cannot increase the risk.
The data-processing inequality is proved in the next proposi-
tion.

Proposition 3. For any quantum channel &£, QX —
A < QX — A),,.

Proof. See Appendix 5. ]

An important notion of information in quantum infor-
mation theory is accessible information [10] (p. 298). For
ensemble & = {px (x), p}},ex, defined in Sec. II, the acces-
sible information is

Lo (E) :=supI(X;Y),
{F )y

where (X ;Y) is the classical mutual information between the
random variable X denoting the secret or private information
and the random variable Y denoting the measurement out-
come. The next proposition provides a relationship between
accessible information and maximal quantum leakage.

Proposition 4. Ic.(£) < QX — A),,.

Proof. See Appendix 6. ]

The inequality in Proposition 4 is rather intuitive. The
accessible information, in the context of security analysis,
deals with an adversary that seeks to estimate the entire secret
data. However, in defining maximal quantum leakage, we
let the adversary extract as much information as possible by
estimating any general possibly randomized function of the
data. The adversary in the maximal quantum leakage setting
is stronger and more general in comparison with the adversary
in the context of the accessible information. This inequality is
a direct consequence of requiring minimal assumptions on the
adversary.

IV. EFFECT OF QUANTUM NOISE
ON MAXIMAL LEAKAGE

A common noise model in quantum systems is the (global)
depolarizing channel defined as

Dy (p) = %1 + (1= pp, )

where dj4 is the dimension of the Hilbert space H4 to which
the system belongs and p € [0, 1] is a probability parameter.
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FIG. 1. Ratio of information leakage without and with the global
depolarizing channel vs the probability parameter p. As expected, the
noisier the channel is, i.e., the higher the probability parameter is, the
smaller maximal quantum leakage is.

In the next proposition, it is shown that the depolarizing chan-
nel results in reduction of the maximal quantum leakage. This
means that maximal quantum leakage accords with intuition
and similar results on privacy-preserving quantum systems
[2-6].

Proposition 5. For global depolarizing channel D), 4,,

QX — A)p,, (py =logy[p + (1 — p)2°%* 4],

Particularly,

o) <0if (X — A), > 0.

p.dy

d
—QX — A)p
dp

Therefore, Q(X — A)p,, (p,) s a decreasing function of the
probability parameter p.

Proof. See Appendix 7. |

Figure 1 illustrates the ratio of information leakage without
and with the global depolarizing channel versus the proba-
bility parameter. When the probability parameter rises, and
therefore the global depolarizing channel becomes noisier, the
maximal quantum leakage drops continuously.

The previous proposition demonstrated how maximal
quantum leakage is affected by global depolarizing noise.
However, in quantum computing devices, each qubit can be
affected by local noise. Consider the case where the Hilbert
space H, is composed of k qubits, i.e., dy = 2¥. In this case,
we consider local depolarizing noise channel D®2 =D,,®

-® D), where a depolarizing channel D, acts on each
qublt separately. The effect of the local depolarizing channel
on the maximal quantum leakage is investigated in the next
proposition.

Proposition 6. For local depolarizing channel DX

QX — A)psi,,) < logy[p + (1

Proof. See Appendix 8. |
Propositions 5 and 6 show that noisy intermediate-scale
quantum (NISQ) devices inherently provide security and pri-
vacy. This is of course not surprising. The noise in NISQ
devices has been shown to ensure quantum differential pri-
vacy [2,3] and privacy against hypothesis testing adversaries

p.2°

_ pk)zQ(XeA)pA ]

[6]. Noisy devices can also improve security of quantum
machine learning models against adversarial attacks [17,18],
albeit these guarantees go hand in hand with performance
degradation [19].

Algorithm 1: Subgradient ascent algorithm for computing max-
imal quantum leakage.

