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Minimal time required to charge a quantum system
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We introduce a quantum charging distance as the minimal time that it takes to reach one state (charged state)
from another state (depleted state) via a unitary evolution, assuming limits on the resources invested into the
driving Hamiltonian. For pure states it is equal to the Bures angle, while for mixed states its computation leads
to an optimization problem. Thus, we also derive easily computable bounds on this quantity. The charging
distance tightens the known bound on the mean charging power of a quantum battery, it quantifies the quantum
charging advantage, and it leads to an always achievable quantum speed limit. In contrast with other similar
quantities, the charging distance does not depend on the eigenvalues of the density matrix, it depends only on
the corresponding eigenspaces. This research formalizes and interprets quantum charging in a geometric way,
and provides a measurable quantity that one can optimize to maximize the speed of charging of future quantum
batteries.
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I. INTRODUCTION

The study of isolated quantum systems has always been
viewed as an interesting subject in theoretical physics: to
name just a single, prominent, example one can think of the
well-known problem of defining thermalization in an iso-
lated quantum setup. In this respect, the celebrated eigenstate
thermalization hypothesis has provided the first mechanism
to describe thermalization in isolated, and thus governed by
unitary evolution, settings [1–6].

Until very recently, isolated quantum systems have been
regarded as useful playgrounds to study ideal and academi-
cally relevant scenarios [7–9]. On the other hand, it is often
assumed that realistic quantum systems cannot be practically
isolated, while they are forced to interact with their surround-
ings [10]. For this reason, realistic scenarios are usually inves-
tigated within the open quantum systems paradigm [11–13].

However, recent tremendous experimental advances in, for
instance, quantum simulators are forcing us to reconsider this
assumption [14]. It is by now possible to build and manipulate
small quantum systems in almost perfect isolation from their
surroundings (at least up to a certain time), thus realizing ex-
perimental examples of quantum systems that can be viewed,
to a large extent, as isolated rather than open [15–17]. As
a consequence, we are dealing with a substantial growth of
interest in studying isolated quantum systems with a view to
practical applications, and in exporting theoretical tools from
the open systems paradigm to its isolated counterparts.

These experimental developments, in turn, have been at
the core of the recent surge of interest towards the so-called
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quantum technologies, i.e., small and (at least to a large extent)
isolated quantum systems that can be used to perform a given
task [18]. The interest in developing such technologies relies
on the possibility of using their quantum features—such as
coherence and entanglement—to reach performances unob-
tainable by means of classical systems only, thus realizing a
quantum advantage [19,20].

Following this idea, several concrete examples of quantum
technologies have been introduced, with the most notable
example provided by quantum computers [21–23]. Other
examples include quantum teleportation [24], quantum sim-
ulation [25], quantum cryptography [26], quantum sensors
[27–29], and quantum batteries [30], the latest being the main
focus of this paper.

Quantum batteries, as the name suggests, are quantum-
mechanical systems that can be conveniently used to accumu-
late energy in their excited states and release it when necessary
[31,32]. As is customary when dealing with quantum tech-
nology, the effects that quantum-mechanical ingredients, like
entanglement, play on energy accumulation and delivery have
been studied in certain detail in the past few years. To name
some of them, quantum effects have been proven to be ben-
eficial in work extraction [32–34], energy storage [35–37],
available energy [38–45], charging stability [46–52], and
charging power [53–65]. Focusing on this last figure of merit,
the goal is to charge a battery in the shortest possible time,
which is one of the bottlenecks in preventing the widespread
use of battery-based renewable technologies. Similarly, one
might be interested in discharging a charged battery in the
fastest possible time, for instance, to create high-energy cur-
rents. This is the situation required, for example, in nuclear
fusion or high-energy pulse lasers.

To achieve these goals, one has to find the shortest time re-
quired to reach one state from another, i.e., from the quantum
state representing the discharged battery (the discharged state)
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to the state representing the charged battery (the charged state)
and vice versa.

Given the experimental successes in dealing with isolated
systems delineated above, quantum batteries are ideally iso-
lated systems [66,67]. Thus, we are interested in the smallest
amount of time to reach one state from another using unitary
evolution only.

In this paper, we define a notion of the minimal time
required to reach by unitary evolution a target state from
another, motivated by finding the minimal time required
to charge a quantum battery. These results will be applied
to study the notion of quantum advantage in charging, by
which it was suggested that quantum charging leads to a
shortcut in reaching the charged state, by evolving the state
through entangled states, even though both initial and final
states are product states. Classical charging does not create
entanglement and does not lead to this advantage. Our re-
sults will provide a quantitative description of this shortcut
phenomenon.

We will also sketch some applications of these results
in other quantum tasks, such as quantum computing and
quantum speed limits (QSLs). The latter follows since the
minimal charging time can be used to define a quantum speed
limit optimized for the unitary evolution that is achievable by
definition.

The paper is organized as follows: Section II defines the
quantum charging distance, which satisfies the axioms for a
well-defined notion of a distance. In Sec. III, we show that the
original definition can be rewritten in a form more suitable
for computations. In Sec. IV, we provide upper and lower
bounds, and in Sec. V, we provide two examples where this
formalism is applied. In Sec. VI, we show how our results
apply to the charging power of quantum batteries, tightening
the previously known bound, and how the quantum charging
distance allows for a precise definition of “shortcuts” in the
space of quantum states as responsible for the presence of
quantum charging advantage. In Sec. VII, we apply the quan-
tum charging distance to derive a quantum speed limit that is
optimized for unitary evolution and achievable by construc-
tion. Finally, in Sec. VIII we conclude the paper and present
further directions to explore.

II. DEFINITION OF QUANTUM CHARGING DISTANCE

Consider two density matrices ρ̂ and σ̂ with the same
eigenspectra. By definition, these can be connected via a
unitary evolution that does not change the spectra and is
generated by some (possibly time-dependent) Hamiltonian.
We define the quantum charging distance as the minimal time
it takes for the initial state ρ̂ to evolve into the final state σ̂

by the potentially time-dependent Hamiltonian V̂t normalized
to 1, i.e.,

D(ρ̂, σ̂ ) = min
V̂t :||V̂t ||=1

T, (1)

where σ̂ = U ρ̂U † and U = T exp(−i
∫ T

0 V̂t dt ). V̂t is called
the driving Hamiltonian, and || || denotes the operator norm,
which is defined as the largest absolute eigenvalue.

The motivation for this definition is to find the minimal
time it takes to charge a quantum system, considering the

standard condition of the driving Hamiltonian used exten-
sively in the quantum batteries literature [32,49,61,68,69].
This condition on the norm also motivates the name “quantum
charging distance” However, we would like to emphasize that
at this point, until Sec. VI, there is no inherent notion of a
battery or a charging process (i.e., changing the mean energy
of the system). Operator norm ‖V̂t‖ is used to set all potential
Hamiltonians on an equal footing since the evolution (i.e.,
charging) speed can be trivially increased simply by rescaling
eigenvalues of this Hamiltonian to increase this norm. In other
words, N times larger norm leads to N times faster charging
speed. We can view this norm as analogous to the electric
potential, which mathematically acts similarly—doubling the
potential doubles the electric current, given the same resis-
tance. Physically, it is related to the energy invested in the
creation of the Hamiltonian. Thus, setting ‖V̂t‖ = 1 intuitively
accounts for investing the same resources in the creation of
different driving Hamiltonians as measured by this norm.

First, we show that the definition above is indeed a proper
distance measure.

Theorem 1. D defined above is a distance on the set of
density matrices with equal spectra. In other words, it is
well-defined, positive, symmetric, and it satisfies the triangle
inequality.

Proof. See Appendix A. �

III. ALTERNATIVE EXPRESSIONS

Although D is a well-defined distance, the original defi-
nition does not provide much of an idea of how to compute
it. Therefore, we provide several alternative formulas that are
more tractable.

We found it challenging to find an optimal time-dependent
Hamiltonian, denoted as V̂t , that achieves the minimum re-
quired time as per the definition. However, we have discovered
that we do not need to grapple with a time-dependent Hamil-
tonian. The first formula we are about to present demonstrates
that we can consistently select a time-independent Hamilto-
nian that accomplishes the minimal evolution time.

