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Surface trap with adjustable ion couplings for scalable and parallel gates

Y. Suleimen ,* A. Podlesnyy ,† L. A. Akopyan , N. Sterligov , O. Lakhmanskaya ,
E. Anikin , A. Matveev , and K. Lakhmanskiy

Russian Quantum Center, Skolkovo, Moscow 121205, Russia

(Received 18 July 2023; accepted 5 January 2024; published 9 February 2024)

We describe the design and operation of a surface-electrode Paul trap for parallel entangling gate imple-
mentation. In particular, we demonstrate the possibility of separating or coupling ion motion by adjusting
the DC-voltages on a set of electrodes and show the possibility of parallel MS-gate operations for specific voltage
configurations. We verify the scalability of this approach and characterize the performance of these gates in the
presence of the finite phonon mode occupation and of the finite drift of the phonon frequencies. Additionally,
we investigate how the number of ions per individual trapping site and anharmonic potential terms affect the
coupling between the wells.

DOI: 10.1103/PhysRevA.109.022605

I. INTRODUCTION

Trapped ions remain one of the leading technology plat-
forms for large-scale quantum computers (QCs) [1–3]. In
particular, few-ion-qubit systems have successfully been
demonstrated with high performance [4–23].

Practical realizations of QCs require the ability to increase
the number of simultaneously trapped ions while maintaining
the ability to control and measure them individually with
high fidelity [24–29]. Single linear arrays of ions encounter
significant limitations in that respect. This is primarily due
to the increase in the number of motional modes and their
density with the length of the crystal. As a result speed and
performance of two-qubit gates between ions in a chain gen-
erally decrease as the total number of ions grows [7,8,30].

A promising approach to these issues is to break a single
long ion chain into segments [1,31] arranged in a surface trap.
Each such segment or module can trap a restricted number
of ions to maintain high fidelity and high-speed operations.
In such a modular approach, each subsystem can be built
and tested independently, has a particular and well-defined
functionality, and is compatible with the other subsystems.
Therefore, surface traps have the potential to offer a fast and
high-fidelity method to distribute quantum information over a
many-ion array [6,19,32].

The challenge, then, becomes how to move quantum in-
formation between the modules. The entanglement between
the ions in separated segments can be achieved in different
ways: through ion transport [31], through effective spin-spin
interactions [1], through shared electrically floating electrodes
[33,34], controlled orientation of the secular modes [35],
or through photonic interconnects [36–39]. Another method
demonstrated for two trapping regions relies on the tuning of
the Coulomb interaction of ions in two separate wells [40,41].
Followed by the proposed method new entanglement schemes
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for qubit spins were suggested and tested [42]. Here we as-
sume standard Mølmer-Sørensen (MS) entangling gate [43]
and describe a trap design with multiple individual trapping
sites utilizing the proposed method of the motional coupling
[40,41] to manipulate the structure of the phonon mode spec-
trum. We characterize this surface trap design and show that it
is capable of coupling the ion motion in the selected sites by
adjusting the DC-voltages on a set of electrodes. Moreover,
sufficient control over the ion motion in our trap offers an
alternative method to generate programmable interactions and
connectivity of the ion qubits beyond the power law without
tweezers [44]. This design also helps to get control over MS-
gate performance, since the phonon mode structure and their
spectral density may have a profound influence on the fidelity
of the MS gate [45,46].

The paper is organized as follows. At first, we demon-
strate and characterize a variety of phonon mode spectra for
different voltage sets for two types of ions: calcium and beryl-
lium. Then, we focus on the capability to unite the ions into
segments with unique phonon mode frequencies to perform
parallel MS-gate operations and verify the scalability of this
approach. We also model the fidelity of the MS-gate operation
for a segment comprising two ions accounting for the two
main contributions to the gate infidelity: the limited frequency
difference between phonon frequencies of the segments and
the finite drift of the phonon frequencies expected in the
experiment. We account for the possible issues related to
anomalous heating rate typical for such traps [47–50] and
determine the optimum range of voltages and frequencies to
negotiate this effect. At last, we investigate how the number
of ions per individual trapping site and anharmonic potential
terms affect the coupling between the two wells.

II. TRAP STRUCTURE

In this section, we present a trap design (see Fig. 1) al-
lowing manipulation of the normal mode spectrum with an
electrode voltage set. From the practical point of view, in
planar traps, it is more convenient to change dc voltages
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FIG. 1. (a) The proposed surface ion trap geometry forming 12
potential wells. The red RF electrode (labeled RF+) and 12 dark-
blue RF electrodes (labeled RF−) with π phase delay form ion
confinement with predetermined height. Twelve light-blue dc elec-
trodes (labeled dc) in the middle of squares are utilized for secular
frequency optimization. The side dc electrodes (labeled Side dc),
depicted in gray, are essential for stray field compensation. (b) Po-
tential distribution above two individual traps demonstrating a trap
depth of 60–100 meV. The principal axes of oscillation are illus-
trated by white arrows. Pseudopotential is shown for Ca ions in the
configuration with grounded dc electrodes and VRF = 80 V, �RF =
2 π × 110 MHz. The potential for Be ions is similar for the respective
RF drive.

than radio frequency (RF) drive. Therefore, we suggest the
structure combining individual and linear surface trap designs
schematically shown in Fig. 1(a). It includes a single RF+

electrode with 12 square notches aligned along the X axis (ax-
ial direction), and creating separate potential wells to confine
the ions. Each notch constitutes the RF− electrode and the
central optimization dc electrode. The phase delay π between
RF+ and RF− electrodes helps to increase the ion height above
the surface. The ions are contained only in ten central trapping
sites. The first and the last notches in the array produce too
shallow potential wells and are used as endcaps. On both sides
of the RF+ electrode, there are 12 side dc electrodes [see
Fig. 1(a)]. These electrodes are necessary for stray field and
micromotion compensation [51] and, additionally, can be used
for the fine-tuning and optimization of the secular frequencies.
In general, this design can be scaled to an arbitrary number of
trapping sites. First, we focus on and characterize the design
with 12 notches, and in Sec. III we discuss the scalability of
our approach.

To choose the design we account for several technical
constraints of the system including trap depth Udepth, and for
a possibility to entangle ions via MS gate (see Sec. IV). MS
gate can be only implemented for ions which are motionally
coupled. Thus, for trap design optimization it is necessary to
quantify the motional coupling strength between two interact-
ing ions of mass m in two separate individual wells i and j.
We use frequency splitting between normal modes, because it
has a close relation to the Coulomb coupling term introduced
in Refs. [41,42] (see details in Appendix D):

�
i j
I = e2

2πε0m
√

ωiω jd3
ion

, (1)

where ε0 is the vacuum electric permittivity and ωi, j are un-
coupled secular frequencies.

Namely, when the uncoupled secular frequencies of two
wells are the same, the Coulomb coupling strength can
be expressed through the frequency difference between the
center-of-mass (COM) and breathing normal modes of a pair
of ions:

�
i j
I = 2π� f i j . (2)

Although Eqs. (1) and (2) are obtained for only two trapping
sites [41,42], we show numerically in Appendix D, that � f i j

can be also used to characterize the coupling of the two se-
lected wells in a multitrapping zone architecture.

