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Stability and decoherence analysis of the silicon vacancy in 3C-SiC
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The silicon vacancy (VSi) in 3C-SiC is studied as a center of interest in the field of quantum technologies,
modeled as an electron spin (behaving as a two-state qubit in appropriate conditions) interacting through
hyperfine coupling with the SiC nuclear spin bath containing 29Si and 13C nuclei in their natural isotopic
concentration. We calculate the formation energies of the neutral and charged VSi with ab initio methods based
on the density functional theory, identifying the stability of the neutral charge state for energies close to the
valence band of 3C-SiC. In addition, magnetic properties are calculated for the V−1

Si in 3C-SiC and for V0
Si

in both cubic and hexagonal SiC polytypes. We thereon evaluate, for the defect in the cubic polytype, the free
induction decay and the Hahn-echo sequence on the electron spin interacting with the nuclear spin bath, shedding
light on the electron spin-echo envelope modulation phenomenon and the decoherence effect by means of the
cluster correlation expansion theory. We find a nonexponential coherence decay, which is a typical feature of
solid-state qubits subjected to low-frequency 1/ f -type noise from the environment.

DOI: 10.1103/PhysRevA.109.022603

I. INTRODUCTION

Silicon carbide (SiC) is widely recognized as an interesting
material for technological applications. Its capacity to work in
harsh environments under high temperatures, yielding faster
switching speeds, lower power losses, and higher blocking
voltages with respect to silicon has boosted its industrial
exploitation in solid-state devices [1]. Within this context,
SiC-based architectures have been already utilized, for in-
stance, in accelerator physics [2] and in microelectronics as
power devices [3]. Recently, it has gained popularity in the
field of quantum technologies (QT), e.g., used as a sensor of
magnetic fields and temperature gradients [4]. Here, pointlike
defective configurations like divacancies or Si/C vacancies
can provide active states on which quantum information is en-
coded, processed, and stored. Out of the many SiC polytypes,
where the difference lies in the structure of the stacking layers,
the most studied are the hexagonal 4H- and 6H-SiC [5] ones,
due to the significant progress made in their epitaxial growth
and the easy access to samples having low concentrations
of defects. On the other hand, the cubic 3C-SiC polytype
could potentially be an interesting and convenient alterna-
tive due to the possibility to be heteroepitaxially grown on
silicon substrates, along with a series of physical character-
istics which are appealing for electronic devices (lower band
gap, absence of deep level stacking-fault defect states, higher
electron and hole mobilities, etc.) [6,7]. However, the low
quality of 3C-SiC crystals during the past has largely hindered
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its technological use and slowed down its further theoretical
study. Recently, new and improved fabrication techniques
have been introduced that lower the defect concentration in
cubic 3C-SiC during growth [7,8]. Therefore, the cubic SiC
polytype could gather the interest of the QT community, as
previously happened for the 6H- and 4H-SiC polytypes [9].

The availability of high-quality and precisely doped
3C-SiC samples could aid the definitive assessment of single-
vacancy-related centers for possible QT applications in this
material. Indeed, contrarily to other vacancy-related centers
as the divacancy or the nitrogen-vacancy complex [10], the
single vacancy in the 3C-SiC material has not been unam-
biguously characterized in experiments so far in terms of
optical and magnetic signatures. We notice that the presence
of a high density of stacking-fault defects in conventional
heteroepitaxial 3C-SiC layers makes it difficult to identify
unknown infrared emitters which show the characteristics of
intrinsic defect-related color centers in 3C-SiC, but with dif-
ferent optical features with respect to the divacancy one (see
Refs. [4,11]. Moreover, this difficult assignment makes also a
topic of debate the conclusion of Ref. [12], where the detected
TX electron paramagnetic resonance (EPR) signal in 3C-SiC
has been tentatively associated to the silicon vacancy in its
neutral state, but in an n-type specimen where the charged
configurations should be the most abundant vacancy states
[13,14].