Theorem 2. The charging distance is equal to

D(ρ̂, σ̂ ) = min
U :U ρ̂U †=σ̂

‖i ln(U )‖. (2)

In the above, the minimum is taken over all unitary operators
U that transform the density matrix ρ̂ into σ̂ . The unitary
operator Uopt that attains this minimum is referred to as the
optimal unitary, as it achieves the transformation ρ̂ → σ̂ in
the shortest possible time. Furthermore, the optimal driving
Hamiltonian V̂opt, such that Ut = exp(−iV̂optt ) generates the
shortest distance, is time-independent and given by V̂opt =
i ln(Uopt )/D(ρ̂, σ̂ ).

Proof. See Appendix B. �
Note that the driving Hamiltonian V̂opt above is optimal

among all operators with norm one; see the discussion of the
effect of this norm in Sec. II, and the minimal time to achieve
the target state for any unnormalized Hamiltonian in Sec. VII.

Having established that we need to consider only time-
independent Hamiltonians, we encounter a remaining com-
plexity in the form of the minimization process. This
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challenge arises from the requirement to optimize over all
unitary operators that satisfy σ̂ = U ρ̂U †.

For pure states, however, we can perform this minimization
and obtain the following analytic expression.

Theorem 3. For the pure states ρ̂ = |ψ〉〈ψ | and σ̂ =
|ϕ〉〈ϕ|, the charging distance is given by

D(|ψ〉, |ϕ〉) = arccos |〈ψ |ϕ〉|. (3)

An optimal charging unitary is

Uopt = |ϕ〉〈ψ |eiφ1 + |ϕ⊥〉〈ψ⊥|eiφ2 + Îd−2, (4)

generated by the corresponding optimal Hamiltonian

V̂opt = iei(φ1−φ2 )|ψ⊥〉〈ψ | − iei(φ2−φ1 )|ψ〉〈ψ⊥|. (5)

There, |ψ⊥〉 and |ϕ⊥〉 are states orthogonal to |ψ〉 and |ϕ〉,
respectively, in the two-dimensional plane spanned by the
latter two vectors. Îd−2 is the identity matrix in the other or-
thogonal dimensions. For nonorthogonal states, |〈ϕ|ψ〉| �= 0,
we have eiφ1 = 〈ϕ|ψ〉

|〈ϕ|ψ〉| and eiφ2 = 〈ϕ⊥|ψ⊥〉
|〈ϕ⊥|ψ⊥〉| . On the other hand,

for orthogonal states, |〈ϕ|ψ〉| = 0, we have eiφ1 = −〈ϕ⊥|ψ〉
and eiφ2 = 〈ϕ|ψ⊥〉.

Proof. See Appendix C. �
Interestingly, the result for pure states, Eq. (3), can also

be derived from the well-known Mandelstam-Tamm bound
[70,71], especially then [72], which contains a standard de-
viation in energy as one of its parameters. In contrast, the
charging distance is formulated using the operator norm,
which is always larger than the standard deviation. After the
optimization for the minimal time, the two bounds coincide,
as we show in Appendix D.

Unlike for pure states, there is no general analytic solution
for mixed states. However, even in the most general case, we
can still significantly reduce the complexity of the minimiza-
tion to optimization over only local subspaces.

Theorem 4. Consider two density matrices with the same
spectra and spectral decompositions

ρ̂ =
m∑

i=1

ri

ni∑
k=1

∣∣rk
i

〉〈
rk

i

∣∣, σ̂ =
m∑

i=1

ri

ni∑
k=1

∣∣sk
i

〉〈
sk

i

∣∣. (6)

d denotes the dimension of the Hilbert space, ni dimensions of
the eigenspaces,

∑m
i=1 ni = d , ri are eigenvalues that differ for

different i, and both {|rk
i 〉} and {|sk

i 〉} are orthonormal bases.
Then

D(ρ̂, σ̂ ) = min
U1,U2,...,Um

∥∥∥∥∥i ln

(
m⊕

i=1

Ui

m∑
i=1

ni∑
k=1

∣∣sk
i

〉〈
rk

i

∣∣)∥∥∥∥∥, (7)

where Ui is a unitary operator acting on the subspace-
eigenspace Hi = span{|sk

i 〉}ni
i=1.

Proof. See Appendix E. �
For nondegenerate mixed states, this theorem can be fur-

ther simplified to a minimization over d angles.
Corollary 1. When ρ̂ = ∑d

i=1 ri|ri〉〈ri| and σ̂ =∑d
i=1 ri|si〉〈si| are nondegenerate d-dimensional density

matrices of the same spectra, the distance between them is
equal to

D(ρ̂, σ̂ ) = min
φ1,φ2,...,φd

∥∥∥∥∥i ln

(
d∑

i=1

eiφi |si〉〈ri|
)∥∥∥∥∥. (8)

This corollary is proved easily due to all eigenspaces being
one-dimensional, in which the local unitaries are local phase
rotations.

Theorem 4 and Corollary 1 reveal a very interesting prop-
erty of the charging distance, namely that it does not depend
on the eigenvalues, as long as the rank and the eigenspaces
remain the same. In other words, the distance does not change
when eigenvalues are continuously changed, as long as the
corresponding eigenspaces remain the same. However, if two
previously unequal eigenvalues become equal, then the rank
of the density matrix reduces. As a result, also the distance
might discontinuously decrease [73]. This is because the
optimization suddenly goes over fewer larger eigenspaces
corresponding to fewer unitary operators Ui that each cover
the same or a bigger subspace than before. Conversely, if the
number of eigenspaces increases due to eigenvalues that used
to be the same being no longer the same, also the charging
distance might discontinuously jump to a higher value.

This independence of the continuously varied eigenvalues
clearly separates the charging distance from other quantities
designed for similar purposes appearing in the QSL literature
[74–76], such as the Bures angle. It further allows us to tighten
the lower bound on this quantity, as we will show next.

IV. BOUNDS ON THE QUANTUM CHARGING DISTANCE

So far, we have only provided an analytic expression for
the computation of the charging distance in the case of pure
states, while for mixed states, numerical optimization methods
may be required. To address this limitation, we also offer
readily calculable upper and lower bounds for this quantity,
applicable in all situations.

Theorem 5. (Upper bound) For any d-dimensional den-
sity matrices ρ̂ and σ̂ with the same spectra, the distance is
bounded by

D(ρ̂, σ̂ ) � π

(
1 − 1

d

)
. (9)

Proof. See Appendix F. �
The theorem guarantees that the distance is bounded by

π for even an infinite dimension of the Hilbert space. This
reveals an interesting observation: while for pure states the
maximal charging distance is given by π/2 as per Theorem 3,
for mixed states this time is doubled.

We also found general lower bounds on the charging dis-
tance, related to the Bures angle. Defining the Uhlmann’s
fidelity [78] between two mixed states as F (ρ̂, σ̂ ) =
tr(

√√
ρ̂σ̂

√
ρ̂ ), the Bures angle [79] is defined as

θB(ρ̂, σ̂ ) = arccos[F (ρ̂, σ̂ )]. (10)

The lower bounds follow.
Theorem 6. (Lower bound) The charging distance is al-

ways larger than or equal to the Bures angle between two
states with the same spectra, i.e.,

θB(ρ̂, σ̂ ) � D(ρ̂, σ̂ ). (11)

Proof. See Appendix G. �
See Fig. 1 for illustration. Note that Theorem 3 shows that

for pure states, the charging distance and the Bures angle are
equal, D(|ψ〉, |φ〉) = θB(|ψ〉, |φ〉).
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ρ̂
σ̂

D(ρ̂, σ̂)

DC(ρ̂, σ̂)

θB(ρ̂, σ̂)

Sfull
SArea

FIG. 1. The quantum charging distance D(ρ̂, σ̂ ) is the length of
the geodesic in the space given by a fixed spectrum of the density
matrix. It measures the minimal time it takes to evolve one state to
another by a unitary evolution generated by a driving Hamiltonian
V̂ with a fixed operator norm ||V̂ || = 1. Bures angle, on the other
hand, is always smaller than the charging distance. This is because
the Bures angle θB(ρ̂, σ̂ ) is equal to the quantum charging distance
in the purification space [77]. In other words, if one is allowed to
apply a unitary operator in an extended Hilbert space in which both
ρ̂ and σ̂ are pure, even a faster charging speed can be achieved. How-
ever, this is impossible without access to these unknown degrees of
freedom. The unitary operation in the purification space corresponds
to a nonunitary operation in the original Hilbert space, creating an
additional shortcut for charging. Classical charging allows only local
unitary operations applied on the product states, thus it does not
create any entanglement in the charging process. As a result, classical
charging is even more limited than quantum charging, and the time
to charge, as measured by the classical charging distance DC (ρ̂, σ̂ ),
is longer.