For the fixed Udepth, the secular frequency and the coupling
strength between the ions are ωsec ∝ d−1

ion and �I ∝ m−1d−2
ion ,

respectively. Therefore, to preserve trap depth and at the same
time to increase the coupling strength between the ions in
two different trapping sites, the distances between trapping
regions have to be sufficiently small. In particular, the widths
of the dc and RF− electrodes are 6 μm, the width of the RF+

electrode between two notches is 10 μm, and the width of the
gaps between them is 2 μm.

Figure 1(b) demonstrates the simulated pseudopotential
above the two individual traps. To achieve the global trap
depth of about 100 meV we optimize the geometry of the
surface trap and RF parameters. For one 40Ca+ (9Be+) ion per
trapping site, it is achieved at VRF = 80(85) V (from 0 to Peak)
and �RF = 2π × 110(240) MHz for both RF±. The ion trap-
ping occurs at the height of 20 μm in each site. We estimate
the numerical aperture for the optical access of about 0.55
at this height, which implies the necessity of the addressing
based on the integrated photonics [52]. Concerning connec-
tivity, the distance of dion = 28 μm between the individual
potential minima has been demonstrated to be sufficient to
share motional quanta [41].

The choice of the RF drive frequencies �RF and voltages
has a strong impact on several parameters. The potential
barrier between two neighboring traps in pseudopotential
approximation is Udepth ∝ ω2

x d2
ion. Therefore, high secular fre-

quencies ωx ∝ VRF/�RF are required to preserve sufficient
trap depth during miniaturization. However, stability param-
eters for the surface ion traps scale proportionally to ωx:
q ∝ ωx/�RF and must not exceed 0.908 to support stable
motion [53]. Consequently, the trapping potential depth scales
as Udepth ∝ V 2

RF/�
2
RF. Technical limitations restrict the mag-

nitude of VRF and, in general, lead to a shallow depth in
chip-based ion traps. The optimal �RF for preserving stable
ion motion and sufficiently low VRF are derived taking into
account these features.

The magnitude of typical parasitic fields in surface ion
traps ranges around 20–30 Vm−1. Under these conditions, the
electrical barrier of 60–70 meV for the ion separation should
be resistant to dual to solitary trapping site rearrangement
[54]. The potential well depth decreases with higher voltages
on the dc electrodes. We identified that the range of operating
voltages between 0 and 6 V on the dc central electrodes in the
trapping sites keeps the trap depth Udepth above 50 meV, which
is above the energy of the molecules in the residual gas (at
room temperature Ubcg ∝ 40 meV). The latter minimizes the
ion loss due to the collisions with background gas molecules
[55]. At ultrahigh vacuum, we estimate the trapped ion’s
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lifespan as τ = kT300Kln(2)
Pσ

√
πmH2

8kT300K
∝ 36 min, which is suffi-

cient to execute quantum processes.
To analyze secular phonon mode spectra and to find secular

frequencies for different voltage sets we compute pseudopo-
tential Hessian A [56] with the following components:

(Ai j )k = δi jmi
(
ω2

i

/
2
)

k
+ (Ci j )k, (3)

where the first term represents the Hessian for the trapping
potential with secular frequency ωi and Ci j is a Coulomb in-
teraction Hessian, δi j—Kronecker δ, mi—the mass of the ion
i, and k denotes the principal axis of oscillations (x, y, z). The
normal mode vectors Qn(t ) and frequencies of the ion oscilla-
tions in the Coulomb crystal are computed by diagonalization
of matrix A numerically. This implies the transformation from
the original deviations from equilibrium positions qi(t ) to
Qn(t ) using transformation matrix elements bin:

Qn(t ) =
N∑

i=1

binqi(t ). (4)

To analyze the coupling strength between an ions i and a
phonon mode n we use normalized mode matrix M with the
following elements:

Min = bin/max(bin). (5)

Further, we refer to this matrix M as an interaction matrix.
The secular frequencies of each trapping site are computed
by diagonalizing the Hessian of the corresponding confining
potential 
 as ω2

i = em−1
i Eig(∂2
/∂rn∂rm), with e being the

elementary charge [57].
For the grounded dc electrodes we obtained the fol-

lowing secular frequencies in the central potential well:
(ωx, ωy, ωz )Be+ = (22.60, 38.74, 61.33) × 2π MHz for Be
ions and (ωx, ωy, ωz )Ca+ = (10.44, 17.9, 28.34) × 2π MHz
for Ca ions.

III. MOTIONAL COUPLINGS AND SCALABILITY

Here we demonstrate the possibility of forming an arbitrary
configuration of ion couplings through the appropriate choice
of the voltages on the central dc electrodes and the scalability
of this approach. For this, we model ion motion and calcu-
late the phonon mode spectra using the molecular dynamics
Python package described in Appendix A. The details on the
simulations are also presented in Appendix A.

For all the results discussed in the paper, we observe small
variations of the ion heights: δzi � 1.5 × 10−2zmean. Never-
theless, we do not observe the coupling between the normal
modes corresponding to different principal axes, which is
demonstrated in Fig. 2. Therefore, further, we demonstrate the
results for only one of the axes. All calculations of normal
modes, however, were performed without the linear chain
approximation.

When the dc electrodes are all grounded, the symmetric
structure of the RF± and the dc electrodes forms the symmet-
ric set of secular frequencies obeying the relation: ωi = ω10−i

for i ranging from 1 to 5. As a result, the pairs of the ions with
indices (i, 10 − i), i = 1...5 are motionally coupled as demon-
strated in Fig. 2. Each pair shares the same axial and radial

Mode index (n) 1 10 11 20 21 30
fn (MHz) 28.5 28.3 17.9 17.5 11.0 10.4

FIG. 2. The normal mode interaction matrix of the ion crystal
formed in the trap in Fig. 1 with grounded dc electrodes. The matrix
is divided into three parts, representing modes, corresponding to the
respective principal axis of oscillation. The cell’s color represents
the normalized interaction strength Min from Eq. (5) between ion i
and normal mode n. For z axis, the difference in secular frequency
ranges from 0.02 to 0.14 MHz. On the table the frequencies fn of the
respective normal modes n are presented.