In view of the emerging new paradigms for the 3C-SiC
material application, we theoretically address the polarity-
dependent states of the silicon vacancy in 3C-SiC which could
have a strong potentiality for QTs due to the low rate of
quantum information loss that vacancy-related states exhibit
in SiC [9,15], even at room temperature [16]. We mainly focus
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on the neutral S = 1 (V0
Si) state, but the extension of the full

approach to the S = 3
2 (V−1

Si ) is also considered. To reproduce
the local environment of a nondefective 3C-SiC bulk region
we assume that the defect is coupled through hyperfine inter-
actions with the SiC nuclear spin bath, constituted by naturally
occurring 29Si and 13C paramagnetic nuclei. We, indeed, no-
tice that the time evolution of the spin center correlated to the
defect is affected by the magnetic environment of the 29Si and
13C nuclear spins 1

2 . Moreover, microwave pulses [5] tuned
to a particular transition frequency can be used to control the
defect and reduce its relevant eigenstates entering the dynam-
ics to two, thereby effectively dealing with a qubit. This study
is complemented by the identification of the stability window
in terms of electrochemical potential comparing the computed
formation energy with those of charged silicon vacancies. The
energetics [17] and hyperfine interaction [18] properties of
these defects can be calculated via ab initio methods based on
the density functional theory (DFT). We note that this vacancy
state has received less attention in the theoretical literature
with respect to other defect-impurity states in SiC.

The nuclear spin bath induces noise at low frequencies for
the point defect. This is typically the case in nuclear magnetic
resonance (NMR), where the interesting experimental signal
is generated by nonequilibrium electron spin magnetization
(equivalent to its coherence) precessing about an external
magnetic field [19]. Due to the spatial field inhomogeneity,
the measured signal in a free-induction decay (FID) process
is defocused and displays a characteristic nonexponential de-
cay resulting in inhomogeneous broadening of the spectral
lines. Analogous effects occur in solid-state implementations
of qubits and originate from time inhomogeneities due to
repetitions of measurement protocols [20–22]. The same hap-
pens when the degree of freedom of the examined system
is electronic in nature, as opposed to nuclear. This is the
case in electron paramagnetic resonance (EPR), in which one
applies NMR techniques to an electron spin [23]. One way
of refocusing can be achieved by the Hahn-echo sequence, an
established technique applied recently to investigate the resid-
ual decoherence of divacancy defects in 4H-SiC in Ref. [9].
Here we consider both the FID and Hahn-echo sequences ap-
plied to the considered defect utilizing the cluster correlation
expansion (CCE) theory [24]. CCE theory allows to split the
bath in clusters with a given number of interacting nuclear
spins. Since the clusters by hypothesis are uncorrelated with
each other, the qubit coherence is obtained as a product of the
contributions of each cluster.

The rest of the paper is organized as follows: In Sec. II
we report our results by describing the model used and the
ab initio calculations for the V0

Si, V−1
Si , and V−2

Si in 3C-SiC,
their formation energy as a function of the Fermi level and
the calculation of the magnetic parameters of the system plus
environment Hamiltonian, i.e., the hyperfine tensor and the
zero-field splitting (ZFS) tensor. At the end of the section we
utilize the magnetic parameters derived from first principles
to calculate both analytically and numerically the spin coher-
ence (or its decay) after free evolution (FID) and under the
Hahn-echo sequence, at a CCE1 and CCE2 level. In Sec. III a
discussion on our results is presented, while finally in Sec. IV
our methods of analysis behind the ab initio calculations and
the evaluation of the qubit decoherence are described in detail.

II. RESULTS

A. Model

Ab initio calculations are useful for assessing structural,
electronic, optical, and magnetic properties of solids [25].
Here we use the density functional theory to evaluate the mag-
netic parameters of a Hamiltonian describing the interaction
between the electron and nuclear spins through the calculation
of the hyperfine [26] and the ZFS tensors [27]. The following
is our working Hamiltonian (the choice of setting E = 0 is
justified in Appendix A) [28]:

H = DS2
z + γeBzSz +

N∑
i=1

γiBzIiz

+ Sz ⊗
N∑

i=1

(AiIiz + BiIix ) + Hn−n, (1)

where Hn−n is the dipolar interaction between nuclear spins,
Ai ≡ Ai

zz, and Bi ≡ (Ai2

zx + Ai2

zy)1/2, whereas Azx, Azy, and Azz

are the elements of the third row of the hyperfine tensor.
Equation (1) is already written in the pure-dephasing approxi-
mation [28,29], so that no transition of the electron spin takes
place by exchanging energy with the environment. Note that
the Hamiltonian (1) commutes with the electron spin Sz oper-
ator and, if we consider with no lack of generality an S = 1
system, it can be expressed in the spin operator eigenbasis
{|1〉, |0〉, |−1〉}, giving rise to [9]

H =
∑

mS=1,0,−1

|mS〉〈mS| ⊗ HmS , (2)

where

HmS = ωmS + HB + mS

N∑
i=1

(AiIiz + BiIix ). (3)

Furthermore, HB = ∑N
i=1 γiBzIiz + Hn−n is the bath Hamilto-

nian. Finally,

ω1 = D + ωe, (4)

ω0 = 0, (5)

ω−1 = D − ωe, (6)

where ωe = γeB is the Larmor frequency of the electron spin,
are the eigenvalues of the electron spin Hamiltonian [first and
second terms of Eq. (1)]. A direct consequence of the form of
Hamiltonian (2) is that, by opportunely initializing the elec-
tron spin (more on that in Sec. IV) and appropriately choosing
the control pulses as having precisely the right frequency ω1,
the |−1〉 state can be frozen out of the dynamics since no
transitions are allowed towards it. Therefore, the electron spin
effectively behaves as a qubit [9].

