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Sequential quantum simulation of spin chains with a single circuit QED device
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Quantum simulations of many-body systems in materials science and chemistry are promising application
areas for quantum computers. However, the limited scale and coherence of near-term quantum processors
pose a significant obstacle to realizing this potential. Here, we theoretically outline how a single-mode circuit
quantum electrodynamics device, consisting of a transmon qubit coupled to a long-lived cavity mode, can be
used to simulate the ground state of a highly entangled quantum many-body spin chain. We exploit recently
developed methods for implementing quantum operations to sequentially build up a matrix product state (MPS)
representation of a many-body state. This approach reuses the transmon qubit to read out the state of each spin in
the chain and exploits the large state space of the cavity as a quantum memory encoding intersite correlations and
entanglement. We show, through simulation, that analog (pulse-level) control schemes can accurately prepare a
known MPS representation of a quantum critical spin chain in significantly less time than digital (gate-based)
methods, thereby reducing the exposure to decoherence. We then explore this analog-control approach for the
variational preparation of an unknown ground state. We demonstrate that the large state space of the cavity can be
used to replace multiple qubits in a qubit-only architecture, and could therefore simplify the design of quantum
processors for materials simulation. We explore the practical limitations of realistic noise and decoherence and
discuss avenues for scaling this approach to more complex problems that challenge classical computational
methods.
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I. INTRODUCTION

Achieving control over quantum state spaces that are too
large to explore classically is a central challenge of quantum
computing. The most common approach has been to build
quantum devices out of arrays of two-level qubits. This task
requires achieving coherent control of �40 interacting qubits
to exceed exact classical simulation, and presents significant
challenges for fabrication, tune-up, and cross-talk minimiza-
tion [1–3]. By contrast, utilizing more than two quantum
states per device can reduce the size of processors required
to exceed classical simulation. Circuit quantum electrody-
namics (cQED) devices [4,5] consists of a transmon qubit
interacting with a superconducting cavity that can be mod-
eled as a many-level quantum harmonic oscillator. In these
devices, the nonlinear coupling between the qubit and cav-
ity enables universal control over the qubit and cavity. Such
universal control has been employed for the preparation of
non-Gaussian states of the oscillator [6], enabling, for exam-
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ple, implementation of a quantum error correcting code on
a single-mode device [7–10]. Few-mode cQED devices have
also been exploited for proof-of-concept few-body chemistry
simulations [11,12]. These demonstrations raise the question:
Can the larger state space of cQED devices be leveraged for
even larger-scale simulations of complex quantum many-body
problems relevant to condensed-matter physics and material
science?

The reduction of hardware complexity for performing clas-
sically inaccessible simulations can be further enhanced by
hardware-efficient approaches to quantum algorithms. Quan-
tum circuit tensor network state (qTNS) techniques [13–20],
use repeated midcircuit qubit reset and reuse to sequentially
simulate many-body quantum states. By exploiting the effi-
cient compression [21] of physically interesting states, such
as low-energy states of local Hamiltonians, qTNS meth-
ods enable simulation of many-body systems relevant to
condensed-matter physics and materials science with much
smaller quantum memory than would be required to directly
encode the many-body wave function. Rather than directly
encoding the quantum many-body wave function into qubits,
sequential simulation involves implementing a sequence of
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quantum operations that allows one to sample properties of
the many-body state along a spatial direction, without ever
storing the full state in quantum memory.

In this paper, we theoretically explore the synthesis of
these two approaches to reduce the hardware requirements
to perform complex materials simulations. Specifically, we
simulate the use of a single-mode cQED device consisting of
a transmon qubit coupled to a long-lived cavity for variational
preparation of one-dimensional (1D) quantum circuit ma-
trix product states (qMPSs) that approximately represent the
highly entangled ground state of a critical, nonintegrable spin
chain. In this approach, the transmon qubit is used to represent
the state of a spin on a single site and is repeatedly reset and
reused. The cavity operates as a many-level “virtual” quantum
memory that retains coherent information about intersite cor-
relations and entanglement. We note that conceptually related
ideas have been previously proposed for preparing 1D and
two-dimensional (2D) tensor network states [13,22,23] by
using a qubit (or multiple qubits) as a virtual quantum memory
that was interrogated by interacting with a cavity mode, which
was ultimately read out by coupling the cavity mode to a
flying microwave photon. Our approach reverses the role of
qubit and cavity, resulting in two key advantages: First, using
the multilevel cavity as a virtual quantum memory enables
simulations of states with more entanglement and higher cor-
relation (corresponding to a larger bond-dimension MPS) than
when using a qubit for this role. As we discuss below, this
feature can also enable our approach to be scaled with more
efficient use of hardware resources. Second, qubits typically
have much shorter coherence times than cavity modes. Our
approach leverages the long lifetime of the cavity modes and
only requires the qubit coherence for a short time before the
qubit is measured and reset, reducing the exposure to errors
and decoherence.