phonon modes, thus forming a spectral segment. Further, we
use this term to refer to the restricted set of normal modes,
attributed to the strongly coupled ions, which motion can be
considered independently from the rest of the ions in the crys-
tal. In Fig. 2 the phonon mode frequency differences between
the spectral segments range between 0.02 and 0.14 MHz. The
interaction between the uncoupled ions is absent because of
the significant secular frequency difference |�i, j | � �

i j
I (see

Appendix D), where �i, j = ωi − ω j . The resonant condition
is then expressed as �i, j � �

i j
I , with a resonance peak being

at �i, j = 0.
Figure 3 shows some of the phonon mode configurations

achieved at specific sets of voltages leading to the formation
of spectral segments. To achieve those configurations we de-
veloped a numerical optimization procedure for the voltage
sets (described in Appendix B). Figs. 3(a) and 3(b) demon-
strate all-to-all connectivity between the ions through radial z
modes, whereas Figs. 3(c)–3(f) show the possibility of uniting
arbitrary ions into a segment. Namely, the coupling between
the ions and the modes of the central segment in Fig. 3(d) is
significantly larger than the coupling of other ions to these
modes:

birest,npin

bipin,npin

� 10−4, (6)
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FIG. 3. Spectra for ten 40Ca+ ions sitting in the trap shown in Fig. 1 for different dc voltage configurations. Traps with indices 0 and 11
do not contain ions and are used as end caps to decrease the required voltages on the inner trapping sites. Panels (a, c, e) demonstrate radial
secular frequencies and the required dc voltage configuration. The respective panels (b, d, f) show interaction matrices M with the colors
corresponding to the normalized strength of the ion interaction calculated according to Eq. (5). The table presents the differences between two
neighboring normal mode frequencies fn−1 − fn.

where b are the elements of the transformation matrix deter-
mined in Eq. (4). The index i corresponds to the ion, and
n—to the normal mode, while index notation “pin” denotes
the ions/modes, which are united in a considered spectral
segment, and “rest” denotes the rest. This relation proves that
the considered ion pair forms a spectral segment. To form such
a segment the ions shall sit in the trapping sites with the same
ωsec.

In Figs. 3(e) and 3(f), the central segment unites all
the central ions but the two on the sides (with indices 1
and 10). The interaction strength between the ions within
those segments is significantly reduced compared to the pre-
vious case: �1,10

I = 2π × 1 Hz for the side ions. This is
because the coupling strength decreases with the inter ion
distance [see Eq. (1)]. In particular, the coupling strength in
a segment, comprising two ions, sitting in nonneighboring
trapping sites, separated by another one is approximately eight
times smaller compared to the case with neighboring ions.
Therefore, the best performance of the two-qubit entangling
operations can be achieved with the segments consisting of the
couple of ions in neighboring trapping depicted in Figs. 3(c),
3(d) and 4.

For the segments comprising more than two ions in Fig. 3,
Mi,COM-components for the COM mode are not equal. Similar
feature is observed in mixed-species ion chains [46]. The
limited accuracy of the optimization procedure leads to the
mismatch of the secular frequencies of the order of 20 Hz
within trapping sites united in a spectral segment. As a result,
the resonance condition is not satisfied: �i, j � �

i j
I . On the

other side it is hard to achieve a control over secular fre-
quencies better than 20 Hz too. In fact to meet the resonant
condition one needs a dc voltage supply with ppm accuracy.
To address this issue we simplify the resonant condition in-
creasing the coupling strength. Namely, the separation of the
normal mode frequencies scales as fn − fCOM ∝ ω−1

secm−1 and,
therefore, can be significantly improved for lighter ions like
beryllium and for axial modes as ωax < ωrad. Additionally,
axial modes have higher separation even for equal secular
frequencies, due to the difference in axial and radial Hessians
of the potential. Further we consider parallel operations with
axial normal modes, exhibiting greatest coupling strength.

Figure 4 illustrates a possible segmentation of the ion
phonon spectra in the axial direction. This configuration of the
spectra is particularly interesting for parallel gate operations
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FIG. 4. Spectral segmentation optimized for parallel entangling
gate implementation for ten 9Be+ ions sitting in the trap shown in
Fig. 1. Traps with indices 0 and 11 do not contain ions and are used as
end caps to decrease the required voltages on the inner trapping sites.
Panel (a) shows axial secular frequencies and the required dc voltage
configuration. Panel (b) shows the respective interaction matrix M
with the colors corresponding to the normalized strength of the ion-
to-mode interaction calculated according to Eq. (5).

and will be characterized and discussed in detail in Sec. VI.
Namely, ten ions form five segments with five distinct secular
frequencies ωx, whereas in each segment good coupling is
achieved. The highest frequency separation was achieved for
the segmented Be ion pair in Fig. 4. For ions i = 1, 2 the axial
mode frequency separation is � f = 1.8 kHz.

The side dc electrodes (Fig. 1) can be also used to modify
the phonon mode spectrum of an ion crystal. This allows
optimizing secular frequencies of motion at all orthogonal
principal oscillation axes in parallel. In particular, in Fig. 5 the
interaction between neighboring ions is achieved by respec-
tive segmentation of the radial (y and z) modes on pairs. Each
segment is characterized by two normal mode frequencies:
COM and stretch. In the axial direction x all-to-all connec-
tivity is retained.

To scale the trap one needs to add notches. This implies
the increase of the number of electrodes: the number of dc
electrodes scales as 3N , and the number of RF− electrodes
scales as N . The amount of side dc electrodes can be reduced,

since they are used only for stray field compensation. To
achieve reliable control on secular frequencies the control
of dc voltages with ppm accuracy is necessary. We verify
the capability to create segmented spectra in the trap with
50 notches (for Be ions). We added the necessary number
of notches N and elongated the central RF− electrode by
N × dion = N × 28 μm to keep the axial secular frequency
unchanged. Figure 6 demonstrates the result for the optimized
voltage set forming 25 segments uniting the nearest neigh-
bors. The required voltage set lies in the operating regime.
The secular frequency difference between the segments is
�2k,2k+1/2π = 44.7 kHz, while the average frequency differ-
ence of the phonon modes within a segment is � f = 1.6 kHz.
For this case birest,npin/bipin,npin � 0.02 [see Eq. (6)]. Segmenta-
tion can be further improved by increasing �2k,2k+1, which
is limited by the breakdown voltages in the present design.
Several effects have to be accounted for while implementing
this procedure. The increase in the upper voltage bound di-
minishes the individual well depth. The lower voltage bound
can be only extended when the stability region of the trap is
expanded, which can be achieved by a simultaneous increase
in �RF and VRF to preserve the trap depth.

IV. MOTIONAL COUPLING STRENGTH
AND ENTANGLEMENT

In this section we verify the feasibility to perform MS gates
on the proposed trap. For this we evaluate MS gate duration tg
required for the ideal theoretical gate. To illustrate its relation
to the mode splitting � f and, therefore, to the motional cou-
pling strength, we first derive the generalized relation between
tg and � f considering only two trapping sites. We assume,
that the difference between COM and breathing modes is
small 2π� f = |ωCOM − ωbr| � δ, where δ = μ − ωCOM is
laser detuning from COM-mode. In this case the conventional
MS gate scheme without segmentation is applicable. For such
a scheme, the Rabi frequency � is constant and the set of
Eq. (C2) reduces to the following:

δtg = 2πK, K ∈ Z,

2η2�22π� f

∣∣∣∣− tg
4δ2

(1 + cos δtg) + 2 sin δtg
δ3

∣∣∣∣ = π

4
. (7)

Finally, the relation between gate duration and mode splitting
reads

η2�2

δ2
� f tg = 1

8
. (8)

According to this formula, either the Rabi frequency or the
duration of the entangling operation should increase with the
increased distance between the traps. Equation (8) also ex-
plains how gate parameters depend on the ion mass. Namely,
the optimal gate time decreases with decreasing mass of the
ion, as the frequency difference � f and the square of Lamb-
Dicke parameter are inversely proportional to the mass of the
ion.