As a first-order approximation, in calculating the hyperfine
tensor the electron and nuclear spins can be considered as
point dipoles, which is known in the literature as the semiclas-
sical approximation [30]. In the semiclassical approximation,
the hyperfine tensor is given by

Ai = μ0γiγe

4πr3
i

(
1 − 3riri

r2
i

)
, (7)
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(a) (b)

FIG. 1. (a) 3D spin density around a neutral VSi in 3C-SiC. The
spin-density differences are mainly extended until the third-neighbor
shell. The wave functions are calculated for a 6 × 6 × 6 3C-SiC
supercell. (b) Formation energies of a neutral, −1, and −2 charged
VSi as a function of the Fermi level with respect to the valence
band maximum, for noncollinear calculations in a 686-atom 3C-SiC
supercell. The monopole term is included in the analysis.

where μ0 is the magnetic permeability of the vacuum, γi and
γe are the ith nuclear spin and electron spin gyromagnetic
ratios, respectively, whereas ri is the position vector of the
ith nuclear spin with respect to the qubit, with its modulus
ri being the distance between the two. Of course, Eq. (7) is
no longer applicable in the immediate vicinity of the qubit.
Ab initio methods allow us to go beyond the semiclassical
approximation and model physical effects generated by the
three-dimensional defect’s spin density [see Fig. 1(a)].

B. Formation energy

An important issue for the determination of the stability
of a particular defect under given thermodynamic conditions
regards the energetic competition between its various charged
states. Here we have used the DFT to calculate the formation
energy of the neutral and charged VSi within a 3C-SiC 7 ×
7 × 7 supercell. The formation energy E f of a defect X can
be defined as the energy difference between the investigated
system and the components in their reference states [31], i.e.,

E f [X q] = Etot[X
q] − Etot[bulk] −

∑
i

niμi

+ q

e
(EVBM + μe) + Ecorr. (8)

Etot[X q] is the total energy of the host crystal with the defect
with charge q, where e > 0 is the elementary charge of the
electron, Etot[bulk] is the total energy of the same cell of
crystal without the defect, and niμi is the reference energy of
added (or subtracted with a change of sign) atoms of element
i at chemical potential μi. The term in parentheses accounts
for the chemical potential of the electron(s) involved in charg-
ing the defect. EVBM is the valence band maximum as given
by the calculated band structure for the bulk material, and μe

is the electron chemical potential defined here with respect to
the top of the corresponding valence band. The μe parameter
can then be treated as a free parameter, allowing to account
for a shift of the Fermi level, e.g., due to doping. Note that
μe = Egap/2 corresponds to the undoped semiconductor case,
where Egap is the intrinsic semiconductor band gap. Finally,
Ecorr is a sum of relevant correction terms, the most important

of which is the monopole correction term, taking into account
the electrostatic interaction between the charged defect and
its periodic replicas within the ab initio simulations. The
monopole correction term can be written as [32]

Ecorr = q2α

2εL
, (9)

where q is the charge of the defect, α is the Madelung constant
associated to our crystal structure, ε is the SiC experimental
dielectric constant, and L is the distance between the defect
and its periodic replicas. For the neutral VSi we have calcu-
lated Etot[V0

Si] − Etot[bulk] and μSi, whereas for the charged
defects, for which q is different from zero, we have also cal-
culated the valence band maximum [see Eq. (8)]. All ab initio
calculations are based on the DFT by using the Perdew-Burke-
Ernzerhof implementation [33] of the generalized gradient
approximation for the description of the exchange-correlation
functional, as implemented in the QUANTUM ESPRESSO (QE)
software suite [17]. (See the Methods section for more de-
tails.) We note here that the focus of our analysis lies on
the magnetic properties of the neutral and charged silicon
vacancy, whereas, for a more accurate interpretation of the
electronic structure, approaches like the many-body perturba-
tion theory or well-selected hybrid density functional theory
could be useful.