Require: {pi},cx, Y ={1,...,d3},u >0,ande > 0
Ensure: {F;} and Q(X — A),,

1: OldCost <« oo

2: Random initialization F;, > 0, Vy € Y

3: NewCost <« Z oy Max,ex tr(oiF,)

4: while |OldCost — NewCost| > € do

5:  OldCost <— NewCost

6:  x*(y) < argmax,xtr(o}Fy), Vy eY

7 G—l+ oy =Y oy o OF), Vy e Y
8 F <« G;EVG).

9: S« ZVEY y

10:  F, < STV2ES-1/2

11:  NewCost « Zer maxyex tr(o}F)
12: end while

13: 9(X — A),, = log,(NewCost)

14: return {F,} and Q(X — A),,

V. ITERATIVE ALGORITHM FOR COMPUTING
MAXIMAL QUANTUM LEAKAGE

In this section, we follow the approach of [16] to compute
the maximal quantum leakage using an iterative algorithm.
The main difference here is the use of subgradient (as opposed
to gradient) ascent. This is due to nondifferentiability of the
cost function in maximal quantum leakage with respect to
the POVMs (due to the inner maximization on x € X); see
Secs. 14.2 and 14.3 of [20] for more information on subgradi-
ents and nonsmooth optimization. Note that

2Q(X~>A),,A = sup Z tl' ()’)F (6a)
(5} yeY
stO<F.yeY,Y F=I. (6b)
yeY
where Y = {1, ...,dj}, x*(y) € argmax, xtr(oxF,), and dy

is the dimension of H 4. If arg max .y tr(o; F,) admits a unique
solution for all y € Y, the cost function is differentiable at that
point and the subgradient and the gradient are equal to each
other. If arg max .y tr(p3 F;) does not admit a unique solution,
selecting each solution results in a different subgradient. In
fact, any convex combination of said subgradients will be also
a subgradient. Note that after fixing x*(y), the cost function
and constraints of this optimization problem in (6) have the
same form as in [16] and, therefore, a similar approach can be
used to compute the subgradients (instead of gradients). Al-
gorithm 1 summarizes an iterative subgradient ascent method
for computing the maximal leakage. In this algorithm, © > 0
is the step size and can be selected adaptively to keep the
cost function increasing or can be set a priori small enough to
ensure convergence. Furthermore, threshold € > 0 is selected
to determine termination of the algorithm, i.e., the algorithm is
terminated if the improvement in the cost function is not larger
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FIG. 2. Information leakage vs iterations of Algorithm 1 for the
index encoding example.

than € (so not enough headway towards an optimal solution is
made).

To demonstrate the validity of the proposed algorithm,
we start by index encoding of classical data in quantum
states for which maximal quantum leakage can be computed
easily. Consider random variable X with support set X =
{1,...,ds}, where dy = 8 denotes the dimension of H,. Let
px = |x)(x| for all x € X. In this case, by selecting F, =
W) (| for y € {1, ... da}, we get logy (3, oy (o) VF,)) =
log,(ds) = 3. This is the maximum attainable leakage ac-
cording to Proposition 2. Therefore, Q(X — A),, = 3 bits.
Figure 2 illustrates the information leakage for iterations of
Algorithm 1 starting from a random POVM. Following The-
orem 2, we select d/f = 64 as the number of elements in the
starting POVM. Furthermore, we use ;« = 10~!. The gray area
demonstrates the maximum and minimum in each iteration
(note the randomness in the initialization) and the solid black
line shows the mean in each iteration. As expected, the algo-
rithm rapidly converges to Q(X — A),, = 3.

Now, we expand our attention to a more complex
encoding strategy. Let X = (X, Xz, X3) € {0, 1}3. Assume
that H, is a Hilbert space of dimension djy =8 and
px = 1Y) (Y], where ¥ =x|0) + (1 —x)II) +x2[2) +
(1 — x2)I3) + x3|4) + (1 — x3)|5). This is more similar to am-
plitude encoding that is often utilized in quantum machine
learning. Figure 3 shows the information leakage versus itera-
tions of Algorithm 1 starting from a random POVM. Similarly,
we use = 107" and select di = 64 as the number of el-
ements in the starting POVM. The gray area demonstrates
the maximum and minimum in each iteration and the solid
black line shows the mean in each iteration. The algorithm
rapidly converges to Q(X — A),, = 1.9 bits. Interestingly,
amplitude encoding seems to leak less information in com-
parison with index encoding.