In general case the gate parameters can be found nu-
merically using the segmentation approach [11,58] described
in Appendix C. We examine mode structures presented in
Figs. 3(d), 5(b), 4, and 12(c) and assume a MS laser pulse
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FIG. 5. Interaction matrices of ten 40Ca+ ions obtained with the use of gray and blue dc electrodes shown in Fig. 1. The colors correspond
to the normalized strength of the ion-to-mode interaction calculated according to Eq. (5). Panels (a) and (b) demonstrate segmentation of the
phonon mode structure in radial directions while panel (c) shows the axial interaction matrix with all-to-all connectivity for the same ion chain
and trap configuration.

with five intervals. The maximum Rabi frequency on an in-
terval was restricted by an experimentally feasible value of
2 MHz [59–61]. The choice of MS gate parameters is not
unique, in Table I we present those allowing to minimize
gate duration and to satisfy Lamb-Dicke approximation. Gate
duration below 1 ms can be considered as reasonably good

FIG. 6. Interaction matrix of normal modes of a 50-ion crystal,
in the scaled ion trap from Fig. 1. The optimal configuration of
voltages allows the forming of 25 independent ion pairs suitable for
parallel gates. The table depicts the general rule for the normal mode
frequency in this configuration.

based on the coherence times of Be and Ca qubits (exceed
1 s [30,62,63]). Additionally, within this time heating rate and
secular frequency drifts have a moderate effect on the gate
performance (see Sec. V).

We verified that harmonic potential approximation holds
for the cases with frequency splitting above 100 Hz. As a
result, to correctly estimate duration of MS gate for the more
distant trapping sites one has to account for the anharmonicity
of the trapping potential which is beyond the scope of this
publication. Overall, we do not exclude the possibility to
couple more distant trapping sites especially for light atoms
like Be and for larger laser intensities (�).

V. NOISE SOURCES

The dominant sources of gate errors in surface ion traps are
the drift of normal modes and anomalous heating rate [32].
The drift is typically in the order of several kHz per minute
[32] and may lead to incomplete decoupling of qubit spins
with normal modes at the end of the entangling gate.

The anomalous heating increases the amplitude of the mo-
tion of the ions and the motional-state decoherence [47–50].
The anomalous heating strongly depends on multiple param-
eters such as spatial separation between the ions and the
electrode surfaces, ion mass, secular frequencies [64,65], tem-
perature, and spectral density of the electric field. Based on the
results in Refs. [52,64], we assume the axial heating rate in
our cases to be below 100-s phonons per second at cryogenic
temperatures and below 1000 phonons per second at room
temperature. For a typical gate time of about 200 μs, this im-
plies less than 0.2 phonons per gate. This is a fair assumption,
even though the heating of the COM mode increases as the
number of trapped ions rises. Namely, performing gates with
the stretch mode allows decreasing the heating rate by a factor
of hundred: ṅstr/ṅcom ∝ 0.01 [66]. Therefore, in the upcoming
sections we assume that the noise does not change the amount
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TABLE I. Minimum MS-gate duration tg required to achieve theoretical unit fidelity on the selected ion pair. We assume MS-gate with
constant amplitude and with Rabi frequency of 2 MHz and minimize tg by adjusting laser detuning δ. The coupled ions are specified by
their trapping site IDs and the normal mode configuration, referenced by the corresponding figure. The coupling strength is characterized by
frequency difference of the COM mode fCOM and the closest breathing mode of the selected segment fbr, according to Eq. (2).

Ion Site ID Configuration | fCOM − fbr| (Hz) tg (μs) Mode axis fCOM (MHz) δ (Hz)

40Ca+ 5–6 Segmented pair [Fig. 3(d)] 142 224 z 26.98 −6500
2–3 Parallel gates [Fig. 5(b)] 159 229 z 27.81 −6365

9Be+ 5–6 Segmented pair [Fig. 12(d)] 1534 20 x 21.57 739
3–4 Parallel gates (Fig. 4) 1622 24 x 22.42 3737

of phonons during the gate. Instead, we estimate the effect of
the finite phonon populations on the two qubit-gate infidelity.

VI. ROBUSTNESS OF PARALLEL GATES

In this section, we focus on the main beneficial fea-
ture of the phonon mode spectrum configuration depicted in
Fig. 4: the possibility to perform parallel two-qubit entangling
gates. Namely, we compute the performance of the entan-
gling Mølmer-Sørensen (MS) operation [43] between the ions
within one of the segments and characterize its robustness
against the noise types described in Sec. V. In this section we
demonstrate the results only for Be ions, though similar quan-
titative behavior of fidelities and Rabi frequency is achieved
also with Ca ions.

First, we account for and mitigate gate errors due to the
presence of many collective modes of motion and their close-
ness (see Appendix C) with the aid of optimum modulation
of the laser amplitude as suggested in Refs. [11,46,58,67].
The optimal parameters of the gate for two Be ions i = 3
and 4 are shown in Fig. 7(a). In general, the ion chain com-
prising N ions requires to split the gate pulse onto 2N + 1
intervals with specific Rabi frequencies �s on each inter-
val. But the spectral configuration in Fig. 4 allows reducing
the number of intervals to five per ion segment, which sig-
nificantly simplifies the optimization routine. Namely, we
account only two normal modes (COM and stretch) for the
selected segment (ions 3 and 4). In simulations we use a
fixed gate duration of 200 μs and the optical parameters taken
from [68,69]: two 313.2 nm Raman lasers and the 30◦ angle
between the laser beams and the trap axis. The absolute mag-
nitude of the Rabi frequency on each time interval does not
exceed 2π × 0.22 MHz.

Second, we account for the phonon frequencies drift as-
suming that it linearly increases with time with rate γ ranging
from 100 Hz/min to 1 MHz/min:

ωm(t ) = ωm + γ t . (9)

To include this drift, we divide the laser-pulse intervals on
smaller subintervals characterized by its own constant normal
frequency calculated according to Eq. (9). We vary the number
of subintervals to obtain the lower estimate of the gate fidelity.