A key challenge is to control the interactions between the
qubit and cavity to implement unitary operations that repre-
sent the tensors of the MPS. Previous works largely focused
on the use of the transmon as an ancillary qubit to achieve
nonlinear control over the cavity without storing information.
By contrast, for this application, we will need to coherently
control both the qubit and oscillator in tandem. To this end,
we explore two approaches to controlling the cQED device to
implement variational qMPS simulations: (i) “analog” pulse-
level control in which the qubit and cavity drive waveforms
are treated as variational parameters [10] and (ii) a “digital”
gate-based approach in which control pulses are pre-compiled
into a discrete set of (parametrized) gates that are concate-
nated into a circuit [25–28].

Our paper shows that, despite the much larger number of
variational parameters that must be optimized, the pulse-level
approach dramatically outperforms the gate-based approach
in the time (and hence error rate) needed to synthesize uni-
taries relevant to prepare a physical qMPS. Specifically, the
analog approach enables high-fidelity synthesis in nearly an
order of magnitude shorter time than the gate-based method,
thereby significantly reducing the exposure to noise and
decoherence.

We then explore the complexity of using the analog control
approach to variationally optimize qMPS approximations of
a highly entangled critical spin-chain ground state, including

assessing the effects of realistic levels of decoherence. This
approach synthesizes the gate-free ctrl-VQE method of [29],
with qubit-efficient qMPS methods. We show that the number
of cavity levels that can be effectively used is ultimately lim-
ited by decoherence, and estimate that with current technology
a single-mode cQED device can implement qMPS representa-
tions with bond dimensions up to 6, which would require four
qubits in a qubit-only architecture. Finally, we conclude by
discussing pathways for scaling this approach to multimode
cavities in order to achieve a quantum advantage over classical
methods for materials simulation tasks.

II. SEQUENTIAL (HOLOGRAPHIC) SIMULATION WITH A
CQED DEVICE

The idea of using sequential circuits to simulate 1D
many-body systems was first introduced in [13], used to
build simple many-body states in a cavity QED setup [13],
and later generalized into a framework for variational
ground-state preparation [17,30–32], quantum dynamics sim-
ulation [17,33,34], and higher-dimensional qTNS [28,35].
Here, we briefly review the key ideas of this method by
describing its implementation for simulating a 1D spin-1/2
chain with a single-mode cQED device. We restrict our at-
tention to the two lowest-energy qubit states of the transmon
|0〉 and |1〉, and define the corresponding transmon Pauli oper-
ators �σ . We model the cavity as a quantum harmonic oscillator
with annihilation operators a and occupation number n = a†a.

As shown in Fig. 1(a), rather than preparing the wave
function of L spins on L independent qubits, in sequential sim-
ulation, one instead reuses a single qubit (here, the transmon)
for each physical spin and utilizes a small quantum memory
(here, the cavity mode) to coherently store information about
correlations and entanglement between spins. The simulation
proceeds by initializing the transmon qubit into a fixed refer-
ence state, |0〉, entangling it with the cavity through a unitary
U . The qubit then holds the state of the first spin in the chain,
and it can be measured in any desired basis. The qubit is then
reset to |0〉 and the process is iterated to prepare the second
spin in the chain, and so on.

In this way, one sequentially prepares the state of the
spin chain from left to right and may sample any desired
correlation function along the way. Formally, this procedure
is equivalent to sampling correlations from a resulting spin-
chain state |ψ〉 with MPS representation:

|ψ〉 =
∑

s1...sL

As1 As2 . . . AsL |s1 . . . sL〉 (1)