VI. CONCLUSIONS AND FUTURE WORK

We considered an adversary that is interested in correctly
guessing a potentially randomized function of a secret or
private data with access to a single copy of the state of a quan-
tum system encoding it. We proposed the notion of maximal

log, (32, ey maxzex tr(ph Fy))

0.5 :
10’ 102
Iteration number

_
(@]
o

FIG. 3. Information leakage vs iterations of Algorithm 1 for the
amplitude encoding example.

quantum leakage, which captures the multiplicative increase
in the probability of correctly guessing any function of the
data upon observing measurements of the quantum state. We
proved that maximal quantum leakage satisfies the postpro-
cessing inequality and independence property and bounds
accessible information. Future work can focus on the follow-
ing topics.

(1) Quantum wiretap: As stated in the introduction, ac-
cessible information (related to mutual information) is an
appropriate measure of information when considering lossless
communication [11] while maximal quantum leakage gen-
eralizes the assumptions on the adversary and is perfect for
investigating eavesdroppers. This motivates using a combina-
tion of accessible information and maximal quantum leakage
in wiretap or obfuscation channels. Figure 4 illustrates a
wiretap channel, where Alice wants to communicate effec-
tively with Bob while minimizing the leaked information to
Eve. Here, communication channels can be any completely
positive trace-preserving mappings. Alice’s strategy in the
wiretap channel can be computed by finding an encoding pol-
icy x — py that maximizes lc.({px (x), pp}rex) (i.€., the rate
of information transfer to Bob) subject to Q(X — E),, < ¢
for small constant ¢ > 0 (i.e., restricts the amount of leaked
information to Eve).

(2) Generalization in quantum machine learning: Classical
maximal leakage has been already utilized to better under-
stand generalization of machine learning models [21,22].
Therefore, we expect to be able to use maximal quantum
leakage to analyze generalization of various quantum machine
learning models.

Alice Encoder Bob

Eve

FIG. 4. A quantum wiretap channel, where Alice wants to
communicate effectively with Bob while minimizing the leaked in-
formation to Eve.
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(3) Privacy-preserving quantum computing: Privacy anal-
ysis in quantum system is relatively new with only recent
studies on quantum differential privacy and puffer-fish privacy
[2-6]. In many scenarios differential privacy can result in con-
servative results and bad performance. Information-theoretic
privacy [23] can provide a systematic approach to balancing
privacy and utility in general settings. The proposed notion
of information leakage can provide an operational measure of
privacy leakage for balancing utility and privacy in quantum
systems.

APPENDIX: PROOFS OF ALL
THE PRESENTED RESULTS

The proofs of all the results in Secs. II-IV are presented
across the following subsections. The proofs are moved to
this section to minimize interruptions to the flow of the paper
and to focus on definitions and properties without excessive
mathematics.

1. Proof of Theorem 1
The proof follows from the fact that

P{Z =7}

sup lo e ——
zg £ | Tax P{Z =z}
2€Z

:1 = =
ogy [ D_maxP{y =y|X =x}
yeY

=1lo max tr(piF,) |,
3 ijx (PAF)
y

where the first equality follows from Theorem 1 of [8] and the
second equality is a direct consequence of (1).

2. Proof of Theorem 2

The proof follows the same line of reasoning as the proof
of Theorem 1 of [14], which is reformulated in Proposition
5.8 of [15].

Let Fj denote the set of POVMs with k outcomes, i.e.,
Fe = {RJ_IF = 0.3 F, =1). Define g: U0 Fi —
R>p as

k
F = X N
g(F) = ) maxtu(piF)
y=I1
where F = {14}}"‘,21. Evidently,

QX — A),, = logz( sup g(F )).

FeUgsoFi

The following lemma extends Lemma 2 of [14] to g(-).
Lemma 1. Consider F =({F}i_, € F. Let F':=

{l'}’}l;ll € Fit1 be such that F/=F, for all ye

{1,...,k}\ {yo} for some yy € {1, ..., k} and Fy’OFk’ . >0

+
satisfy Fy, = Fy + F/,|. Then, g(F') > g(F).