Finally, we calculate the fidelity of the gate using the fol-
lowing analytical formula [67,70]:

F = 1
8 [2 + 2(�i + � j ) cos 2�χ + �+ + �−], (10)

where

�χ = π/4 − χi, j (tg),

�i, j = exp −2
∑

m

∣∣αm
i, j (tg)

∣∣2
βm,

�± = exp −2
∑

m

∣∣αm
i (tg) ± αm

j (tg)
∣∣2

βm,

βm = coth
h̄ωm

2kBT
= coth

[
ωm

2ωc
ln

(
1 + 1

n̄c

)]
. (11)

Functions αm
i (tg) with tg as the gate time are respectful for the

entanglement between ion i and mode m, while the function
χi, j (tg) accounts for the entanglement between ions i and j
(see Appendix C for more details). The factor βm accounts
for the initial effective normal mode temperature T and the

FIG. 7. Parameters for entangling gate on the united pair of ions
(with indices 3 and 4) for trap configuration in Fig. 4. Panel (a) shows
in-time segmented Rabi frequency �s in MHz for two neighboring
9Be+ ions. (b) MS-gate infidelity over detuning μ for two neighbor-
ing 9Be+ ions for different initial average normal mode occupations.
The initial average occupation for the ion pair center-of-mass mode
is specified in the legend. The drift rates for all the modes are taken
as 1 MHz/min. The narrow local infidelity maxima correspond to the
normal frequencies of ions 3 and 4 and half of their sum, all three are
repeated with frequency 5/2tg. Rabi frequency instabilities coincide
with gate infidelity local maxima.
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initial average phonon occupation number of the ion pair for
their COM mode n̄c = (eh̄ωc/kBT − 1)−1, kB is the Boltzmann
constant. Equation (10) was derived on the assumption that
the initial internal state of the pair of ions is |↓↓〉z.

Figure 7(b) shows results for Be ions, for different detun-
ings μ, and for different n̄c. Here we account for the entire
phonon mode spectrum and the corresponding αi,m(tg)-s. μ
ranges from 22.4 to 22.45 MHz with the step of 2 Hz. Infi-
delity has a narrow maximum when μ is close to the normal
mode frequencies or to half of their sum [see Fig. 7(b)].
The maximum fidelities are achieved when the lasers are
detuned from the local infidelity maxima by at least 10 Hz.
At γ = 1 MHz/min the leading contribution to infidelity is
the remaining ion-phonon entanglement, while for the drift
rates below 150 kHz/min the leading contribution comes from
the presence of the whole phononmode spectra. For the latter
case, for the phonon mode occupation n̄ of 20 the maximum
infidelity reaches 5.7 × 10−6.

We also model parallel MS operations for Be qubits. For
this we select two neighboring segments depicted in Fig. 4.
The interaction between ions from two neighboring seg-
ments is three orders of magnitude weaker than between the
ions within a segment, which leads to the independent gate
operation. Indeed, we found that MS gate fidelity of two
parallel gates on two adjacent segments is well approximated
by multiplication of fidelities of two independent operations.
Therefore, we estimate the fidelity of the parallel two-qubit
gates for the entire chain to be greater than 99.95%. This
result can be further improved using the multiloop gates and
dynamical decoupling pulse sequences [17,71].

VII. COUPLING ENHANCEMENT

In this section, we investigate the capability to increase
the coupling between the trapping sites using several ions per
site and anharmonicity of the trapping potential. The positive
effect of these two aspects on coupling strength has been
demonstrated for two individual wells [40]. First, we examine
the normal mode spectra for different numbers of ions in
harmonic approximation and only then add anharmonic terms.

A. Harmonic approximation

We choose the magnitude of the anisotropy parameter α =
ω2

x/ω
2
y = 0.34 to keep the ion crystal with up to three ions (Ca

and Be) per trapping site linear along the x axis (the critical
value for three ions is αcr = 0.38 [72]). Along z direction, the
ion heights alternate with the magnitude δzi/zmean � 0.0015,
which introduces a finite motional coupling between x and
z axis, shown in Fig. 8, which complicates parallel gate im-
plementation. This coupling can be characterized using the
following relation:

bsecondary
i,n

bmain
i,n

� 0.2, (12)

where bi,n are the elements of the transformation matrix el-
ements in Eq. (4) with captions “main” and “secondary”
distinguishing the principal axes of motion depending on the
magnitude of bi,n(it is larger for the main axis). However,
along each of the axes there are modes for which all three

FIG. 8. Interaction matrix for the trap with ten trapping sites,
containing three Be ions in each site, similar to the configuration
of Fig. 10(b). The mode indexes are ordered according to their
frequencies: the lower the frequency, the higher the index.

principal axes can be considered independently, for example,
modes with indices 70–80 for x axis. Therefore, further we
present the part of the spectrum containing only these inde-
pendent modes.

Overall, the full crystal’s motional spectrum is mediated
by the ion motion within a trapping site due to the large dif-
ference between inter-ion distances within trapping sites and
the nearest sites: dinner/douter = 1/28. As a result, the inter-ion
interaction within a single trapping site is ∼103 times stronger
than between adjacent sites. For a trap with N ions, with a
mean number of ions per site Nsite, we observe a separation
of the mode spectrum for a chosen axis into two parts. First
part consists of N/Nsite modes [for example modes 1–10 in
Fig. 9(a)] and is similar to the case with a single ion per trap-
ping site. The ions within a trapping site in these modes move
in phase similar to the COM mode, but the phases of motion
between different sites are not necessarily equal. We will refer
to this part of the spectrum as individual-COM modes. The
second part of the spectrum (modes 11–20) is similar to the
spectrum in Fig. 2 as if the trapping sites were uncoupled.
These modes have frequency separation about 1 Hz, which is
too small to perform parallel gates. Therefore, the only modes
suitable for parallel gates are the individual-COM modes.

First, we select radial direction (along z axis), unaffected
by anharmonic terms, and examine how the number of Be ions
in individual wells n influences the phonon mode spectrum
and coupling strength. Figure 9 shows interaction matrices
for 20 and 15 9Be+ ions sitting in the trap with 10 trapping
sites shown in Fig. 1. Two and one ions per site in a 15-
ion chain are alternated as follows: 2-1-2-1-2-... Figures 9(a)
and 9(c) demonstrate all-to-all coupling similar to Fig. 3(b).
Figures 9(b) and 9(d) demonstrate the interaction between
the two centered traps similar to Fig. 3(d). Importantly, for
the alternating ion number, the interaction between individual
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FIG. 9. Interaction matrices of 20 and 15 9Be+ ions sitting in the
trap with 10 trapping sites shown in Fig. 1. The colors correspond to
the normalized strength of the ion-to-mode interaction calculated ac-
cording to Eq. (5). Panels (a) and (c) demonstrate all-to-all coupling
similar to Fig. 3(b) with the same set of dc voltages applied. Panels
(b) and (d) demonstrate the interaction between the two centered
traps similar to Fig. 3(d) with the same set of dc voltages applied.
On the table the frequencies fn of the respective normal modes n are
presented.

wells is still present, demonstrating the possibility to operate
the trap with an unequal amount of ions in each trapping site.

Figures 10(a) and 10(b) demonstrate interaction matrices
for 20 and 30 9Be+ ions in axial direction in a harmonic
approximation. Each of the ten trapping sites holds an equal

number of ions: two [Fig. 10(a)] or three [Fig. 10(b)]. The
two central traps are united in terms of their spectrum (modes
19–20 and 29–30, respectively).

The coupling strengths between two united trapping sites
for different ion configurations in harmonic approximation
are listed in Table II. As expected from the previous work
[40], in harmonic approximation, coupling strength grows
linearly with the number of ions per trapping site. Further we
investigate the anharmonic effects on coupling strength.