with tensors As
i, j = 〈s, j|U |0, i〉 where s = 0, 1 correspond to

spin ↑,↓ respectively, and i, j = 0, 1, 2 . . . index the states
of the cavity, which can be viewed as a physical represen-
tation of the virtual bond space of the MPS (see [17] for a
detailed discussion of boundary conditions). Throughout, for
convenience, we focus on translation-invariant qMPSs with
the same A and U for each site (though this is not essential
for the method). Though the oscillator technically possesses
an infinite state space, in practice, the large-n states decohere
more rapidly, ultimately limiting the number of usable levels
to a finite number, D. In the qMPS context, D corresponds to
the bond dimension of the MPS, |ψ〉.
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FIG. 1. Sequential preparation of a qMPS on a cQED device. (a) Graphical representation of a matrix product state for a spin chain (top)
and its implementation as a sequential circuit with qubit reuse. Boxes represent three-index tensors with physical index (vertical line ending in
box) representing the state of a spin-1/2 physically implemented by a transmon qubit, and bond indices (horizontal lines) representing intersite
entanglement, physically implemented by a superconducting cavity. Each tensor is implemented with a unitary time evolution entangling the
qubit and cavity, followed by measuring the transmon qubit and resetting to its ground state |g〉, which is then reused for the next site in the
chain. Arrows indicating causality of circuit implementation are opposite to the conventional isometry arrows. (b) Infidelity for synthesizing
an isometry representing various bond-dimension D approximations of a critical Ising chain ground state via GRAPE pulse-level control (d) or
discrete circuits based on SNAP gates (e). The GRAPE-based method requires significantly less time to achieve the same accuracy, making it less
susceptible to decoherence. (c) Relative (fractional) energy error for the resulting ground state of Eq. (4) for the GRAPE-based method for various
bond dimensions and time length of the waveform. The black line stands for corresponding energy results using a classical density-matrix
renormalization-group (DMRG) algorithm. The isometries at a larger bond dimension provide a better approximation for the real ground state,
but it also requires a longer waveform to synthesize, resulting in the relative error going down and then up again. To get the bulk physics, we
simulate a L ≈ 30 chain and burn-in [24] the first ≈20 sites.

For example, to measure the correlation function
〈ψ |σ z

r σ x
1 |ψ〉, where |ψ〉 is the state of the spin chain, one mea-

sures the qubit in the x basis after the first implementation of
U , then iteratively applies U and resets the qubit r − 1 times,
and finally measures the qubit in the z basis, which gives one
statistical sample. The average of many such samples gives the
correlation function. Note that there is no additional overhead
to sampling correlations in this manner compared to the case
where one directly encodes |ψ〉 onto L qubits.

Though it is possible to classically simulate 1D ground
states using MPS methods, there are significant computa-
tional challenges for computing nonequilibrium dynamical
properties and properties of highly entangled ground states in
higher dimensions. Here, qTNS methods may play a role—
allowing quantum computers to benefit from the efficient
compression of qTNS, while potentially exceeding classical
TNS methods. In this vein, we remark in passing that the
sequential circuit concept can be generalized to implement
various tensor network geometries and higher dimensions: by
using a d-dimensional qubit array, and an auxiliary quantum
memory, one can sequentially prepare a d + 1 dimensional
tensor network state with bond dimension equal to the Hilbert-
space size of the quantum memory. Due to the dimensional
mismatch between the quantum processor and the state being

simulated, this approach is sometimes referred to as “holo-
graphic” simulation (not to be confused with other contexts of
holography in physics [36]). A limitation is that only isometric
tensor networks [37] can be implemented using physically
allowed quantum operations. In one dimension, the isome-
try constraint is known not to be a serious limitation. Its
role in higher dimensions is the subject of active ongoing
investigation [35,38].

III. CQED CONTROL APPROACHES

A key challenge in holographic simulation is to find an
implementation of U that represents the tensors, As

i j , cor-
responding to an MPS representation of states of physical
interest. For the cQED device, U = T e−i

∫ τ

0 HcQED(t )dt (where τ

is the total control pulse length for each unitary) is generated
by time evolution under the cQED Hamiltonian, HcQED =
H0 + H1 + Hdrive:

H0 = 1

2
ωqσ

z + ωcn,

H1 = K

2
(a†)2a2 + χ

2
nσ z + χ ′

2
(a†)2a2σ z,

Hdrive(t ) = �ceiωct a + �qeiωqtσ− + H.c., (2)
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where �σ are Pauli matrices for the qubit and a, n = a†a are
respectively annihilation and number operators of the cavity.
Simulations are performed in the rotating frame of H0, leaving
only H1 + Hdrive(t ), without the fast oscillation in the second
term. For realism, we adopt the parameters from [10], and
choose dispersive shift χ = −2π × 2194 kHz, second-order
dispersive shift χ ′ = −2π × 19 kHz, and cavity nonlinearity
K = −2π × 3.7 kHz. These parameters are fixed by the de-
vice design [10].