Upon structural relaxation which induces a local re-
construction around the defected site [34], the calculated
magnetization for the V0

Si, V−1
Si , and V−2

Si defects was the
one expected for a defect with electron spin 1, 3

2 , and 1,
respectively [13]. Figure 1(a) shows the spin density around
the central VSi, which extends until the third-neighbor shell.
This nonzero spin density is modeled and implemented in the
QE-GIPAWcode [35] and allows us to go beyond the semiclas-
sical magnetic point-dipole approximation of Eq. (7) (see the
next section).

As we can see in Fig. 1(b), in which the formation energy
of a VSi with different charge states is shown as a function
of the Fermi level with respect to the valence band maxi-
mum [corrected with the monopole correction term given in
Eq. (9)], our ab initio results demonstrate the stability of the
neutral state near the valence band of 3C-SiC. Moreover, the
presence of the monopole term widens the electrochemical
potential range over which the neutral state is stable. These re-
sults are in good agreement with previous studies [32,34,36].
Hence, the neutral silicon vacancy in 3C-SiC could potentially
be stable in p-doped 3C-SiC systems, as for example in Al-
doped 3C-SiC three gate MOSFET devices [37]. Within this
context, in the next section the hyperfine interactions for a V0

Si
and V−1

Si in 3C-SiC as well as for the neutral defect in 4H-SiC
are calculated from first principles, noting that the V−1

Si state in
4H-SiC has been thoroughly studied in the literature [12,38–
40]. Moreover, the ZFS tensor components of V0

Si and V−1
Si in

3C-SiC are also computed.

C. Hyperfine interactions and zero-field splitting

The results of our ab initio calculations can be used to
define the hyperfine and ZFS tensors from first principles with
the aid of the QE-GIPAW [35] and PYZFS [41] codes, respec-
tively. Tables I and II show the hyperfine tensor components
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TABLE I. Ab initio calculated values (in MHz) for the hyperfine
tensor components describing the interaction between a neutral VSi

in 3C-SiC and the nuclear spins in the first- and second-neighbor
shells. The values are obtained by using the QE-GIPAW code [35].

Atom Axx Ayy Azz

C1 27.4 27.4 85.6
C2 27.4 27.4 85.4
C3 27.6 27.6 85.8
C4 27.4 27.4 85.6
Si1-Si12 7.4 7.6 6.9

describing the interaction between a neutral or a negatively
charged VSi in 3C-SiC and the nuclear spins in the first- and
second-neighbor shells. In the case of the V−1

Si , results are
in good agreement with the experimental measurements of
Ref. [42]. Tables III and IV show the same components for
a neutral VSi in 4H-SiC, located in the two nonequivalent
4H sites (i.e., k and h), respectively. In this case, a compar-
ison with the experimental results of Ref. [43] seems also
reasonable.

Concerning the ZFS tensor components of the electron
spin associated to a V0

Si in 3C-SiC, the values obtained for
the axial and transversal components are D = 0.45 MHz and
E = −0.09 MHz, respectively. The tensor components values
for the charged defect V−1

Si instead are D = 0.1 MHz and
E = −0.03 MHz. As we can see, the absolute values of the
components are relatively low and they seem to indicate the
presence of axial symmetry for the ZFS tensor. This allows us
to predict an apparent Td symmetry of the V0

Si a1 and e states,
which is in agreement with the finding in Lefévre et al. [12] of
an axial-symmetric ZFS tensor for the same defect in 3C-SiC.
Anyhow, we notice that the attribution in Ref. [12] appears in
an n-doped material where our calculations show the stabil-
ity of charged defects. Concerning the symmetry of the V0

Si
ground state in 3C-SiC, there is no unanimous consensus in
the literature, whereas the spin state is almost certain. Early
works utilizing small supercells assigned to the V0

Si a 1E spin-
singlet configuration [34,44] or a 3T1 spin-triplet configuration
with Td symmetry [45]. A recent work with larger supercells
identifies, as in our case, a spin-triplet configuration, but with
a Jahn-Teller-distorted C3v symmetry as the ground state [46].
A further breakdown of the triplet state into a finer structure
of levels is also probable, especially in the presence of dy-

TABLE II. Ab initio calculated values (in MHz) for the hyperfine
tensor components describing the interaction between a negatively
charged VSi in 3C-SiC and the nuclear spins in the first- and second-
neighbor shells. The values are obtained by using the QE-GIPAW code
[35].

Atom Axx Ayy Azz

C1 27.2 27.2 79.7
C2 27.2 27.2 79.7
C3 27.2 27.2 79.7
C4 27.2 27.2 79.7
Si1-Si12 7.4 7.5 6.8

TABLE III. Ab initio calculated values (in MHz) for the hyper-
fine tensor components describing the interaction between a neutral
VSi (k site) in 4H -SiC and the nuclear spins in the first- and second-
neighbor shells. The values are obtained by using the QE-GIPAW code
[35].