B. Anharmonic potential

To account strong anharmonic effects in axial direction we
expand the trapping site potential near its minimum along x
axis up to the fourth order [73]:

Uanh(δx) =
∞∑

n=2

κnδxn ≈ κ2δx2

[
1 +

(
δx

λ3

)
+

(
δx

λ4

)2
]
.

(13)
Here l = (Ze/8πε0κ2)1/3 is a characteristic length of the po-
tential, and λn = (κn/κ2)1/(2−n) is anharmonicity scale length.
For both Be and Ca ions l = 0.74 μm, λ3 = 2.4 × 103 μm,
and λ4 = 7.2 μm. Thus, the fourth-order term dominates the
third-order one which we account in the Jacobian Amn as
follows:

Amn =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

κn
2

κo
2

+ 6θn(δun)2 + 2
N∑

p = 1
p = n

1

|un − up|2 if n = m,

−2

|un − um|2 if n = m.

(14)
Here n is the ion index and we introduced the dimension-
less coordinates un = xn/l , θn = l2κn

4 κo
2/(κn

2 )2 characterizes
octopole anharmonicity of the trap and κo

2 is a curvature of
the potential in a trapping site with the highest frequency.
The equilibrium positions (potential minima) are determined
through simulation of the ion motion in the anharmonic time-
dependent potential. The shifted normal mode frequencies are
calculated from the eigenvalues of the Jacobian. Then the
coupling strengths between two coupled wells are obtained
out of the differences between them. Table II summarizes
the coupling strengths between ions in two united trapping
sites. The impact of the anharmonic terms increases with the
number of ions per site.

TABLE II. Coupling strength between Be ions in the central trapping sites (marked in bold) for the various populations of the ten trapping
sites. For the results in the table, electrode voltages were kept the same for each of the axes in the simulations.

Parameters of the simulations

Population of the trapping sites 1-1-1-1-1-1-1-1-1-1 2-1-2-1-2-1-2-1-2-1 2-2-2-2-2-2-2-2-2-2 3-3-3-3-3-3-3-3-3-3
Axis of Interaction z x z z x x
Reference Fig. Similar to Fig. 3(d) Fig. 9(d) Fig. 9(b) Fig. 10(a) Fig. 10(b)
Interacting mode indices (n) — 9–10 9–10 19–20 29–30

� f (Hz)

Harmonic potential 295 1528 493 587 3039 4589
Anharmonic potential — — — — 3208 4998
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FIG. 10. Interaction matrices of 20 (a) and 30 (b) 9Be+ ions confined in the trap with 10 trapping sites with two central sites united,
calculated in a harmonic approximation. Panel (c) demonstrates an uncoupled interaction matrix of a configuration from panel (a) in the
presence of octopole anharmonicity. For all panels the applied dc voltages are the same.

Figure 10(c) shows the interaction matrix for Be ions in
the anharmonic trapping potential. The rest parameters of the
simulations were the same as in Fig. 10(a). The matrices
look very different due to the variation of the anharmonicity
with the trapping site index: θ ranges ∼[−0.014,−0.021].
This complicates the formation of the ladder-type structure in
Fig. 4(b) required for parallel gate implementation. The effect
of anharmonic potential becomes visible when the coupling
strength between trapping sites is well below normal mode
frequency shifts. Overall, it can be compensated by the proper
adjustment of the dc voltages. Details on this procedure are
beyond the scope of this work.

VIII. CONCLUSION AND OUTLOOK

In conclusion, we described and characterized a surface
trap design allowing to connect or disconnect different sites
of the trap and allowing implementation of parallel gate op-
erations. In particular, we demonstrated that by changing
the dc voltages on the trapping electrodes we can unite the
chosen ions into segments with unique phonon mode fre-
quencies. For this we modeled the trapping potential and
the corresponding phonon mode spectra for Ca and Be
ions. We found optimum configuration for parallel gates and
verified the performance of the parallel MS-gate operation
for it. The infidelity of the gate was calculated under the
drift of the normal mode frequencies expected in the ex-
periment and for different finite populations of the normal
modes. We show that for experimental drift rates of a few
kHz per several minutes the infidelity from the normal fre-
quency drift does not exceed 5 × 10−6 for a wide range of
laser detunings. For higher drift rates the ion-to-mode en-
tanglement starts to play an important role. We calculated

the fidelity of the gate of 99.97% for a drift rate γ = 1
MHz/min and initial average COM mode occupation number
n̄c = 20.

We discussed the scaling of the proposed design and
verified it for 50 trapping sites. The proposed trap design
was also tested for two and three ions per trapping site.
In general, the coupling strength increases linearly with the
number of ions and, therefore, each segment can comprise
any reasonable number of ions. Anharmonic terms of the
surface trap potential decouple the nonsymmetrical individual
wells, which limits the possible number of ions per trapping
site.

The proposed design opens the possibility to construct the
nearest-neighbor interactions without all-to-all connectivity,
which are naturally absent in the conventional Paul traps. Such
couplings are advantageous for digital quantum computations,
since they allow parallel gate implementation and therefore
speedup. For example, such couplings might be appealing for
variational algorithms with the ansatz structures like HEA
(hardware efficient ansatz). Importantly, the proposed trap ar-
chitecture does not exclude the possibility to entangle distant
ions or several ions at once (as illustrated in Fig. 3) addi-
tionally offering the possibility to tune the strength of those
couplings. The latter has the potential to broaden the potential
area of quantum simulations involving trapped ion strings. All
in all, we expect the proposed design to be competitive with
the present scaling methods in respect of achieving large-scale
quantum computer.
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APPENDIX A: ION DYNAMICS SIMULATION

We have developed a Python package Sion [74] capable
of accounting sophisticated surface trap electrode structure.
It is based on the pyLIon package [75] for ion dynamics
simulation in 3D Paul traps and allows obtaining ion tra-
jectories and calculating normal mode spectra. pyLIon in its
turn utilizes the LAMMPS software employing the molecular
dynamics approach to describe the motions of large systems
with many particles. Numerical integration of Newton’s clas-
sical equations of motion of each confined atom is performed
through the Verlet algorithm [76]. Laser cooling of ions and
background gas collisions are modeled using the Langevin
equation:

mi
d2x
dt2

= Fi(x) − γiẋ + fi(t ), (A1)

where mi is the ion mass, Fi is the force of the trapping
potential acting on ion i experiencing the cooling force with
strength γi and stochastic force fi. The following total poten-
tial is used to determine the force Fi for N ions confined in the
trap:

Upot (x, y, z, t )

=
NDC∑
i=1

φi
DC(x, y, z) +

NRF∑
i=1

φi
RF(x, y, z) cos (�RFt )

+
N∑

n=1

N∑
m>n

Z2e2

4πε0

1

|�rn − �rm|2 , (A2)

with NDC, NRF—the number of dc and RF electrodes, corre-
spondingly. It includes both the force originating from electric
potential and from the mutual Coulomb interaction between
the ions (last term). Sion defines electric force acting on the
ion from the electrode chip. According to the concept of
superposition, the total potential above the electrodes can be
obtained by adding the potential generated by each electrode.