The fact that the charging distance does not depend on the
eigenvalues, as long as the corresponding eigenspaces do not
change, allows us to make the lower bound above even tighter
by maximizing over these eigenvalues. We can formalize this
as follows.

Corollary 2. (Tighter lower bound) Consider two density
matrices with spectral decompositions given by Eq. (6). The
charging distance is lower bounded as

max
i

θB(ρ̂i, σ̂i ) � D(ρ̂, σ̂ ). (12)

There, we denoted the maximally mixed states on the
subspaces-eigenspaces as

ρ̂i = 1

ni

ni∑
k=1

∣∣rk
i

〉〈
rk

i

∣∣, σ̂i = 1

ni

ni∑
k=1

∣∣sk
i

〉〈
sk

i

∣∣. (13)

Proof. See Appendix H. �
This means that the minimal time it takes to charge a

quantum system is at least as large as the slowest element in
the chain: the eigenspace of ρ̂, represented by its maximally
mixed state ρ̂i, that takes the longest time to transform into

the corresponding eigenspace of σ̂ with the unitary transfor-
mation, lower bounds the total charging distance and thus also
the total charging time.

V. EXAMPLES

Let us now discuss a couple of simple examples to make
the reader acquainted with the machinery just developed.

A. Two-level system

Any two mixed states of a qubit with the same spectra
can be written as ρ̂ = (Î + r	n · 	σ )/2 and σ̂ = (Î + r 	m · 	σ )/2.
	n and 	m are the unit vectors, 0 � r � 1, and 	σ denotes the
vector of Pauli matrices.

Using Corollary 1, for r > 0 the charging distance is
given by

D(ρ̂, σ̂ ) = min
φ1,φ2

‖i ln(eiφ1 |s1〉〈r1| + eiφ2 |s2〉〈r2|)‖, (14)

where {|ri〉} and {|si〉} are eigenvectors of ρ̂ and σ̂ , respec-
tively. This problem is mathematically equivalent to the case
of pure states; see Theorem 3 and Appendix C. From this we
obtain D(ρ̂, σ̂ ) = arccos |〈r1|s1〉|. Diagonalizing the density
matrices and inserting the eigenvectors into the formula yields

D(ρ̂, σ̂ ) = 1
2θ = 1

2 arccos (	n · 	m) (15)

for r > 0, where θ is the angle between 	n and 	m. For r = 0,
the charging distance is zero, which follows from Theorem 4.

In contrast, the Bures angle between the two qubits is given
by [78,80]

θB(ρ̂, σ̂ ) = arccos (
√

tr[ρ̂σ̂ ] + 2
√

det(ρ̂σ̂ ))

= 1

2
arccos (1 − (1 − 	n · 	m)r2). (16)

When r → 0, the charging distance conserves its value while
the Bures angle converges to 0. We can easily derive D � θB,
corresponding to the result of Theorem 6. See Fig. 2 for a
geometric illustration.

B. Three-level system

As a second example, we numerically compute the quan-
tum charging distance for 20 randomly generated couples ρ̂

and σ̂ , in a three-dimensional system, together with upper and
lower bounds. See Fig. 3.

VI. APPLICATION TO QUANTUM BATTERIES

The very notion of quantum charging distance has been
inspired by the recent literature studying the charging power
of quantum batteries (see [30] and references therein for an
overview). As such, we are going to describe how the quantum
charging distance relates to the problem of computing the
charging power of a many-body quantum battery in Sec. VI A.
After that, in Sec. VI B, we show how it allows for a quanti-
tative description of the “shortcuts in the space of quantum
states,” which are at the heart of the quantum charging advan-
tage of many-body quantum batteries.
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FIG. 2. Cut through the Bloch sphere to illustrate the charging
distance between two qubits. The charging distance is given by
the curve’s length on the Bloch sphere’s surface, D(ρ̂, σ̂ ) = θ/2,
connecting the two states. The Bures angle θB(ρ̂, σ̂ ) = θ ′

B/2 is al-
ways smaller and it depends on r. For r = 1, they are both equal,
while for r → 0, θB → 0 while the charging distance stays constant.
Objects below the triangle and the dashed lines are for the geometric
construction of θ ′

B.

A. Relation to the charging power

Consider a battery Hamiltonian Ĥ that defines the natural
energy levels of the system when it is not charged. The mean
power of the quantum charging is defined as the difference
between the initial and the final energy, divided by the time of
charging,

P = |〈Ĥ〉ρ̂ − 〈Ĥ〉σ̂ |
T

. (17)

Here, the mean energy is defined as 〈Ĥ〉ρ̂ = tr[Ĥ ρ̂]. A well-
known and easy-to-derive bound states that the mean power

FIG. 3. The quantum charging distance (diamonds), for 20 ran-
domly generated couples ρ̂ and σ̂ shown from top to bottom, in
a three-dimensional Hilbert space was obtained numerically using
Corollary 1. For each realization, we also plot the interval of the
lower and the upper bounds [maxi θB(ρ̂i, σ̂i ), π (1 − 1/3)], obtained
from Corollary 2 and Theorem 5, respectively.

is bounded by the product of the norms of the battery and the
driving Hamiltonians as [59,61]

P � 2‖Ĥ‖‖V̂ ‖. (18)

We will show that the quantum charging distance provides
a tighter bound.

The maximum energy difference between the two states
is bounded by the trace distance. Trace distance, defined as
DTr(ρ̂, σ̂ ) = 1

2 ||ρ̂ − σ̂ ||1, can be equivalently written as [81]

DTr(ρ̂, σ̂ ) = 1
2 max

Ô:||Ô||=1
(〈Ô〉ρ̂ − 〈Ô〉σ̂ ). (19)

This gives the bound on the energy difference between the two
states as

|〈Ĥ〉ρ̂ − 〈Ĥ〉σ̂ | = ‖Ĥ‖
∣∣∣∣∣∣
〈

Ĥ

‖Ĥ‖

〉
ρ̂

−
〈

Ĥ

‖Ĥ‖

〉
σ̂

∣∣∣∣∣∣
� 2‖Ĥ‖DTr(ρ̂, σ̂ ). (20)

Realizing that the minimal time of charging is given by the
quantum charging distance, T � D(ρ̂, σ̂ )/||V̂ ||, this gives a
bound on the mean power of the charging as

P � 2‖Ĥ‖‖V̂ ‖DTr(ρ̂, σ̂ )

D(ρ̂, σ̂ )
. (21)

The right-hand side is the largest mean charging power be-
tween ρ̂ and σ̂ for the battery Hamiltonian Ĥ and the driving
Hamiltonian V̂ , which are restricted by their operator norms,
‖Ĥ‖ and ‖V̂ ‖.

Using Theorem 6 and a bound on the trace distance in
terms of fidelity [82], we derive

DTr(ρ̂, σ̂ )

D(ρ̂, σ̂ )
�

√
1 − F (ρ̂, σ̂ )2

arccos(F (ρ̂, σ̂ ))
� 1. (22)

The second inequality is saturated only when ρ̂ = σ̂ . It fol-
lows from arccos x = arcsin

√
1 − x2 and sin x � x for 0 �

x � 1, and from F (ρ̂, σ̂ ) = 1 iff ρ̂ = σ̂ . Thus, our newly de-
rived bound is always tighter than the formerly known bound,
Eq. (18).

Moreover, Eq. (21) is achievable due to the existence of the
optimal battery Hamiltonian, Ĥ , and the driving Hamiltonian,
V̂t , which saturate the bound by definition.

1. Example and comparison

We provide an example to show the achievability of the
charging distance bound Eq. (21) in comparison with previ-
ously derived bounds, coming from the Mandelstam-Tamm
QSL [59] and from the Fisher information [83]. The first of
the known bounds is tight for pure states, while the second
is tight for both pure states and two-level systems. However,
they do not provide tight bounds for a three-level system with
a mixed state.