Atom Axx Ayy Azz

C1 24.5 24.4 76.3
C2 24.5 24.4 76.2
C3 34.4 34.4 110.4
C4 24.5 24.4 76.2
Si1-Si12 7.5 7.8 6.9

namic polaronic distortion. Within this framework, we cannot
exclude a multiplet nature of all the electronic configurations.
However, as we thoroughly demonstrate in Appendix A, a
small variation of the ZFS tensor components has a minor
influence on the electron spin dynamics.

D. Free induction decay

The research on FID is interesting for many reasons. In the
literature, experiments are described that elucidate the quan-
tum mechanical origins of the FID signal and spin noise [47].
FID has also been used as a means of controlling the phase
and amplitude of extreme ultraviolet photons [48]. Our main
objective in studying the FID, and the goal of this subsection,
is to evaluate the qubit’s decoherence time after free evolution
and to compare it with the one obtained after a given control
procedure is applied (cf. Hahn echo below).

Therefore, in this subsection we focus on the FID process
[30], i.e., we let the system freely evolve after the preparation
of the qubit. In general, the qubit coherence is defined as the
off-diagonal component of the density matrix, or [9]

L(t ) ≡ tr{ρtot (t )S+}
tr{ρtot (0)S+} , (10)

where ρtot (t ) is the total qubit plus bath density operator
at time t , S+ = Sx + iSy is the qubit-raising operator, and
ρtot (0) = ρS(0) ⊗ ρB(0) is the initial state of the overall
system. The spin bath is assumed in a totally mixed state.
In the dipolar approximation of Eq. (1) the qubit eigenbasis
coincides with a subset of the Sz spin operator eigenba-
sis, i.e., {|1〉, |0〉}. The qubit is prepared in the pure state

TABLE IV. Ab initio calculated values (in MHz) for the hyperfine
tensor components describing the interaction between a neutral VSi

(h site) in 4H -SiC and the nuclear spins in the first- and second-
neighbor shells. The values are obtained by using the QE-GIPAW code
[35].

Atom Axx Ayy Azz

C1 24.3 24.2 75.1
C2 34.2 34.2 112.3
C3 24.4 24.3 76.0
C4 24.7 24.6 77.1
Si1-Si12 7.5 7.8 6.9
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ρS(0) = |�〉〈�|, where

|�〉 = 1√
2

(|1〉 + i|0〉), (11)

so that 〈Sy〉(0) �= 0 and 〈Sx〉(0) = 0. The preparation in state
(11), obtained via the application of a π/2 pulse to the qubit
in the |0〉 state, together with the chosen form for the control
pulses and the pure-dephasing approximation in Hamiltonian
(1), ensures that the |−1〉 state stays out of the dynamics. If
suitable energy distribution of excited spin states occurs, in an
eventual experimental realization of this protocol on a V0

Si, the
preparation in the |0〉 state could be achieved as in Ref. [49],
where a high fidelity in the initialization of the ground state
for a V−1

Si in 4H-SiC has been demonstrated. It is known in the
literature that this defect has a relatively low ZFS of 4 MHz
[50]. Then, different resonant energies are required for |0〉
and |±1〉 for the optical transitions. This is true for a V−1

Si
in 4H-SiC [49] and we cautiously suggest that differences
with respect to a V0

Si in 3C-SiC should not be stark. This
stage, or other methods for unbalanced selective transitions
for |0〉 and |±1〉 states, will be reached whenever the defect’s
signatures in 3C-SiC will be detected. Here we provide a
practical explanation, based on analytical calculations, of why
it is useful to consider the V0

Si as a qubit. The coherence
L(t ) is a complex function having the expectation values of
the qubit Sx and Sy operators as real and imaginary parts,
respectively. Furthermore, Eq. (10) becomes intractable rather
quickly as the number of nuclear spins in the bath increases.
The objective of CCE theory is then to provide a reasonable
and computationally achievable approximated version of the
whole coherence given in Eq. (10). In order to do so, the first
step is the implementation of a numerical procedure generat-
ing a random bath of nuclear spins. The 29Si and 13C nuclear
spins are thereby randomly put in our simulated 3C-SiC lat-
tice, by using a random number generator, according to their
natural abundance of 4.7% and 1.1%, respectively.