Control is achieved through the (complex) drive wave-
forms for the qubit (q) and cavity (c): �q,c(t ). Due to the
practical limitations of the waveform generators and to deal
with finite-dimensional pulse optimizations, we focus on
piecewise constant drives with NTS = τ/	t time steps of size
	t , such that

U [�c,q(t )] =
NTS∏
j=1

e−iHcQED(t j )	t . (3)

We choose 	t = 10 ns, which is an order of magnitude higher
than the typical minimum pulse control resolution, to reduce
the number of variational parameters and smoothen the wave-
form. To model realistic limitations on drive range, we restrict
the drive amplitude to |�c,q| � �max = 10 MHz.

We compare two strategies to implement a desired U . First,
we consider an “analog” scheme, similar to gradient ascent
pulse engineering (GRAPE) [39,40], in which the individual
(discretized) drive amplitudes �c,q(t j ) are treated as varia-
tional parameters. This method allows for potentially highly
efficient control, at the expense of introducing a large number,
4NTS, of variational parameters for the real and imaginary
parts of {�c,q(t j )}|NTS

j=1.
Second, we consider precompiling the pulse waveforms

into a sequence of discrete, parametrized gates. Specifically,
we consider alternating layers of qubit rotations R( �φ) =
e−i �φ·�σ , cavity displacements D(α) = eαa−α∗a†

, and selective
number-dependent arbitrary phase (SNAP) gates [6,25–27]:
S(θ ) = eiθ (n)σ z

where θ (n) applies a distinct, arbitrary phase
for each occupation number n [25] of the D-level cavity. The
unitary is then composed of layers of these discrete gates:
U = ∏N

i=1 D(αi )R( �φi )S( �θi ), where {αi, �φi, �θi} are variational
parameters. As we demonstrate in Appendix A, sufficiently
deep circuits of this form enable arbitrary control over the
joint state of the qubit and oscillator.1

While both the GRAPE and SNAP-based methods have
been separately well studied and used extensively to construct
non-Gaussian states of the cavity mode [6,10,26,43], a direct
comparison of their performance is lacking. Moreover, many
previous studies use the qubit as a sacrificial ancilla that
starts and ends in a fixed reference state [6,10,25], whereas
for qMPS applications we need to achieve control over the
joint entangled state of the qubit and cavity to realize unitary
operations relevant to MPS tensors for physical ground states.
Next, we compare the performance of these methods for se-
quentially simulating a physical system.

1We notice that, while other discrete gate sets such as the echoed
conditional displacement exist [41,42], they might be more appropri-
ate for different dispersive regimes than the parameters we are using.

IV. CASE STUDY: NONINTEGRABLE ISING MODEL

We will focus on different variational approaches for
approximating the quantum-critical ground state of a nonin-
tegrable Ising model with self-dual perturbation (SDIM) [44]:

HSDIM = −
∑

i

[
Jσ z

i σ z
i+1 + hσ x

i − V
(
σ x

i σ x
i+1 + σ z

i−1σ
z
i+1

)]
.

(4)

The inclusion of V spoils the exact solvability of the model
with V = 0. We focus on J = h = 1 and V = 0.5 where the
ground state is poised at a critical point between magnetically
ordered and disordered states, and exhibits power-law decay-
ing correlations and entanglement that diverges with system
size. Such critical states can only be approximately captured
by any finite bond-dimension MPS (allowing continued room
for improvement with increasing bond dimension, D, i.e.,
with the utilization of more cavity levels). We consider two
different variational tasks: Unitary synthesis and variational
ground-state preparation (described below).