The Mandelstam-Tamm power bound comes from the un-
certainty relation between time and energy [59], so that

P � 2

T

∫ T

0

√
〈	Ĥ2〉〈	V̂ 2〉 dt, (23)

which is tighter than the trivial bound, Eq. (18), due to the
variance being always smaller than the operator norm. A
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Mandelstam

FIG. 4. Exact power of a three-level mixed state charged with
an optimal Hamiltonian and three bounds on power, with units h =
V = 1. The charging distance power bound is always tight for the
optimal charging protocol when charging from the passive to the
maximally charged state. For nonoptimal charging protocols, other
bounds might be tighter.

tighter bound was derived using the Fisher information as [83]

P � 1

T

∫ T

0

√
〈	Ĥ2〉IE dt, (24)

where the Fisher information IE is defined as

IE = 2
d∑

i=1

(d phi/dt )2

phi

. (25)

phi is the probability of measuring the system to have energy
hi, given by the spectral decomposition of the battery Hamil-
tonian Ĥ = ∑d

i=1 hi|hi〉〈hi|, i.e., phi = 〈hi|ρ̂t |hi〉.
We test the three-level system with a battery Hamiltonian

with equidistant energy spacing,

Ĥ = −h| − h〉〈−h| + 0|0〉〈0| + h|h〉〈h|. (26)

We assume the initial state is prepared in the Gibbs state
ρ̂ = e−βĤ/Z , where Z is the partition function and β is an
inverse temperature. The charged state is σ̂ = eβĤ/Z , with the
maximum expectation energy of Ĥ .

We find the optimal charging protocol using Corollary 1.
The unitary operator that connects the depleted state, ρ̂, with
the charged state, σ̂ , is given by

U = eiφ1 |h〉〈−h| + eiφ2 |0〉〈0| + eiφ3 | − h〉〈h|. (27)

By minimizing over φ1, φ2, and φ3, we obtain the optimal
driving Hamiltonian V̂ through Theorem 2 as

V̂ = V (|h〉〈−h| + | − h〉〈h|), (28)

independent of β.
Figure 4 illustrates the exact power when charging by the

optimal driving Hamiltonian, Eq. (28). Further, we plot the
charging distance bound, Eq. (21), the Mandelstam-Tamm
bound, Eq. (23), and the Fisher information bound, Eq. (24).
The charging distance bound saturates to exact power, while
other bounds do not. This tightness comes from our choice of
V̂ , since the charging distance bound is saturated only when

using the optimal protocol while transforming a passive state
to the maximally charged state (with the same spectrum). This
is exactly the situation that is the most relevant to quantum
batteries, because charging from a passive state to the maxi-
mally charged state maximizes the capacity of the battery. In
other words, when using the optimal protocol for charging the
battery to its maximal capacity, the charging distance bound is
always tight, and thus tighter than the other two bounds [84].

Conversely, when nonoptimal charging Hamiltonian V̂ is
employed, the other bounds may perform better.

B. Quantum versus classical charging

Consider two pure states: depleted state |00〉 and a charged
state |11〉. The optimal charging unitary is derived from
Eq. (4) as

Uopt = |00〉〈11| − |11〉〈00| + |10〉〈10| + |01〉〈01|. (29)

This corresponds to the optimal Hamiltonian V̂opt =
i(|00〉〈11| − |11〉〈00|) and the minimal charging time is
D(|00〉, |11〉) = π/2. During this optimal evolution, the state
passes through a maximally entangled state |�−〉 = (|00〉 −
|11〉)/

√
2 at time t = π/4.

Consider two product states ρ̂ = ρ̂1 ⊗ · · · ⊗ ρ̂m and σ̂ =
σ̂1 ⊗ · · · ⊗ σ̂m, where ρ̂i and σ̂i have the same spectra. We
define the classical charging distance as the minimal time it
takes to evolve ρ̂ → σ̂ using only the local evolution,

V̂ = V̂1 ⊗ Î · · · ⊗ Î + · · · + Î ⊗ · · · ⊗ Î ⊗ V̂m, (30)

assuming ||V̂ || = 1. (We allow time-dependent V̂ .) The cor-
responding unitary U1 ⊗ · · · ⊗ Um acts only on the local
subsystems and consequently does not create any entangle-
ment.

Taking the previous example, the classical charging dis-
tance is equal to DC (|00〉, |11〉) = π . This can be achieved
through different driving Hamiltonians, for example, by
charging both qubits at the same time at half the power,

V̂ = i

2
[(|0〉〈1| − |1〉〈0|) ⊗ Î + Î ⊗ (|0〉〈1| − |1〉〈0|)], (31)

or by charging them sequentially with the full power,

V̂t =
{

i[(|0〉〈1| − |1〉〈0|) ⊗ Î], 0 � t < π/2,

i[Î ⊗ (|0〉〈1| − |1〉〈0|)], π/2 � t � π.
(32)

Clearly, both classical and quantum charging reach the
target state. However, quantum charging utilized a shortcut
by going through a maximally entangled state, leading to a
shorter charging time. See Fig. 1 for illustration.

This can be straightforwardly generalized to N qubits as
DC (|0 · · · 0〉, |1 · · · 1〉) = Nπ/2 and D(|0 · · · 0〉, |1 · · · 1〉) =
π/2, showing that quantum charging provides N-fold advan-
tage. The optimal charging Hamiltonian is given by V̂opt =
i(|0 · · · 0〉〈1 · · · 1| − |1 · · · 1〉〈0 · · · 0|) and the state passes
through a GHZ state (|0 · · · 0〉 − |1 · · · 1〉)/

√
2 during the

charging.
This offers a geometric interpretation, quantitatively for-

malizing the quantum charging advantage—a subject of
extensive discussion within the quantum batteries literature
[31,53,55,61,68,83,85].
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VII. A TIGHT QUANTUM SPEED LIMIT
FOR UNITARY EVOLUTION

The charging distance introduced in previous sections can
be used to define a tight quantum speed limit (QSL) for unitary
evolution.

On general grounds, QSL is defined as the minimum time
to evolve from one quantum state to another [86,87]. Man-
delstam and Tamm proposed a first approach based on the
time-energy uncertainty relation, suggesting that the mini-
mum time is related to the standard deviation of energy [88].
Margolus and Levitin later improved the QSL of Mandelstam
and Tamm to make it tighter [89]. In the following years,
the concept was refined and extended in many ways to in-
clude nonorthogonal states [71,90,91], nonunitary evolution
[92–98], and mixed states [74,99–103].

A common feature of all these approaches is that the result-
ing QSLs are dependent on the spectra of the two states, ρ and
σ , under investigation. This feature is desirable when dealing
with two generic states which do not share the same spectra,
and so they must be connected by some nonunitary evolution.
On the other hand, when restricting to states that are unitarily
connected, such a dependence on the spectra is redundant and,
more in detail, it leads in general to loose bounds [74].

Therefore, it is an interesting problem to find QSLs that are
more suitable for the peculiarities of unitary evolution, i.e.,
which are independent of the eigenvalues and which give as
tight as possible estimates of the minimum time required to
unitarily evolve one state into another state.

This problem has been addressed and investigated in [74].
The authors defined the generalized Bloch angle for d-
dimensional mixed states,

�(ρ̂, σ̂ ) = arccos

(
tr(ρ̂σ̂ ) − 1/d

tr(ρ̂2) − 1/d

)
, (33)

which reduces to the standard notion of Bloch angle when
dealing with two-level systems. From (33) the QSL follows:

tGB = �(ρ̂, σ̂ )

vGB
, with

vGB = 1

T

∫ T

0

√
2tr

(
V 2

t ρ̂2
t − (Vt ρ̂t )2

)
tr
(
ρ̂2

t − 1/d2
) dt . (34)

In [74], it is shown that Eq. (34) gives, for many but not all
cases, a tighter bound than the Mandelstam-Tamm bound. On
the other hand, it still depends explicitly on the spectra except
for two-level systems, and, as a consequence, it is not always
tight.

From its very definition, Eq. (1), D(ρ̂, σ̂ ) gives a notion of
QSL tailored towards unitary evolution only. Also, from the
results of the previous section, D(ρ̂, σ̂ ) is by construction a
limit that is achievable, since it is constructed by finding the
best driving Hamiltonian connecting the two states ρ̂ and σ̂ .
At the same time, as discussed at length, it is independent of
the spectra of the two states ρ̂ and σ̂ .