Proof. Without loss of generality, up to rearranging the
order of the elements in the POVMSs, we can assume that
yo = k. Note that

k
_ x
g(F) = ;mgg w(PiF)

k—1

= 2 max tr(pxFy) + max e[ o4 (F + Fy)]
k—1

< 2% tr(oiFy) + max tr(p3Fy)

+max tr(piF )

k+1
= max tr(plF/),
2 gz wloiF)
= g(F"),
where the inequality follows from

max tr[ o} (F + F)]
= max [tr(p{F) + tr(piF)]
xeX
< r;le%iur(ij,!) + I)flea}?tr(ijk’H).

This concludes the proof. ]
Lemma 2. F +— g(F) is a convex on F for any k > 0.
Proof. Consider F = {F}\_, and F' = {F/}}_, such that

F,F' € Fy. Evidently, F" := {AF, + (1 — M)F/}}_, also be-

longs to F for all A € [0, 1] because AF, + (1 — A)F, > 0 for

ally € {0, ..., k} and ’

k k k
YR+ -VF)=1Y F+(1-1Y F =1
y=I y=I1 y=1

Furthermore,

k

g(F") = ;m%g wr{pi[hF, + (1 — MF)

k
=D _max [atr(piF) + (1 = Mu(p3F)]
y=I

k
< [maxau(piF) +max(l = e (o;F)]

k
=A Z max tr(ijy) +(1-=2) Z max tr(pj{Fy/)
[ xe o xe

= 2g(F) + (1 — L)g(F").

This concludes the proof. |

Fix k > 0. Because g(F) is continuous in F and F is
compact, supy , g(F') is attained on the set F. Assume that
F= {i@}ﬁzl maximizes g on F. By femovjng Zero compo-
nents, if necessary, we obtain POVM F = {Fy}le withk > ¢
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such that g(F) = g(F). Using spectral decomposition, we can
decompose each element of the POVM F into a sum of
rank-1 elements, i.e., £y, = > | F., where F. > 0 are rank-1

matrices. Construct POVM F := {{F}}7 o1 Let m = |F|.

By repeatedly using Lemma 1, we can see that g(F) > g(F).
Because of Lemma 2, g is convex on F,,. Therefore, the
maximizing observable F is an extreme point of the set F,.
Theorem 2.21 of [15] shows that £ must be linearly indepen-
dent and the Carathéodory theorem (see, e.g., Theorem 1.6
of [15]) shows that F can be represented as a convex com-
bination of at most df elements, where d, is the dimension
of H4. Therefore, without loss of generality, by removing
some zero components, F € Fg2. Since k was chosen arbi-
trary, supycy,., 7 §(F) is attained on an observable from the
compact convex set F 2.

3. Proof of Proposition 1:
Establishing the independence property

Define Io(X;Y):=) .y max,ex P{Y =y|X =x} =
Zer max,ex tr(p3Fy). Noté that I,o(X;Y) > 0 Lemma 1 of
[8] and, as aresult, (X — A),, = SUp(f,), Io(X;Y) > 0.

Now, we prove that Q(X — A),, = 0 if (3 )ex 1s indis-
tinguishable. Consider x, x' € X such that x # x’. We have

PlY =y|X =x} =

where the first and the third equality follow from (1) and the
second equality follows from indistinguishability of (0}),cx.
ie., pf = ,oj/ for all x, x' € X. Therefore, random variables X
and Y are independent, which implies that Io(X;Y) = 0 [8],
Lemma 1, which is true irrespective of the choice of {F},.
This implies that Q(X — A),, = supg), Io(X;Y) =0

Next, we prove that (p}),.x is indistinguishable if
QX — A),, =0.Because Q(X — A),, = 0, it must be that
I«(X;Y) = 0 for all POVMs F = {F,},. Following Lemma 1
of [8], it must be that X and Y are independent for all POVMs
F. We have

tw(piF)

—P{Y =y|X =x}
=P¥ =y|X =X}
=tr(pj’Fy),

where the second equality follows from stz}tistical indepen-
dence of X and Y. Therefore, tr[(p; — o} )F;] =0 for all
0 < F, < 1. This implies that o3 — pj/ = 0, or equivalently
ps = ,ojl, which concludes the proof.

4. Proof of Proposition 2

Let {F,}, be the maximizing POVM in Theorem 2.
Then, QX — A) =I1(X;Y). Following Lemma 1 of
[8], Ino(X;Y) < min{|X], |Y|}. Furthermore, |Y| =m < dﬁ.
Therefore, Q(X — A),, < min{log,(|X]), log2(d/§)}.