V. UNITARY SYNTHESIS

In unitary synthesis, we start with a known classical MPS
representation of the ground state with tensors A and bond
dimension D, block encode As

i j into a unitary Utarget using the
Gram-Schmidt algorithm (see Appendix B for details), and
then maximize the trace fidelity

F (�ϕ) = |tr(U †
targetU (�ϕ)|/tr1 (5)

over the variational parameters, �ϕ. This procedure requires
a sufficiently low bond dimension to perform each step
classically, yet for small instances, it may still serve as a
benchmark to compare the two variational approaches. More-
over, there may be contexts where this method can assist
in achieving a quantum advantage, for example by seeding
a more general variational approach with a known classi-
cal approximation in order to simplify a complex variational
optimization [19]. Moreover, there are many settings where
ground states can be efficiently prepared classically, but where
simulating nonequilibrium dynamical properties (electrical or
thermal conductivity, optical absorption spectra, etc.) of the
system starting from the ground state may be challenging.
Here, efficiently preparing the ground state on a quantum
device is an important prerequisite to using quantum algo-
rithms for computing these more challenging quantities. A
prerequisite of this approach is that standard results from
quantum optimal control theory [40] guarantee that an optimal
solution may be found by simple gradient ascent methods,
without encountering local minima trapping that can plague
other high-dimensional optimization problems.

Here, we construct the target unitaries from the MPS
tensors with bond dimension D obtained by the stan-
dard density-matrix renormalization-group (DMRG) algo-
rithm [45]. Larger D captures a more accurate approximation
to the ground state but presents a more challenging unitary
synthesis problem, requiring a longer control sequence time,
τ . To directly compare analog and digital variational ap-
proaches a key metric will be the time it takes to achieve
a given accuracy for the target state since U must be
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implemented in time τ that is less than the qubit and cavity
coherence times in order to avoid significant decoherence.
Following [6], we estimate that optimal control methods for
synthesizing SNAP and displacement gates require ≈800 ns
per circuit layer (also see Appendix A.)

Figure 1 shows that while infidelity, 1 − F , decays expo-
nentially with time for both the analog and digital control,
the former method converges over an order-of-magnitude
faster timescale. This apparently reflects overall inefficiency
in packaging drive amplitudes into a fixed sequence of SNAP
gates, compared to directly optimizing the waveforms to max-
imize the target fidelity [29]. In fact, assuming transmon
coherence times of T2 ≈ 40 µs [10], it is evident that the
gate-based approach will be insufficient to prepare even small
bond-dimension states with D � 2, whereas in this time, the
analog control can successfully prepare up to D ≈ 5 with
percent-level infidelity. For this reason, in the remainder of the
paper, we will focus exclusively on the analog approach. We
note, in passing, however, that the large number of variational
parameters in GRAPE could lead to longer wall-clock time
to optimize—which will depend in a detailed fashion on the
optimization scheme chosen. Here, we simply focus on the
time, τ , needed to coherently execute the circuit—as this is the
ultimate limitation of using quantum coherent computations.

While this unitary-synthesis study clearly highlights the
advantages of using analog-style pulse-level control over gate-
based methods for qMPS applications, in many practical
settings one does not have a classical representation of the
ground state to work with, and an alternative approach is
required.

VI. VARIATIONAL GROUND-STATE PREPARATION

The above unitary synthesis procedure requires a known
classical MPS representation of the system. In many prac-
tical instances, one instead has only a model Hamiltonian
and would like to approximate its (unknown) ground state.
A common approach to this problem is variational ground-
state preparation using the now-standard variational quantum
eigensolver (VQE) method [46–49], which readily generalizes
to holographic qMPS simulations (holoVQE) [17]. Here, one
variationally minimizes the expected energy:

EVQE(�ϕ) = 〈ψMPS(�ϕ)|H |ψMPS(�ϕ)〉, (6)

with respect to the variational parameters, �ϕ, where H is
the Hamiltonian for the spin chain in question, and |ψMPS〉
is a qMPS. Empirical studies of various physical models
reveal that the ground-state energy tends to decrease poly-
nomially in the number of variational parameters [50]. Since
we have seen that pulse level control can significantly out-
perform gate-based methods for unitary synthesis, we adopt
an analog approach to VQE in which discretized versions
of the drive waveforms are treated as variational parameters.
This analog (“gate-free”) approach to VQE, dubbed ctrl-VQE,
was introduced in [29] and modeled in qubit-only architec-
tures. Here we numerically explore combining ctrl-VQE and
holoVQE approaches in a coupled transmon-cavity device.
In contrast to unitary synthesis, VQE can be carried out
without prior classical knowledge of the ground state. In prin-
ciple, for deep circuits, VQE approaches can face a complex,

high-dimensional optimization landscape with local traps and
barren plateaus. To mitigate these issues, one could follow a
parallel and iterative optimization method [50] that incremen-
tally grows the number of variational parameters (see also
Appendix B), which have empirically proven successful for
qMPS applications. However, for our purposes, we find that it
suffices to adopt a simpler approach, in which we select the
best result from a batch of 50 randomly initialized runs.