On the other hand, D(ρ̂, σ̂ ) has been obtained by finding
the best driving protocol among the protocols satisfying the
constraint ||V̂t || = 1, and this constraint is not necessarily
satisfied by a generic driving V̂t . However, this problem can

be easily addressed by first defining a QSL as

tCD = D(ρ̂, σ̂ )

vCD
. (35)

with charging distance evolution speed vCD = 1
T

∫ T
0 ‖V̂t‖,

where V̂t is the instantaneous driving Hamiltonian. We stress
that vCD, by construction, is only determined by the operator
norm of the quench Hamiltonian, and so it is independent of
the instantaneous state of the system.

By definition, tCD is achievable, i.e., it is always possible to
find a protocol V̂t that saturates the bound set by tCD, and this
protocol is then optimal.

On the other hand, there could be some suboptimal pro-
tocols, for which this bound becomes unnecessarily loose,
and better (higher) bounds can be found. Specifically, vCD =
1
T

∫ T
0 ‖V̂t‖ can contain the some contributions that do not

contribute to the evolution of the state, but they do contribute
to the operator norm [104]. Thus, to find less loose bound
for these nonoptimal driving protocols, we can remove these
superfluous contributions to improve the QSL.

The source of these superfluous contributions can be un-
derstood by noticing that V̂t can contain terms that commute
with the instantaneous state ρ̂t [104]. These terms, of course,
do not contribute to the dynamics, but they do contribute in
the evaluation of vCD. As result, these terms make the bounds
looser.

To solve this issue, we define the following modified evo-
lution speed vmCD:

vmCD = 1

T
min

D̂t :[D̂t ,ρ̂t ]=0

∫ T

0
‖V̂t + D̂t‖, (36)

and the QSL that is tighter for nonoptimal driving reads

tmCD = D(ρ̂, σ̂ )

vmCD
. (37)

The detailed proof of Eq. (36) is in Appendix I.
It should be noticed that, by construction, vmCD depends

on the instantaneous state, but it is still independent of the
eigenvalues of the instantaneous state. Also, it is easy to see
that tmCD gives a tighter bound than tCD, although it requires
more resources and time to be evaluated.

All in all, the QSL in Eq. (37), together with the results of
Sec. III, allows us to reduce the problem of finding the QSL
between two states to a functional minimization problem liv-
ing on smaller functional spaces (Theorem 4) thus simplifying
significantly the computational complexity of the problem.
In the particular case of ρ̂ and σ̂ being nondegenerate and
d-dimensional, the problem is dramatically simplified to a
d-dimensional minimization problem (Corollary 1).

VIII. CONCLUSION AND FUTURE DIRECTIONS

Quantum batteries promise a potentially large speed-up
in charging. The basic principle behind this is by means of
shortcuts through the Hilbert space, using entangled states
in between. This leads to a natural definition of a distance:
We define the quantum charging distance between two given
states, as the minimal time it takes for one of the two
states to evolve into the other, among all the possible driving
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TABLE I. Main results.

Mathematical relations

Charging distance Formulas Bounds Ref.

Pure states D(ρ̂, σ̂ ) = θB(ρ̂, σ̂ ) 0 � D(ρ̂, σ̂ ) � π/2 (3)

Mixed states D(ρ̂, σ̂ ) = minU1,U2,...,Um

∥∥i ln
(⊕m

i=1 Ui
∑m,ni

i=1,k=1

∣∣sk
i

〉〈
rk

i

∣∣)∥∥ θB(ρ̂, σ̂ ) � maxi θB(ρ̂i, σ̂i )
� D(ρ̂, σ̂ ) � π (1 − 1

d )

(11), (12)
(7), (9)

Applications
Mean charging power P � 2‖Ĥ‖‖V̂ ‖DTr (ρ̂, σ̂ )/D(ρ̂, σ̂ ) (21)
Quantum speed limit tCD = D(ρ̂, σ̂ )/vCD (35)
Classical vs DC (|0 · · · 0〉, |1 · · · 1〉) = Nπ/2 Sec.
quantum charging D(|0 · · · 0〉, |1 · · · 1〉) = π/2 VI B

Hamiltonians satisfying a constraint in their operator norm.
The main results of this paper are summarized in Table I.

By definition, this notion of distance is hard to compute,
since it requires an optimization process during the calcu-
lation. This difficulty is mitigated by the theory developed
in Sec. III, in which it is first shown that the minimization
can be carried on time-independent driving Hamiltonian only
(Theorem 2). For the special case of ρ̂ and σ̂ being pure
states, the charging distance reduces to the well-known Bures
angle. Moreover—when the two states under investigation
are nondegenerate and of maximal rank—the minimization
process can be further reduced to a d-dimensional minimiza-
tion problem, thus reducing significantly the computational
complexity.

Furthermore, we have found general upper and lower
bounds satisfied by the charging distance. The distance is
lower bounded by the Bures angle and upper bounded by π for
any dimensional Hilbert space and for any pair of states. When
the states are pure, the upper bound is cut by half to π/2.

These results were then applied to two problems of interest
in the recent literature: the maximal charging power of many-
body quantum batteries, and the estimate of QSL for unitary
evolution.

As for quantum batteries and their charging power, the
quantum charging distance gives a bound on the power of
quantum charging in terms of the operator norms of the bat-
tery Hamiltonian and the driving Hamiltonian. We proved that
this new bound is always tighter than the trivial bound on the
power, P � 2||V̂ ||||Ĥ || [59,61]. By comparing the quantum
charging distance with classical charging, we have confirmed
that the maximum quantum charging advantage scales linearly
with the system size, thus providing a genuine geometric inter-
pretation of the notion of shortcuts in the many-body Hilbert
space. Furthermore, the shortcut that connects the depleted
with the charged product states always goes through an en-
tangled state. In comparison, classical charging, which forces
the state to remain separable throughout the evolution, always
leads to a longer route. Any two pure orthogonal states have
the quantum charging distance equal to π/2, which follows
from Theorem 3, independent of the size of the system, and
the number of qubits in particular. Thus, 10 000 qubits can be
charged as quickly as a single one if a sufficiently entangling
driving Hamiltonian is applied.

Outside of the charging distance, we defined a new quan-
tum speed limit—tailored towards unitary evolution. This

QSL is automatically defined from the charging distance,
up to a rescaling that considers the instantaneous operator
norm of the driving Hamiltonian. By construction, this QSL
is achievable and independent of the spectrum of the in-
stantaneous state. Thus, it solves the open issues for unitary
evolution from previous works [74].

One of the drawbacks of the charging distance introduced
in this paper is that it is not formulated by an explicit analytic
formula, except for the case of ρ̂ and σ̂ being pure states.
For the general case of ρ̂ and σ̂ being mixed, we reduced the
problem to an optimization task. We confirmed that for small
systems, such an optimization task takes a reasonable time
to compute. An immediate question that would be interesting
to address is finding efficient numerical strategies to solve
this optimization problem, since our numerical checks have
been quite preliminary and restricted to small systems only.
Furthermore, it would be remarkable to find a closed analytic
expression for the charging distance in the case of mixed
states.

Clearly, the time necessary to evolve one state into another
depends heavily on the type of restrictions put on the driving
Hamiltonian. In this paper, we used the operator norm for
the normalization of the driving Hamiltonian, inspired by the
quantum batteries literature. However, other norms, such as
the trace and square norms, are also possible, leading to dif-
ferent charging geometries. The dependency of the minimum
time on the normalization condition is an interesting question
that we plan to address in the near future.
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APPENDIX A: PROOF OF THEOREM 1

There exists a driving Hamiltonian, V̂t , which connects
two mixed states with the same spectra. To show that, let
us assume that ρ̂ = ∑

i ri|ri〉〈ri| and σ̂ = ∑
i ri|si〉〈si|. We

can define a unitary operator Û = ∑
i |si〉〈ri| that connects
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the two states. Each unitary operator can be represented
as an exponential using Lie algebra Û = exp(−iV ). The
time-independent Hamiltonian, V̂t = V̂ /‖V̂ ‖, follows the nor-
malization condition, and the time of evolution T is given as
‖V̂ ‖. Hence, it takes a finite time to evolve from ρ̂ to σ̂ , which
guarantees the existence of the minimum time to evolve. The
quantum charging distance is thus well-defined.