The entire FID process can be described as

ρFID(τ ) = UFID(τ )ρS(0)U †
FID(τ ), (12)

where UFID(τ ) = e−iHτ e−iπ/2Sx is the FID propagator, ρS(0) =
|0〉〈0| and the system’s Hamiltonian is given by Eq. (1). The
real and imaginary parts of the coherence can be analytically
calculated in the pure-dephasing approximation and CCE1
case, i.e., whenever we can write the Hamiltonian in the form
of Eq. (2) and safely neglect the Hn−n interaction between
nuclear spins inside the bath Hamiltonian in (3). Then we
substitute Eq. (2) in Eq. (10) through ρtot (t ), and the analytical
expressions we obtain are the following [30]:

〈Sx〉FID(τ ) = − sin [(ω1 − ω0)τ ]fB(τ ), (13)

〈Sy〉FID(τ ) = cos [(ω1 − ω0)τ ]fB(τ ), (14)

where

fB(τ ) =
N∏

i=1

[
cos

(
ωIiτ

2

)
cos

(

Iiτ

2

)

+ sin

(
ωIiτ

2

)
sin

(

Iiτ

2

)
ωIi + Ai


Ii

]
(15)

(a) (b)

FIG. 2. FID evaluated with CCE1 and CCE2 with semiclassical
hyperfine tensor components: absolute value of the coherence of
a neutral VSi in 3C-SiC as a function of free-evolution time. The
external magnetic field is 200 G (a) and 500 G (b). The curves are
averaged over 50 different baths.

is a factor depending on the nuclear spins, and


Ii =
√(

ωIi + Ai
)2 + B2

i . (16)

In Eq. (15),

ωIi = γiB (17)

is the Larmor frequency of the ith nuclear spin, where B is the
external magnetic field.

Our results on FID are displayed in Figs. 2 and 3. In Fig. 2
we show a comparison between the absolute value of the
qubit’s coherence at the CCE1 and CCE2 levels of the theory,
for two different external magnetic fields. The CCE1 curves
exactly coincide with the analytical ones obtained as a graph
of Eqs. (13) and (14). Note that there is no interesting effect
that is modeled in the passage from CCE1 to CCE2, and the
two versions give pretty close results. In Fig. 3 we present the
same curves at the CCE2 level, both with semiclassical and
ab initio hyperfine tensor components, for different external
magnetic fields. As can be seen, the presence of even one
single nuclear spin in the first shells of next neighbors causes
an appreciable change in the coherence, due to the difference
in the hyperfine tensor components and therefore in 
Ii (re-
member that FID can be well modeled already at CCE1, see
Fig. 2).

In order to better understand our FID results and directly
correlate differences in the position of the nuclear spins to
the modification of the coherence modulation frequencies, we
propose a manipulation of Eqs. (13) and (14). In particular, by
opportunely rewriting those equations we are able to explicitly
obtain the coherence modulation frequencies. To do that we
have to express the product of N terms in Eq. (15) as a sum of
sinusoidal functions, by repeatedly applying the appropriate
trigonometric formulas, so that the modulation frequencies are
easily calculated via a Fourier transform. The new expressions
can be obtained by exploiting induction considerations (see
Appendix B) and the imaginary part of the coherence, e.g., is
given by

〈Sy〉 = cos(ω1τ )�N (τ ), (18)

where

�N (τ ) = 1

22N−1

{
SI1 . . . SIN [(+ − + − · · · + −)

+ · · · + (+ − − + · · · − +)]
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+ SI1 . . . DIN [(+ − + − · · · + +)

+ · · · + (+ − − + · · · − −)] + · · ·
+ SI1 . . . DIi . . . DIN [(+ − · · · + + · · · + +)

+ · · · + (+ − · · · − − · · · − −)]

+ · · · + DI1 . . . DIN [(+ + + + · · · + +)

+ · · · + (+ + − − · · · − −)]
}
. (19)

In Eq. (19) we have used the shorthand notation

(+ − · · · + −) ≡ cos
[(

ωI1/2 − 
I1/2 + · · ·
+ ωIN /2 − 
IN /2

)
τ
]
, (20)

whereas

SIi ≡ 1 + ωIi + Ai


Ii

, (21)

DIi ≡ 1 − ωIi + Ai


Ii

. (22)

Inside the curly brackets there are 2N terms, each of which is
multiplied by a sum of 2N−1 cosines inside the square brack-
ets. Therefore, without counting the qubit through its level
splitting ω1 (in which case the modulation frequencies would
be doubled, see Appendix B), the modulation frequencies
are 2N × 2N−1 = 22N−1. Equation (19) reduces to expected
results in simple limiting conditions, i.e.,

�N (A = 0, B = 0) = 1, (23)

�N (τ = 0) = 1. (24)

Equations (23) and (24), coupled with Eq. (18), give us the
expected behavior of the coherence imaginary part when the
qubit is isolated from the environment and at the beginning
of the dynamics, respectively. Additional considerations re-
garding Eq. (19) are reported in Appendix B, in particular,
the numerical calculation of the modulation frequencies in a
simple case. Finally, the modulation frequencies, containing
information on how each nuclear spin in the bath affects
the qubit during the dynamics, can be derived directly from
the pure-dephasing Hamiltonian (1), in the CCE1 case or
whenever Hn−n = 0. In particular, they are obtained as linear
combinations of our system’s eigenenergies, as we demon-
strate in Appendix C.