A practical issue is that classically simulating a cQED de-
vice requires truncating the infinite-dimensional cavity space
to a finite number of levels. While many possible truncation
schemes exist, since high-n states of the cavity will have a
shorter coherence time, we choose to truncate by simulating
only cavity occupation numbers below a cutoff �. To ensure
the optimizer is capturing the right physics with the presence
of the artificial cutoff, we add a penalty term to EVQE that pe-
nalizes occupation numbers in the range �′ � n � �, where
�′ is a fixed amount lower than � (in practice we choose
�′ = � − 6). To cross-check, we then feed the optimized
waveforms into a Hilbert space with photon levels � + 10,
and the energy remains relatively unchanged. Figure 2(a)
shows the resulting energy error 1 − EVQE/E0 for the critical
Ising model in Eq. (4), for various �, and τ from the holoVQE
approach. Here, we estimate the true ground-state energy, E0,
from classical DMRG with large bond dimension DMRG with
D = 80. We observe that the holoVQE energy errors initially
decrease with the simulation-size cutoff, �, before converging
to a fixed value that is insensitive to the artificial cutoff. This
convergence reflects that the simulation value should match
the true behavior of the device. Figure 2(b) shows the corre-
lation functions 〈ψ |σ z

r σ z
0 |ψ〉 at different spatial separations, r

for the converged and optimized qMPS for different τ . We
observe that the correlations are accurately captured out to
several sites, and display the qualitative oscillations at much
longer ranges, and that increasing τ gradually reduces the dis-
crepancy between the qMPS and large-D DMRG (essentially
exact) correlations.

VII. IMPACT OF DECOHERENCE

In practice, the continued improvement of accuracy with
the length of the drive waveform will ultimately be limited
by decoherence effects, which have so far been neglected
in our simulations. To assess the practical limitations due
to noise and decoherence, we incorporate amplitude decay
and dephasing processes into the holoVQE simulations (see
Appendix C for details), and reoptimize the results in the
presence of noise. The results are shown for various waveform
time T and decay (T1) and dephasing (T2) times for the qubit
and cavity. One observes a clear minimum in the relative
energy error as a function of T reflecting a tradeoff between
the increase in control and the increased impact of noise with
increasing length of drive waveform.

For the T1,2 times reported in [10], the holoVQE approach
can effectively utilize D ≈ 6 levels of the cavity. By compari-
son, accessing qMPS with this bond dimension in a qubit-only
architecture would require 1 + 
log2 D� ≈ 4 qubits, whereas,
in the cQED setting, it can be achieved with only a single-
mode device, showing the potential advantage of the latter.
Improved coherence times, would amplify this hardware
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FIG. 2. VQE numerical optimization results. (a) Ideal VQE optimization energy result at different τ , compared with classical DMRG
simulation. The x axis stands for the artificial cutoff that we choose for the cavity in our simulation. (b) Two-point correlation function
Sz(0)Sz(x) for the optimized VQE results for τ = 4 µs at different finite cutoff levels. Increasing � is not improving much for � > 8, which is
due to finite τ . (c) Noisy VQE optimization energy result vs τ in three different hypothetical transmon relaxation times. The relaxation times
are chosen to be an integer multiplier of a reported hardware parameter [10]: T1,c = 2700 µs, T1,q = 170 µs, and T2,q = 43 µs.

advantage by allowing control over an even larger number of
quantum levels per device.

VIII. DISCUSSION

This numerical study demonstrates the viability of using
cQED architectures for sequential (holographic) simulation
of many-body systems. The larger Hilbert space and longer
coherence time of the cavity modes enable one to access larger
bond-dimension (more entangled) quantum many-body states
per device. The longer coherence time of the cavity mode
also offers an advantage in this setting, since the less coherent
qubit is frequently measured and reset, limiting the buildup
of errors. Based on these results, we estimate that, with the
present technology, a single-mode cQED device could be used
to simulate an entangled many-body spin chain with several-
site correlations.