The proofs of other properties of distance follow.
(i) Symmetry. D(ρ̂1, ρ̂2) = D(ρ̂2, ρ̂1) is satisfied, because

one can choose −V̂ to go from ρ̂2 to ρ̂1 in the same time.
(ii) Positivity. The time is clearly positive. D(ρ̂1, ρ̂2) =

0 ⇔ ρ̂1 = ρ̂2 holds because it will always take nonzero time
to go to a state that is not the same state.

(iii) Triangle inequality. D(ρ̂1, ρ̂2) � D(ρ̂1, ρ̂3) +
D(ρ̂3, ρ̂2) holds because one can choose a piecewise function

V̂t =
{

V̂ 13
t , t ∈ [0, T13),

V̂ 32
t−T13

, t ∈ [T13, T13 + T32],
(A1)

where V̂ 13
t is the optimal driving Hamiltonian, which takes

state ρ̂1 to state ρ̂3 in time T13 and similar with V̂ 32
t and time

T32. This V̂t is part of the set over which the time to reach ρ̂2

from ρ̂1 is optimized, so the optimum must be given by time
T equal to or lower than the time it takes for the V̂t defined
above.

APPENDIX B: PROOF OF THEOREM 2

Here we prove an alternate formula for general states in
terms of the charging unitary operator.

Sketch. The proof uses the perturbation method on the
eigenvalues of i ln(U ) expanded in the time differential as
i ln ((1 − iV̂t dt )U ). The time evolution rate of eigenvalues is
bounded by the operator norm of V̂t . From this, it follows
that the time it takes to evolve ρ̂ to σ̂ is bounded below as
T (ρ̂, σ̂ ) � ‖i ln(U )‖. By definition, the distance is equal to
or greater than minU :U ρ̂U †=σ̂ ‖i ln(U )‖ and it is possible to
always find a time-independent Hamiltonian V̂t that saturates
the bound.

Proof. (Theorem 2) Any unitary operator U can be written
as

U = T exp

(
−i

∫ t

0
V̂τ dτ

)
= exp( − iŴ (t ))

=
∑

i

|i〉〈i|exp(−iwi ), (B1)

where |i〉 and wi are the eigenbasis and eigenvalues of Ŵ . For
an infinitesimal dt , we can expand U as

U ′ = exp ( − iŴ (t + dt )) = T exp

(
−i

∫ t+dt

0
V̂τ dτ

)

= T exp

(
− i

∫ t+dt

t
V̂τ dτ

)
T exp

(
−i

∫ t

0
V̂τ dτ

)

= T exp

(
− i

∫ t+dt

t
V̂τ dτ

)
exp( − iŴ (t ))

=
∑

i

|i′〉〈i′|exp(−iw′
i ). (B2)

Additionally, we Taylor-expand V̂τ at point t as V̂t+dt =
V̂t + dV̂t

dt |t dt + O(dt2), which yields

T exp

(
− i

∫ t+dt

t
V̂τ dτ

)
= exp( − iV̂t dt + O(dt2)). (B3)

Similarly, we expand |i′〉 and w′
i as |i′〉 = |i(0)〉 + |i(1)〉dt +

|i(2)〉dt2 + · · · and w′
i = w

(0)
i + w

(1)
i dt + w

(2)
i dt2 + · · · for

|i(0)〉 = |i〉 and w
(0)
i = wi. The last equality in Eq. (B2), while

inserting Eq. (B1), is rewritten as

[1 − iV̂t dt + O(dt2)]
∑

i

|i〉〈i|exp(−iwi)

=
∑

i

[|i(0)〉 + |i(1)〉dt + O(dt2)]

× [〈i(0)| + 〈i(1)|dt + O(dt2)]

× exp
(−i

[
w

(0)
i + w

(1)
i dt + O(dt2)

])
. (B4)

By applying 〈i| and |i〉 on both sides and extracting the first
order of dt , we obtain

〈i|(−iV̂t )|i〉exp(−iwi)

= −iw(1)
i exp −iwi + (〈i(1)||i〉 + 〈i||i(1)〉) exp −iwi.

(B5)

Due to normalization condition, 1 = 〈i′||i′〉 = 〈i||i〉 +
(〈i(1)||i〉 + 〈i||i(1)〉)dt + O(dt2), it follows that 〈i(1)||i〉 +
〈i||i(1)〉 = 0. Hence, from the equation above, we obtain

〈i|V̂t |i〉 = w
(1)
i . (B6)

At the same time, ||V̂t || = 1. This bounds all the diagonal
elements of V̂t , thus we have∣∣w(1)

i

∣∣ = |〈i|V̂t |i〉| � ||V̂t || = 1. (B7)

The above equation holds for any time t ∈ [0, T ).
We are going to use this inequality to bound the first-order

coefficient in dt as

d

dt
||Ŵ (t )|| = d

dt
max

i
|wi(t )| � max

i

d

dt
|wi(t )|

= max
i

∣∣w(1)
i (t )

∣∣ � 1, (B8)

where the bound on the right-hand side holds for any t ∈
[0, T ).

From this, we derive

||Ŵ (T )|| =
∫ T

0

d

dt
||Ŵ (t )||dt �

∫ T

0
1dt = T . (B9)

Ŵ (T ) can be equivalently written as the matrix logarithm of
the unitary U , and the above equation can thus be rewritten as

T � ||Ŵ (T )|| = ||i ln(U )||. (B10)

This equation holds for any kind of driving process, so, op-
timizing over all drivings that each leads to a unitary U that
connects ρ̂ with σ̂ , we obtain the lower bound on the minimal
time that it takes to achieve this transformation, obtaining

D(ρ̂, σ̂ ) � min
U :U ρ̂U †=σ̂

‖i ln(U )‖. (B11)
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Next, we show that this bound is achievable. The strat-
egy is as follows. Because the inequality is always satisfied,
to achieve the lowest possible left-hand side, we first min-
imize the right-hand side. Let us define Uopt as a unitary
operator that achieves the minimum for the right-hand side
(the minimum always exists because it is a continuous func-
tion on a compact set of unitary operators). For any optimal
unitary operator Uopt, there is a time-independent Hamilto-
nian V̂opt := i ln(Uopt )/D(ρ̂, σ̂ ), which satisfies Uopt = exp( −
iV̂optD(ρ̂, σ̂ )), saturating the bound. This proves the theorem
and shows that there is always a time-independent Hamilto-
nian V̂ that satisfies the equality condition (B11) and

D(ρ̂, σ̂ ) = min
U :U ρ̂U †=σ̂

‖i ln(U )‖. (B12)

The optimal driving Hamiltonian is obtained from the defini-
tion, V̂opt = i ln(Uopt )/D(ρ̂, σ̂ ). �

APPENDIX C: PROOF OF THEOREM 3

Here we prove an alternate formula for the charging dis-
tance for pure states.

Sketch. The theorem is proved by separating the Hilbert
space dimension into two relevant and other irrelevant dimen-
sions. The relevant dimension is given by the plane spanned
by |ψ〉 and |ϕ〉. The optimal unitary transforms one of the
states into the other by rotating it in this plane. Thus, the
total unitary U can be expressed as a direct sum of unitary
operators U = U2 ⊕ Ud−2. Ud−2 turns out to be irrelevant for
the distance, and U2 is a two-dimensional unitary that is easily
parametrized. Analytical optimization in Theorem 2 yields
arccos(|〈ψ |ϕ〉|).

Proof. (Theorem 3) The dimensions other than the two
dimensions of a plane where states live cannot contribute to
evolution by the optimal time-independent driving Hamilto-
nian. Terms of these additional dimensions in U just make
‖i ln(U )‖ increase without changing the state, thus they will
be irrelevant for the optimal charging unitary.

Generally, unitary operator |ϕ⊥〉 lives in the plane defined
by both |ψ〉 and |ϕ〉. Using the Gram-Schmidt process, we
derive the orthogonal vector to |ψ〉 in this plane as

|ψ⊥〉 = |ϕ〉 − 〈ψ |ϕ〉|ψ〉√
1 − |〈ψ |ϕ〉|2

e−iφ′
, (C1)

except for the case |〈ψ |ϕ〉| = 1, which is trivial since
D(|ψ〉, |ϕ〉) is clearly zero. e−iφ is a phase that can be cho-
sen arbitrarily, but note that it appears in the parametrization
below.