At this point, the difference in the modulation frequencies
in going from the semiclassical to the ab initio curve in Fig. 3
is explained by considering the dependency of those frequen-
cies, given in Eq. (19), on the hyperfine tensor components
through 
Ii . In particular, in the case where the bath is com-
posed by a single 13C nucleus in the first-neighbor shell, there
are only two frequencies in the terms (+−) and (++). The
first frequency doubles its value, from 13.1 to 29.4 MHz, by
using the ab initio calibration.

E. Hahn echo

In NMR and EPR systems environmental noise takes the
form of magnetic field noise that results from the effect of
accumulating disturbances from each nuclear spin-generated
magnetic field (such static magnetic field inhomogeneity

(a) (b)

FIG. 3. FID evaluated with CCE2 with semiclassical and ab
initio hyperfine tensor components: absolute value of the coherence
of a neutral VSi in 3C-SiC as a function of free-evolution time. The
external magnetic field is 200 G (a) and 500 G (b). The curves are
averaged over 50 different baths.

causes inhomogeneous broadening of the spectral lines [20]).
To limit inhomogeneous broadening, we have applied the
Hahn-echo sequence [51], an established control technique
[9,30] allowing to refocus the spin coherence and thus enlarge
its decoherence time [9,52], which is the main goal of this
subsection.

In this regard, the most important part of the spin-echo
sequence is an intermediate π pulse applied to the qubit which
allows to refocus the spin coherence resulting from the effect
of static magnetic field inhomogeneities [19]. Consequently,
the dynamics can be described in the following way:

ρHE(τ ) = UHE(τ )ρS(0)U †
HE(τ ), (25)

where UHE(τ ) = e−iHτ/2e−iπSx e−iHτ/2e−iπ/2Sx is the Hahn-
echo propagator and ρS(0) is the same as for the FID case.
Now, as a first-order approximation, at the CCE1 level we
can obtain analytical expressions for the coherence real and
imaginary parts in the pure-dephasing approximation [9], as
in the FID case. Therefore, the qubit coherence components
in (10), after the Hahn-echo sequence, can be written as [30]

〈Sx〉HE(τ ) = 0, (26)

〈Sy〉HE(τ ) =
N∏

i=1

[
1 − 2ki

+1,0 sin2

(

Ii

τ

4

)
sin2

(
ωIi

τ

4

)]
,

(27)

where

ki
+1,0 = B2

i


2
Ii

(28)

is the modulation depth parameter of the ith nuclear spin
between the |0〉 and |+1〉 qubit states. Equation (27) describes
fast oscillations of the qubit coherence, or modulations (see
Fig. 4), known in the literature as electron spin-echo envelope
modulation (ESEEM), which are due to single nuclear spin
transitions [30]. The real part of the coherence is zero also at
t = τ because of the refocusing action of the central π pulse.

Our results on the Hahn echo extend the findings in Seo
et al. [9] to a neutral VSi in 3C-SiC. Indeed, the coherence
decay is already obtained at the CCE2 level, as shown in
Fig. 4(a) (this does not preclude the possibility of having
further effects beyond CCE2). The figure shows the qubit
coherence as a function of free-evolution time, for an external
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(a) (b)

FIG. 4. Hahn echo evaluated with CCE1 and CCE2 with
semiclassical hyperfine tensor components: absolute value of the
coherence of a V0

Si in 3C-SiC as a function of time, for an external
magnetic field of 200 G. The result is averaged over 50 different
baths. (a) The blue (solid) curve is calculated analytically [Eq. (27)]
or at the CCE1 level and the red (dashed) one is calculated at the
CCE2 level. The decoherence time is in the ms range. (b) Fitting of
the dashed curve of (a) with an exponential function e−(t/T2 )n

. Inset:
the optimal values for the fitting parameters T2, in ms, and n.