There are a number of natural avenues to build on and
extend this paper. The size and complexity of the sequential
(holographic) simulations could be dramatically extended by
introducing multiple cavity modes [51,52]. Assuming that
D ≈ 6–10 levels of each cavity mode can be controlled (which
our simulations indicate is realistic for near-term accessible
noise rates), then an N-cavity system would give access to
bond dimension DN , which would naively enable access to
classically inaccessible bond dimensions for N as low as
5–10. The parallel control of multiple cavities using a sin-
gle qubit has already been successfully demonstrated. A key
question for future theoretical investigation is how well such
multicavity devices can be controlled to perform holographic
simulations of complex many-body states relevant to material
science or chemistry. We note that related ideas, that reverse
the role of the qubit and cavity, have been explored [22,23]
for sequentially simulating 2D tensor networks with multi-
ple qubits and cavities. A systematic study of the hardware
tradeoffs between scaling the qubit numbers compared to
the number of cavity modes per qubit to simulate higher-
dimensional quantum many-body states would be useful to
guide the design of future quantum hardware.

Another possibility would be to encode a logical qubit
into the cavity [10] in order to integrate error-correction
and -suppression schemes [7,8,53] directly into holographic
simulations, with much less hardware overhead than in
qubit-only architectures. Finally, there has been significant
recent progress in using cQED devices to engineer tailored
forms of dissipation to synthesize interesting quantum chan-
nels [54–56]. It may be interesting to adapt these methods to
implement quantum channels that emulate the transfer matrix
of a qMPS representation for physical states.
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APPENDIX A: FULL CONTROL WITH SNAP CIRCUITS

Previous results [26,58] have shown that the universal con-
trol over the cavity can be accomplished with displacement
operations and gates with the form eiθ (n)⊗1, which is the action
of the SNAP gate with transmon set to |0〉 throughout the gate
operation. By contrast, qMPS applications require preparing
the transmon in an arbitrary superposition of |0〉 and |1〉 that
are entangled with the cavity mode. Hence the SNAP gate
is actually a controlled-SNAP gate: eiθ (n)⊗σ z

. In this section,
we show that combining this transmon-controlled SNAP gate
with cavity displacements and arbitrary qubit rotations results
in a universal control on the bipartite system [59].

Theorem 1. The gate set {D(α), S(θ (◦)), R( �φ)} is universal.
Proof. To establish the universality, it suffices to con-

firm that one can generate any arbitrary polynomial of the
form qr ps, q j pk �σ , which forms a complete basis for the
Lie algebra of the qubit and oscillator. Here q = 1√

2
(a + a†)
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FIG. 3. Synthesizing Haar random unitaries. We synthesize 8×8
Haar random unitaries over the cavity and the transmon with the
SNAP circuit demonstrated in Fig. 1, and we observe a similar result
to the study in [27], where a universal control over the cavity alone
is aimed. Each curve stands for a different random instance.

and p = i√
2
(a† − a) are the (dimensionless) oscillator co-

ordinate and momentum, and r and s are arbitrary positive
integers. Fixing θ (n) = εn, and considering infinitesimal
rotations, and displacements, the generators for the gate
set {D(α), S(θ (◦)), R( �φ)} include {nσ x,y,z, q, p, σ x,y}. By re-
peated use of the Baker-Campbell-Hausdorff (BCH) formula
eiεAeiεBe−iεAe−iεB ≈ e−ε2[A,B] + O(ε3), one can generate any
commutator of pairs of generators. Then, combining the se-
quence of commutator identities

[nσ z, q] ∼ pσ z, [qσ x, qσ y] ∼ q2σ z,

[qr+1 psσ z, pσ z] ∼ qr ps, [qr+1 psσ z, p] ∼ qr psσ z (A1)

establishes, through nested applications of the above BCH for-
mula, that one can indeed generate the polynomials required
for universal control with this gate set.

To empirically verify the universal control for this circuit,
we conduct a small batch of simulations (Fig. 3) using opti-
mal control techniques to synthesize Haar random unitaries
over an eight-level Hilbert space with SNAP or displacement
circuits.

SNAP implementation time

To directly compare the time to synthesize quantum op-
erations to implement a known MPS with either SNAP or
GRAPE methods, we need to estimate the time required to
perform each layer of the SNAP-displacement circuit. In this
Appendix, we estimate this time using the results of previous
optimal-control studies of synthesizing SNAP gates [26]. The
first proposed implementations are to implement a SNAP
gate with a pair of π pulses with carrier frequency ≈
ωc + nχ associated with a particular cavity mode occupa-
tion, n. The associated phase is controlled by offsetting the
phase of the two pulses [26]. Multiple such cavity-dependent

rotations can be implemented in parallel by frequency mul-
tiplexing. Assuming the absence of higher-order dispersive
shifts, using this method with Gaussian pulses requires time
≈ (2π/χ