U that connects the two pure states can be expressed as a
sum of three terms,

U = |ϕ〉〈ψ |eiφ1 + |ϕ⊥〉〈ψ⊥|eiφ2 + U ′, (C2)

where U ′ is an arbitrary unitary operator that lives in the
irrelevant dimensions orthogonal to |ψ〉 and |ϕ〉. U can be
expressed as a direct sum,

U =
(

cos(θ )ei(φ1+φ) − sin(θ )ei(φ2+φ)

sin(θ )ei(φ1+φ′ ) cos(θ )ei(φ2+φ′ )

)
⊕ U ′, (C3)

in the basis {|ψ〉, |ψ⊥〉}. We expressed the other states
as |ϕ〉 = ( cos(θ )eiφ, sin(θ )eiφ′

)T and |ϕ⊥〉 = ( − sin(θ )

eiφ, cos(θ )eiφ′
)T in that basis, and we assume θ ∈ [0, π/2),

φ, φ′ ∈ [0, 2π ). Note that in this parametrization,

θ = arccos(|〈ψ |ϕ〉|),

eiφ = 〈ψ |ϕ〉
|〈ψ |ϕ〉| , eiφ′ = 〈ψ⊥|ϕ⊥〉

|〈ψ⊥|ϕ⊥〉| , (C4)

as long as the denominator is nonzero. This excludes orthog-
onal states. If the denominator is zero, then

eiφ = −〈ψ |ϕ⊥〉, eiφ′ = 〈ψ⊥|ϕ〉. (C5)

‖i ln(U )‖ is a function of φ1 and φ2 for a given θ , φ, and φ′
as

‖i ln(U )‖ = max

{
‖i ln(U ′)‖,

∣∣∣∣ arccos

(
cos(θ ) cos

(
φ1 + φ − φ2 − φ′

2

))

+ i
φ1 + φ + φ2 + φ′

2

∣∣∣∣,∣∣∣∣ arccos

(
cos(θ ) cos

(
φ1 + φ − φ2 − φ′

2

))

− i
φ1 + φ + φ2 + φ′

2

∣∣∣∣
}
, (C6)

which is minimized to θ when φ1 = −φ and φ2 = −φ′ and
when ‖i ln(U ′)‖ is smaller than the other two terms. By The-
orem 2, D(|ψ〉, |ϕ〉) is equal to θ = arccos(|〈ψ |ϕ〉|).

The prescription for Ûopt is obtained by inserting φ1 = −φ

and φ2 = −φ′ into Eqs. (C4), while considering Eq. (C2). We
can also choose U ′ = Îd−2 as an identity on the orthogonal
dimensions, since for such U ′, ‖i ln(U ′)‖ = 0. The optimal
Hamiltonian is then obtained as V̂opt = i ln(Uopt )/D(ρ̂, σ̂ ), as
per Theorem 2.

APPENDIX D: PURE STATE CHARGING DISTANCE
FROM MANDELSTAM-TAMM BOUND

We show that the result for the quantum charging distance
for pure states, Eq. (3), can be derived from the Mandelstam-
Tamm bound [72],

|〈ψ0|ψt 〉|2 � cos2 	V̂t t

h̄
, (D1)

using that it is tight for pure states. In the above, we set
h̄ = 1 as in the rest of our paper, and the standard deviation is
	V̂t =

√
tr[V̂ 2

t ρ̂] − tr[V̂t ρ̂]2 .
It can be trivially proved that

	V̂t � ||V̂t ||. (D2)

Rewriting the bound, we have

arccos |〈ψ0|ψt 〉|
	V̂t

� t . (D3)

Minimizing the left-hand side over all driving Hamiltonians
gives

arccos |〈ψ0|ψt 〉|
||V̂t ||

� t . (D4)
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FIG. 5. The schematic illustration of eigenvalues living in a complex space for d = 4. By the changing global phase, eigenvalues rotate
around zero conserving their relative angle. We always minimize ‖i ln(U )‖ to (π − 	φmax/2) by this method.

Considering that for the charging distance we require ||V̂t || =
1 and that the Mandelstam-Tamm bound is tight, we obtain
Eq. (3). �

APPENDIX E: PROOF OF THEOREM 4

Here we prove an alternate formula for the charging dis-
tance for mixed states.

Sketch. We will show that condition U ρ̂U † = σ̂ implies the
form U = ⊕m

i=1 Ui(
∑m

i=1

∑ni
k=1 |sk

i 〉〈rk
i |).

Proof. (Theorem 4) Any unitary operator can be written as
a product of two unitary operators,

U = U ′U ′′. (E1)

U ′′ can be chosen arbitrarily and U ′ is determined by U and
U ′′. We set U ′′ = ∑m

i=1

∑ni
k=1 |sk

i 〉〈rk
i |. Then

U = U ′
m∑

i=1

ni∑
k=1

∣∣sk
i

〉〈
rk

i

∣∣. (E2)

U has to satisfy

U ρ̂U † = U ′σ̂U ′† = σ̂ , (E3)

which can be rewritten as

[U ′, σ̂ ] = 0. (E4)

We use a general representation of a matrix to express U ′ as

U ′ =
m∑

i=1

ni∑
k=1

m∑
j=1

ni∑
l=1

uik jl

∣∣sk
i

〉〈
sl

j

∣∣. (E5)

We compute the commutator,

[U ′, σ̂ ] =
m∑

i=1

ni∑
k=1

m∑
j=1

ni∑
l=1

(r j − ri )uik jl

∣∣sk
i

〉〈
sl

j

∣∣. (E6)

To make (E6) zero, uim jl should be zero for all i �= j, k, and l .
Hence we have

U ′ =
m∑

i=1

ni∑
k=1

ni∑
l=1

uikil

∣∣sk
i

〉〈
sl

i

∣∣ =
m⊕

i=1

Ui, (E7)

where Ui is an arbitrary unitary operator that acts only on
the subspace Hi of the Hilbert space spanned by |sk

i 〉 for
1 � k � ni. �

APPENDIX F: PROOF OF THEOREM 5

Here we prove the upper bound on the charging distance.
Sketch. The proof comes from Theorem 2 and the fact that

there is freedom for the global phase of unitary operators
without breaking the condition U ρ̂U † = σ̂ . The dependence
on dimension d is derived from the fact that the number of
eigenvalues is equal to the dimension of the Hilbert space, d .

Proof. (Theorem 5) Unitary operators have eigenvalues
u1, . . . , ud that are complex numbers with norm 1. Thus, they
lie in a circle of radius 1 in the complex plane. See Fig. 5
for their depiction. The eigenvalues of i ln(U ) are equal to
the corresponding angles, φ1, . . . , φd . The operator norm of
i ln(U ) is equal to max(φ1, . . . , φd ).

To find the quantum charging distance, according to The-
orem 2, we need to find a unitary operator that satisfies
U ρ̂U † = σ̂ and at the same time minimizes max(φ1, . . . , φd ).
Consider some operator U that satisfies U ρ̂U † = σ̂ . Then
also U ′ = eiφU satisfies the same condition. This global phase
change eiφ only rotates the eigenvalues on the circle but does
not change their relative angles. Thus, there is a degree of
freedom φ of the global phase change that we can freely
choose, but which at the same time has the potential to make
the minimum of max(φ′

1, . . . , φ
′
d ) = max(φ1 + φ, . . . , φd +

φ) smaller. Optimizing (minimizing) over φ, the maximum
angle is equal to max(φ′

1, . . . , φ
′
d ) = π − 	φmax/2, where

	φmax is the maximum relative angle; see the right side of
Fig. 5 for illustration. At the same time, 	φmax is greater than
or equal to 2π/d . Thus,

‖i ln(U ′)‖ = max(φ′
1, . . . , φ

′
d ) � π − π/d. (F1)

This holds for every U ′ that connects ρ̂ with σ̂ , thus it must
also hold for the optimal U ′ that achieves the minimal charg-
ing distance. Therefore, D(ρ̂, σ̂ ) � π − π/d , which proves
the theorem.

At last, we show that the bound can be saturated with
the following example. Consider two states that are given
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by ρ̂ = ∑d
i=1 ri|ri〉〈ri| and σ̂ = ∑d

i=1 ri|ri+1〉〈ri+1|, where we
have a cycling order, so that |rd+1〉 = |r1〉. The distance be-
tween these two states equals (1 − 1/d )π . �

APPENDIX G: PROOF OF THEOREM 6

Here we prove that the charging distance is lower bounded
by the Bures angle.