To model electric field above the electrode surface and for
the subsequent calculation of the equilibrium ion positions
we used analytical form of the electric field produced by
rectangular surface electrode under unit voltage from [77]:

φ(x, y, z)

= V

2π

[
tan−1

(
(xb − x)(yb − y)

z
√

z2 + (xb − x)2 + (yb − y)2

)

− tan−1

(
(xa − x)(yb − y)

z
√

z2 + (xa − x)2 + (yb − y)2

)

− tan−1

(
(xb − x)(ya − y)

z
√

z2 + (xb − x)2 + (ya − y)2

)

+ tan−1

(
(xa − x)(ya − y)

z
√

z2 + (xa − x)2 + (ya − y)2

)]
. (A3)

FIG. 11. Simulated evolution of z and x (in the inset) coordinates
of 10 trapped ions in the presence of cooling simulated for the trap
in Fig. 1 and grounded dc electrodes. Time step is 1/20�RF. The
variation between the heights of different ions at equilibrium is about
1.5 × 10−3zmean.

Here V is the applied voltage and (xa, ya, 0) and (xb, yb, 0)
are the coordinates of two opposing vertices of the planar
electrode.

Simulation starts with the initialization of the ion coor-
dinates and velocities. In our case we assume ions at the
geometrical center of each trapping site and set their initial
velocity to zero. The equilibrium positions are then obtained
by monitoring ion dynamics and coordinates, setting the
stochastic force fi(t ) = 0. The benefit of such a method is a
possibility to account for the exact form of the potential and
to determine the stability of the system.

The result of the simulation is presented as a trajectory of
each ion. Observing the trajectory, we are able to determine,
if the ion crystal is stable, and identify the moment, when the
crystal is cooled to 0 K. The time-evolution of z an x coor-
dinates of ten trapped-ions for the grounded DC-electrodes
(configuration from Fig. 2) is demonstrated in Fig. 11. The
simulation time is given in time steps since they are relative to
�RF.

Knowing the equilibrium ion positions, masses and secular
frequencies [see Eq. (3)] we calculate the normal modes. For
this, we introduce several notations: the dimensionless coor-
dinates (ui, vi,wi ) = (xi/l, yi/l, zi/l ), l3 = e2/(4πε0moω

2
zo),

where mo is the mass of the ion with index 1, and ωo its
secular frequency; a 3N × 3N mass matrix M defined as
M = Diag[m1..mN , m1..mN , m1..mN ], where mi is a mass of
the ion with index i; ρ = miω

2
ki/moω

2
ko, where k = x, y, z de-

notes the principal axis; a dimensionless distance between
ions i,j di j = √

(ui − u j )2 + (vi − v j )2 + (wi − w j )2. For a
given equilibrium ion positions Sion computes the Hessian
matrix in dimensionless coordinates Amn through the follow-
ing equations:

Aii = ρxi +
N∑

p=1

(
−1

d3
ip

+ 3(ui − up)2

d5
ip

)
,

A(N+i)(N+i) = ρyi +
N∑

p=1

(
−1

d3
ip

+ 3(vi − vp)2

d5
ip

)
,
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TABLE III. The table demonstrates coupling strengths �I obtained using Eq. (2) and theoretical coupling strengths �theor
I calculated using

Eq. (1) for different normal mode configurations presented in this paper. The configurations are supported by reference figures of the respective
interaction matrices. The trapping site indexes selected for the calculation are in the first column. The secular frequencies of those trapping
sites match. dion refer to the distance in μm between the selected ions, respectively.

Ion Site indexes Reference figure dion (μm) �I/2π (Hz) �theor
I /2π (Hz)

9Be+ 5–6 Fig. 12(d) 28 1534 1534
3–8 Fig. 12(e) 140 13.36 13.22

1–10 Fig. 12(f) 252 2.32 2.27
1–2 Fig. 4(b) 28 1860 1692
3–4 Fig. 4(b) 28 1622 1656
5–6 Fig. 4(b) 28 1654 1622
7–8 Fig. 4(b) 28 1649 1589

9–10 Fig. 4(b) 28 1763 1557

40Ca+ 5–6 Fig. 3(d) 28 141.83 148.55
4–7 Fig. 12(a) 84 5.50 5.50
3–8 Fig. 12(b) 140 1.19 1.19
2–9 Fig. 12(c) 196 0.43 0.43

1–10 Fig. 3(f) 252 0.21 0.20

A(2N+i)(2N+i) = ρzi +
N∑

p=1

(
−1

d3
ip

+ 3(wi − wp)2

d5
ip

)
,

Ai j = 1

d3
i j

− 3(ui − u j )2

d5
i j

,

A(N+i)(N+ j) = 1

d3
i j

− 3(vi − v j )2

d5
i j

,

A(2N+i)(2N+ j) = 1

d3
i j

− 3(wi − w j )2

d5
i j

,

Ai(N+ j) = 3(ui − u j )(v j − vi )

d5
i j

,

Ai(2N+ j) = 3(ui − u j )(w j − wi )

d5
i j

,

A(2N+i)(N+ j) = 3(wi − w j )(v j − vi )

d5
i j

,

Ai(N+i) =
N∑

p=1

3(ui − up)(vi − vp)

d5
ip

,

Ai(2N+i) =
N∑

p=1

3(ui − up)(wi − wp)

d5
ip

,

A(N+i)(2N+i) =
N∑

p=1

3(wi − wp)(vi − vp)

d5
ip

,

where i, j = 1..N . The 3N × 3N matrix Amn is then fully
defined by these equations, since as a Hessian it is symmet-
ric. The normal mode vectors bmi are then eigenvectors and
squared normal frequencies f 2

m are eigenvalues of matrix D:

D = moω
2
oM−1/2AmnM−1/2. (A4)

APPENDIX B: DC VOLTAGE SET OPTIMIZATION

A strict condition on the secular frequency matching be-
tween different trapping sites is necessary for their coupling
(see Sec. III) and requires a numerical optimization procedure
for the voltage set. We define an optimization problem as a
task to find a minimum of a loss function:

L(V DC
set ) =

NDC∑
i=1

(
ωactual

i − ωdesired
i

)2
. (B1)

Here, the loss function defines a quadratic norm of differ-
ence between the actual secular frequency ωactual

i on each
trapping site i, and the desired frequency ωdesired

i . The actual
frequencies are calculated for the given voltage set on the
central dc electrodes V DC

set . The optimization parameter space
is NDC-dimensional, for the number of central dc electrodes
NDC. The frequencies are normalized to improve the algorithm
performance.