√
log 1/ε) to implement a SNAP gate with infidelity

∼ε due to off-resonant coupling. For, example with the χ used
in our numerics, achieving a ε � 10−4 SNAP would require
time ≈1000 ns. This two-pulse approach can be improved
using optimal control theory methods to variationally opti-
mize a SNAP waveform [6]. With a qubit-cavity dispersive
shift at 2π × 3.14 MHz, which is 1.4 times faster than our
χ , [6] we reached a 500-ns implementation time with high
fidelity. It is natural to assume that the implementation time
is inversely proportional to χ , in which case this translates to
≈700 ns for the parameters used in our simulations. On the
other hand, displacement operations can be implemented by
resonantly driving the cavity with pulses with a sine-squared
envelope and a calibrated amplitude proportional to α, which
is much faster than the time required by a SNAP gate and can
be implemented within less than 100 ns [27,60]. Therefore,
we estimate the total time for implementing each layer of the
SNAP circuit as ≈800 ns. In our simulations, we treat each
SNAP gate as perfectly implemented.

APPENDIX B: OPTIMIZATION DETAILS

1. Isometries to target unitaries

As mentioned above, with both methods, we would like
to compare the time cost of a classically calculated UDMRG

to some certain accuracy. It is worth noticing that in cQED
simulation, we are truncating the experimentally infinite level
Hilbert space using a finite cutoff �. Suppose, setting the
bond dimension D = �, that one has no information at all
about what the experimentally implemented unitary does in
an infinite Hilbert space: the wave function will eventually
occupy higher levels. Therefore, we embed the target unitary
into a Hilbert space with higher cavity levels:

Utarg =
(

UDMRG 0
0 1

)
. (B1)

That is, we demand the total time evolution returns identity
on the cavity levels between D and �, forming a “buffer”
between the finite logical space and the rest of the (unknown)
infinite Hilbert space. We numerically certify that � � 2D
suffices for the time length we want.

2. Batch optimization

Optimizing a large parametrized quantum circuit can be
difficult due to the so-called barren plateau problems. Both
random initialization and gradient-free methods can result in
the gradient of the objective function becoming negligible. To
combat this, we have adopted a batch-sequential optimization
strategy that was first proposed in [50] and developed in [18].

For the SNAP circuit optimization, we start with a batch of
single-layer circuits, each with randomly initialized parame-
ters. We then optimize each circuit in the batch using a local
optimizer, selecting the circuit with the best outcome. This
selected circuit is used to generate another batch of circuits
with an additional identity gate layer and slight randomness in
gate parameters. This approach retains the desirable features
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FIG. 4. Simulating noise. A matrix product density operator rep-
resentation of our discretized Lindbladian simulation. The black and
white triangles stand for zero states on the cavity and the transmon.

of the optimized first layer while also offering the opportunity
to escape from local minima in the target function landscape.

We repeat this process with each new batch, increasing
the depth of the circuits until we reach our target. As the
number of parameters increases, we decrease the amount of
randomness to ensure a good performance.

APPENDIX C: SIMULATING NOISE

To study the effect of decoherence sources and improve
optimization results, we simulate the system dynamics using
a discretized master equation with the known physical pa-
rameters. We start with the continuous-time Lindblad master

equation:
∂ρ

∂t
= − i[H (t ), ρ(t )]

+ 1

T1,c
D[a]ρ + 1

T1,q
D[σ−]ρ + 1

4T2,q
D[σ z]ρ (C1)

where T1,c = 2700 µs and T1,q = 170 µs are the relaxation
times for the oscillator and transmon, T2,q = 43 µs is the trans-
mon dephasing time, and a and b stand for the annihilation
operators for the oscillator and transmon, respectively. Here
the “dissipator” D is defined as

D[O]ρ = OρO† − 1
2 {O†O, ρ}. (C2)

The Lindblad equation can be thought of as continuous mea-
surement performed on a quantum dynamical system and
it forms a complete positive trace-preserving mapping. To
efficiently capture the noise over some unitary implementa-
tion time τ (which is much shorter than system coherence
times) for the tensor-network optimizations, we cast it as a
discretized quantum channel:

L : ρ → E (U †ρU ) (C3)

where

E (ρ) =
(
1 + τ

T1,c
D[a] + τ

T1,q
D[σ−] + τ

4T2,q
D[σ z]

)
ρ,

which is illustrated in Fig. 4.
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