Sketch. The Bures angle is equal to the quantum charging
distance at the purification space with the optimal choice of
driving Hamiltonian using a larger dimension of purification
space than the original space. It is obvious that we cannot use
all of the unitary evolution belonging to purification space; we
only use the subset of them, which means the minimum time
is larger than the minimum time in the full space.

Proof. (Theorem 6) Where the purified states, |ψρ〉 and
|ψσ 〉, are defined by

|ψρ〉 =
d∑

i=1

ri|ri〉 ⊗ |ei〉,

|ψσ 〉 =
d∑

i=1

ri|si〉 ⊗ |e′
i〉. (G1)

By Theorem 3, the D(|ψρ〉, |ψρ〉) is equal to the
arccos(|〈ψρ |ψσ 〉|). Since the maximum overlap between
purified states is equal to fidelity between two mixed states,
the minimum arccos(|〈ψρ |ψσ 〉|) is equal to the Bures angle,
such that

θB = min
|ei〉,|e′

i〉
min

V̂t :‖V̂t ‖=1
T (|ψρ〉, |ψσ 〉). (G2)

At the same time, there is an optimal V̂optimal whose evolu-
tion time is equal to D(ρ̂, σ̂ ) and which gives the driving
Hamiltonian V̂ = V̂optimal ⊗ Î . V̂ has operator norm as 1, and
it connect to two purified states, |ψρ〉 = ∑d

i=1
√

ri|ri〉 ⊗ |ei〉
and |ψσ 〉 = ∑d

i=1
√

ri|si〉 ⊗ |ei〉, with the same purification
basis |ei〉’s. The evolution time by V̂ = V̂optimal ⊗ Î is equal
to the charging distance between origin mixed states, i.e.,
T (|ψρ〉, |ψσ 〉) = D(ρ̂, σ̂ ), such that

θB = min
|ei〉,|e′

i〉
min

V̂t :‖V̂t ‖=1
T (|ψρ〉, |ψσ 〉)

� T (|ψρ〉, |ψσ 〉)V̂optimal⊗Î, |ei〉=|e′
i〉 = D(ρ̂, σ̂ ), (G3)

which proves the statement.
Figure 1 helps to provide an intuitive understanding of

the relation between the Bures angle and quantum charging
distance. By using the optimal Hamiltonian in the purification,
the spectrum of ρ̂t is able to be different from ρ̂ and σ̂ , which
is not allowed by unitary evolution. The Bures angle can have
a smaller quantity than the quantum charging distance since it
uses the larger freedom to choose a path between states. �

APPENDIX H: PROOF OF COROLLARY 2

Here we prove a tighter lower bound on the charging
distance.

Sketch. We maximize the left-hand side of Eq. (11) over
all eigenvalues, and using the joint concavity of fidelity, we

evaluate this maximum. According to Theorem 4, the charg-
ing distance does not depend on the eigenvalues. Thus, the
maximum must still lower bound the charging distance.

Proof. (Corollary 2) Notice that we can rewrite the density
matrices as

ρ̂ =
m∑

i=1

riniρ̂i, σ̂ =
m∑

i=1

riniσ̂i. (H1)

The joint concavity of fidelity [79] implies

F (ρ̂, σ̂ ) �
∑

i

riniF (ρ̂i, σ̂i ). (H2)

Considering that arccos is a decreasing function, we have

θB(ρ̂, σ̂ ) �
∑

i

riniθB(ρ̂i, σ̂i ). (H3)

Taking the maximum gives

max
r1,...,rm

θB(ρ̂, σ̂ ) � max
r1,...,rm

∑
i

riniθB(ρ̂i, σ̂i ). (H4)

This bound saturates for a specific ri, which maximizes the
right-hand side (while satisfying rini = 1 and ri′ni′ = 0 for
i′ �= i). This gives

max
r1,...,rm

θB(ρ̂, σ̂ ) = max
i

θB(ρ̂i, σ̂i ). (H5)

According to Theorem 4, the charging distance does not de-
pend on the eigenvalues ri. Thus, the maximum must still be
lower than the charging distance,

max
i

θB(ρ̂i, σ̂i ) � D(ρ̂, σ̂ ). (H6)

�

APPENDIX I: QUANTUM SPEED LIMITS

Theorem 7. QSL from D(ρ̂, σ̂ ) is given as

tmCD = D(ρ̂, σ̂ )

vmCD
, (I1)

where

vmCD = 1

T
min

D̂t :[D̂t ,ρ̂t ]=0

∫ T

0
‖V̂t + D̂t‖. (I2)

Proof. The proof follows the conventional way for the
proof of other QSLs. It comes from the D(ρ̂t , ρ̂t+dt ) with
infinitesimal time dt . By Theorem 2, D(ρ̂t , ρ̂(t + dt )) is equal
to minU :U ρ̂tU †=ρ̂t+dt

‖i ln U‖. By the condition, we obtain that

U ρ̂tU
† = ρ̂t+dt = e−iV̂t dt ρ̂t e

iV̂t dt . (I3)

Then

[eiV̂t dtU, ρ̂t ] = 0. (I4)

Since eiV̂t dtU is also a unitary operator, we can represent
eiV̂t dtU as e−iD̂t dt when [D̂t , ρ̂t ] = 0. For infinitesimal time dt ,
we have

U = e−i(V̂t +D̂t )dt . (I5)
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It follows that

D(ρ̂t , ρ̂t+dt ) = min
U :U ρ̂tU †=ρ̂t+dt

‖i ln U‖ = min
D̂t :[D̂t ,ρ̂t ]=0

‖V̂t + D̂t‖dt . (I6)

Now we can derive an inequality

D(ρ̂, σ̂ ) �
∫ T

0
D(ρ̂t , ρ̂t+dt ) = min

D̂t :[D̂t ,ρ̂t ]=0

∫ T

0
‖V̂t + D̂t‖dt, (I7)

which yields tmCD.
Because minD̂t :[D̂t ,ρ̂t ]=0

∫ T
0 ‖V̂t + D̂t‖dt is always smaller than or equal to

∫ T
0 ‖V̂t‖dt , tCD also gives an achievable QSL but it

is looser than tmCD, tmCD � tCD. �
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[70] I. Bengtsson and K. Życzkowski, Geometry of Quantum
States: An Introduction to Quantum Entanglement (Cambridge
University Press, Cambridge, 2017).

[71] L. B. Levitin and T. Toffoli, Fundamental limit on the rate of
quantum dynamics: The unified bound is tight, Phys. Rev. Lett.
103, 160502 (2009).

[72] J. Uffink, The rate of evolution of a quantum state, Am. J.
Phys. 61, 935 (1993).

[73] This behavior could already be observed in previous literature;
see Fig. 3 in the Supplemental Material of Ref. [74].

[74] F. Campaioli, F. A. Pollock, F. C. Binder, and K. Modi, Tight-
ening quantum speed limits for almost all states, Phys. Rev.
Lett. 120, 060409 (2018).

[75] V. Giovannetti, S. Lloyd, and L. Maccone, The speed limit of
quantum unitary evolution, J. Opt. B 6, S807 (2004).

[76] S. Deffner, Geometric quantum speed limits: A case for
wigner phase space, New J. Phys. 19, 103018 (2017).

[77] J.-Y. Gyhm, D. Rosa, and D. Šafránek (unpublished).
[78] R. Jozsa, Fidelity for mixed quantum states, J. Mod. Opt. 41,

2315 (1994).
[79] M. A. Nielsen and I. L. Chuang, Quantum Computation and

Quantum Information (Cambridge University Press, Cam-
bridge, 2010).

[80] M. Hübner, Explicit computation of the bures distance for
density matrices, Phys. Lett. A 163, 239 (1992).

[81] A. E. Rastegin, Trace distance from the viewpoint of quantum
operation techniques, J. Phys. A 40, 9533 (2007).

[82] Z. Puchała and J. A. Miszczak, Bound on trace distance based
on superfidelity, Phys. Rev. A 79, 024302 (2009).

[83] S. Julià-Farré, T. Salamon, A. Riera, M. N. Bera, and M.
Lewenstein, Bounds on the capacity and power of quantum
batteries, Phys. Rev. Res. 2, 023113 (2020).

[84] Note that in the charging power bound, Eq. (21), we also
assume that the battery Hamiltonian Ĥ is centered around zero,
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