5. Proof of Proposition 3:
Establishing the data processing inequality

Note that

QX — A)gpy) = sup log, Zmaxtr(é’(pA)F) ,
{Fy
yeY

where F denotes the set of all POVMs. According to the

Choi-Kraus theorem Theorem 4.4.1 of [10], for each quan-

tum channel £, there exists a family of linear operators

{E;}i_, forsomen € N such that Y 7_ E;Ej =TandE(p) =

Z?:, E; ,oEJT for all density operators p. Consider any POVM
= {F}}L,. We have

n
tr(5(pj)Fy) =tr X:Ej,ojE;Fy
Jj=1

B n
=t|p;| Y E/RE;

Jj=1

= tr(p}F),
where
n
Fy:=) EIRE;.
j=1
Define F={F}Y|F =Y"_|E/RE; {F}, € F).

Evidently, by construct,

QX — Ag(py) = sup log, Zmaxtr (03 Fy)
(hieF yeY

Let us prove that 7 C F. Let {F;}, € F. Then, there must
exist {F}, € F such that F, =2 ETFE' Note that

Fy > 0 because F, > 0. Furthermore, F, = Z E ijEjT =<1
because F, <1 Furthermore

n
SR =Y ERE
y vy j=1
" ).
-y La)E
Jj=1 y
n )
= ZE]TEj
j=1

=1,

where the third equality follows from the fact that Zy k=1
and the last equality follows from the fact that 3 _, E]TE =
I. Therefore, {Fy }y, must belong to F, which proves that
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F C F. This implies that

QX — A)g(py) = sup log, Zmaxtr orFy)
{F }G]: er

< sup log, Zmaxtr ,oAF)
{F)eF ey

= QX — A),,,

where the inequality follows from the fact that taking the
supremum over a larger set results in a larger value.

6. Proof of Proposition 4: Relationship between accessible
information and maximal quantum leakage

Note that I.(X;Y) := Zyey max,ex P{Y =y |X =x} =
Zer max,ex tr(oi ;) Theorem 1 of [8]. From Lemma 2 of
[8], we know that I,(X;Y) > I(X;Y). The rest follows from

taking the supremum with respect to POVM {F}, on both
sides of the inequality /o(X;Y) > I(X;Y).

7. Proof of Proposition 5:
Effect of the global depolarizing channel

Note that
X p X
t(Dp.a, (03) ) = tr[<d—1 +(1 - p)pA>Fy]
A
= LB + (1 = pr(o}F)-
A
Therefore,

Z;mz;g e[ Dy, (03)F ]

= Zmax (ﬁtr(Fy) + (1 — p)tr(,oij))

_ p Ztr(F)+(l —p)Zmaxtr ,OAF)

er yeY
= atr(ZFy) +(1—p) Zl}g?tr(pjlfy)
yeY yeY

= —tr(l) +(1 - p)Zmax tr(piF)
yeY

=p+ (1 —p) ) maxu(piF).
yeY

This implies that
QX = A)p, ., (o)

= log, ( sup » max tr(Dp.q, (pX)Fy))

(5 I

= log, (p +(1—p)supy_ max tr(piiFy))

{Fv]y er

= logy(p + (1 = p)22* D),

8. Proof of Proposition 6:
Effect of the local depolarizing channel

Following the proof of Lemma IV.4 of [3], a local depolar-
izing noise channel can be always represented as

@k
D,>=

1
k? + (1 = pHM(p),

where M is an appropriately selected quantum channel, i.e.,
completely positive and trace preserving mapping. Using the
same line of reasoning as in the proof of Proposition 5 in
Appendix 7, we get

QX — Apetp,)
= log, <P +(1—p ){suFZme%gtr M(pﬁ)}@)) (A1)
B YyeY *

From Proposition 3, we know that

sup Z max tr sup Z max tr F
yEY

Combining (A1) and (A2) gives
QX — A)pes(y,)

(A2)

< log, (pk + (1= p*)sup ) max tr(pi;Fy))

(F)y oY xe

= logy[p' + (1 = pH2 =],
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