The numerical procedure, considering the secular fre-
quencies in each trapping site for a given voltage set is
necessary. The operating voltages on each dc electrode range
from 0 to 6 V. This restricts the amplitude of the varia-
tion of secular frequencies. Namely, suppose δω = ω(0) −
ω(6), where ω(V ) denotes a secular frequency in a trap-
ping site, with corresponding dc voltage V , and with all
the other dc electrodes being grounded. We estimate the
following variations: (δωx/ωx(0), δωy/ωy(0), δωz/ωz(0)) =
(12.3, 9.4, 19.2)%, for the Be ion and (11.6, 8.9, 18.1)%
for the Ca ion. The variation of dc voltage on a trapping
site influences the secular frequencies in all trapping sites.
In particular, when the voltage of the dc electrode in the
trapping site i is varied from 0 V to 6 V, the secular fre-
quency in the neighboring trapping sites i ± 1 shifts by
(δωx/ωx(0), δωy/ωy(0), δωz/ωz(0)) equal to (2.3, 0.2, 0.4)%
for Be and to (2.4, 0.2, 0.4)% for Ca. The effect is stronger for
the axial direction, which makes the optimization of voltage
sets much more demanding.

We used the ADAM algorithm for optimization [78].
The method for calculating gradients in each iteration varies
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FIG. 12. Normal mode interaction matrices. The first row demonstrates configurations for Z-mode spectral segments of Ca ions with
indices (a) 4–7, (b) 3–8, and (c) 2–9. The second row consists of configurations of X -mode spectral segments of Be ions with indices (a) 5–6,
(b) 3–8, and (c) 1–10.

for different use-cases. To obtain voltage configurations for
Figs. 3, 4 the exact gradient was calculated at each iteration.

The calculation of the secular frequency implies the addi-
tional search of the pseudopotential minimum of the trapping
sites, which increases the time of each iteration of gradi-
ent descent. So for more complicated optimization problems,
the number of calls to loss function must be reduced. This
was achieved by using stochastic calculation of gradients for
ADAM algorithm. The voltage configuration for the trap with
50 trapping sites in Fig. 6 was calculated by this method.
We observed that the stochastic choice of five dc voltages at
each iteration to calculate the loss function provides the same
convergence for 10–50 trapping site number. The execution
time for 50 trapping sites is ∼2 h on a conventional PC.

The voltage configuration in Fig. 5 was achieved by op-
timizing simultaneously the central and side dc electrode
voltage set V DC

set, whole. We choose the loss function as a
quadratic norm of difference between actual frequencies and
the desired set in all three oscillation axes:

L(V DC
set, whole) =

NDC,whole∑
i=1

3∑
k=1

(
ωactual

i,k − ωdesired
i,k

)2
, (B2)

where k = x, y, z denotes the principle axis, NDC,whole—the
number of all electrodes—central and side.

APPENDIX C: EVOLUTION OPERATOR
FOR MØLMER-SØRENSEN GATE

We model the evolution of the state of the pair of qubits
under the following operator:

Û (t ) = exp

[ ∑
i,m

(αi,m(t )â†
m − α∗

i,m(t )âm)σ̂ (i)
x

]

× exp

[
i
∑
i, j

χi, j (t )σ̂ (i)
x σ̂ ( j)

x

]
, (C1)

where σ̂ (i)
x is the Pauli-X operator acting on an ion i and

â†
m/âm are creation/annihilation operators of a phonon mode

m. The functions αi,m(t ) are responsible for ion-phonon en-
tanglement, while the phases χi, j account for entanglement
between a pair of qubits i, j. The operator in Eq. (C1) was
derived under the rotating wave approximation and in the
Lamb-Dicke and resolved-sideband limits [11,46,58,67].
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For the ideal gate implementation the following equa-
tions should be satisfied for Rabi frequencies on intervals:

αi,m(tg) = i
2N+1∑
s=1

�sηi,m

∫ stp

(s−1)tp

sin(μt )eiωmt dt = 0, (C2)

χi, j (tg) =
2N+1∑
r,s=1

�r�s�rs,i j = π/4, (C3)

where

�rs,i j = 2
N∑

m=1

∫ rtp

(r−1)tp

dt2

∫ min(stp,t2 )

(s−1)tp

dt1ηi,mη j,m

× sin(μt2)sin(μt1)sin[ωm(t2 − t1)]. (C4)

Above �s is the Rabi frequency on an interval s, tp =
tg/(2N + 1) is the interval time, ωm is the frequency of mode
m, ηi,m ∝ bim is the Lamb-Dicke parameter of ion i in the
mode m, and min(a, b) depicts the minimum of two numbers
a and b. The rest parameters are the detuning of the frequency
of addressing laser fields (Raman or optical) from the carrier
transition μ which is close to the normal mode frequencies
[11,58], and the gate duration tg.

APPENDIX D: COUPLING HAMILTONIAN

We consider two singly charged ions of masses m cooled
to the motional ground state in individual harmonic traps
separated by a distance d with frequencies ωa, ωb along the
x axis. The potential energy of ions expanded up to the sec-
ond order on deviations of ions from equilibrium positions
xa, xb [41] and with neglected constant energy terms can be
expressed as follows:

U (xa, xb) = mω2
ax2

a

2
+ mω2

bx2
b

2
− e2

4πε0d

2xaxb

d2
. (D1)

The last term comes from the Coulomb repulsion and repre-
sents coupling between the ions’ motions. After quantization

xa =
√

h̄

2mωa
(a + a†), xb =

√
h̄

2mωb
(b + b†) it becomes

e2

4πε0d

xaxb

d2
= h̄�I (a + a†)(b + b†),

�I = e2

4πε0d
× 2

mωaωbd2

√
ωaωb, (D2)

where a/a† (b/b†) are annihilation/creation operators of ion
a(b) and �I is the coupling strength. �I describes the ratio
between the Coulomb energy of ion interaction and the geo-
metric mean of motional oscillator energies of two ions with
displacement d . The full motional Hamiltonian of the ions in
rotating wave approximation (RWA) with neglected constant
terms then becomes [42]:

H = h̄ωaa†a + h̄ωbb†b + 2h̄�I (ab† + a†b). (D3)

The normal vectors and frequencies for such a Hamiltonian
take a form:

ωbr/COM = ω̄ ±
√

(�a,b)2 + �2
I ,

bbr/COM = (sin(θbr/COM), cos(θbr/COM)),
(D4)

where

θbr/COM = arctan

⎡
⎢⎣�a,b ∓

√
(�a,b)2 + �2

I

�I

⎤
⎥⎦, (D5)

and ω̄ = ωa + ωb, �a,b = ωa − ωb. From Eqs. (D4) and (D5),
one can see that for large separation between secular frequen-
cies (�a,b � �I ) the motion of two ions becomes decoupled.
This makes it impossible to entangle the ions. In contrast,
for �a,b = 0, the splitting between the normal mode frequen-
cies equals �I and the normal vectors become bbr/COM =
(
√

2/2,±√
2/2) regardless of the distance between the traps.

Thus, the motional coupling �I can be used to characterize the
possibility to entangle ions in separate wells, and in the case
of equal secular frequencies of the wells it can be quantified as
the difference between breathing and COM mode frequencies
of the ion motion.

For a multitrapping zone architecture, Eq. (2) is not nec-
essarily valid. We verify numerically that for normal mode
configurations studied in this paper, it works pretty well, as
shown in Table III and Fig. 12. We emphasize that the relation
in Eq. (2) was used to find the optimum electrode configura-
tion. The feasibility to perform MS gate in the proposed trap
was verified by computing theoretical fidelities as described
in the main text.
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