magnetic field of 200 G. The solid curve is calculated at the
CCE1 level, and exactly coincides with the analytical curve
obtained as a graph of Eq. (27), as in the FID case. This
should be the case since Eq. (27) is obtained precisely by
following the analytical counterpart of the numerical proce-
dure behind the CCE1 approach, i.e., by neglecting Hn−n in
(3) and thereby considering the coherence as a product of
independent contributions coming from each nuclear spin. On
the other hand, the dashed curve in Fig. 4 is calculated at the
CCE2 level and presents the decay (note the difference with
FID, for which CCE1 and CCE2 give similar results). Thus,
interactions of the qubit with pairs of coupled nuclear spins
within the bath cause a coherence decay that survives to the
spin-echo protocol [9]. Furthermore, we demonstrate that the
coherence decay of a V0

Si is in the ms range [see Fig. 4(b)],
whereas for FID it is in the 0.01-ms range (this difference
is crucial in QT applications). The figure shows a fitting of
the dashed curve of Fig. 4(a) with a stretched exponential
function. The fitting curve’s parameters are the Hahn-echo
decoherence time and the stretching factor, whose optimal
values are T2 = 1.13 ms and n = 2.38, respectively. Similar
values of the decay parameters (T2 = 1.16 ms and n = 2.05)
have been derived by means of a CCE2 calculation of the
Hahn-echo protocol generalized to the S = 3

2 spin state of
V−1

Si (see Appendix D). Thus, the decoherence times of both
V0

Si and V−1
Si in 3C-SiC have the same order of magnitude

as the ones associated to NV centers in diamond [53] and
divacancies in 4H-SiC [9] . Moreover, although the optical
initialization and readout of spin states for our defect is not
remotely close to the level of sophistication for, e.g., NV
centers in SiC [54], we hope that our work will encourage
experimental analyses in this direction. Due to the presence of
a stretching factor, we demonstrate that also for a VSi in 3C-
SiC the decay of the coherence envelope is not exponential,
which is a typical behavior for qubits in NMR and EPR and in
general in the solid state. As a matter of fact, this also happens
for superconducting qubits, which are usually subjected to
1/ f -type noise from the environment [20].

Then, we have used the ab initio calculated values of the
hyperfine tensor components listed in Table I in our CCE

FIG. 5. Hahn echo evaluated with CCE2 with semiclassical
[Eq. (7)] and ab initio (Table I) hyperfine tensor components: ab-
solute value of the coherence of a neutral VSi in 3C-SiC as a function
of free-evolution time, for an external magnetic field of 200 G. The
result is averaged over 50 different baths.

code. The comparison of the resulting coherence curve with
the semiclassical one, for an external applied magnetic field
of 200 G, is shown in Fig. 5. The main difference is in the
modulation effect, whereas the decay, and hence the decoher-
ence time, is almost unchanged. Again, doing the comparison
with FID we see that spin-echo protocols are more robust
against the hyperfine tensor components change due to the
ab initio calibration. This is due to the refocusing π pulse
that lifts the dependence on one-body interactions, which are
more affected by the ab initio calibration. This is in turn
due to there being way more one-body interactions where the
electron-nuclear spin distance is such that the ab initio value is
used as opposed to two-body interactions where both nuclear
spins are close enough to require the ab initio calibration.
This behavior is understood by looking at Eq. (27), for which
a similar reasoning used in the passage from Eqs. (14) to
(18) can be applied to analytically calculate the modulation
frequencies. Those frequencies depend both on the single
nuclear spin Larmor frequencies and the hyperfine tensor
components through 
Ii . Therefore, if any of the 50 random
baths in a given simulation happen to have a nuclear spin
in the first- or second-neighbor shell, the hyperfine tensor
components entering Eq. (27), and thereby the modulations
of the coherence, will be modified. We find the change of the
modulation frequencies by using the ab initio calibration to
be of the same order of magnitude as in the FID case (see the
last paragraph of the previous subsection). As for the decoher-
ence effect, which is at least caused by two-body interactions
between nuclear spins (it appears at least at the CCE2 level),
the probability of having two nuclear spins in the first- and
second-neighbor shells is less than the probability of having
just one, thus conditioning less the coherence decay. This is a
consequence of the chosen numerical random bath-generating
procedure.

III. DISCUSSION

In this section we summarize the findings of our work. We
have employed ab initio methods to calculate the formation
energy and the magnetic parameters of a neutral and charged
VSi in 3C-SiC, indicating the stability of the less-studied
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neutral charge state of the VSi for energies near to the valence
band maximum, particularly in the presence of the monopole
correction term, whose effect is to widen the electrochemical
potential range over which this stability holds. We have per-
formed magnetic calculations for the V0

Si and V−1
Si in 3C-SiC

and for the V0
Si in 4H-SiC in order to compare the results on

the hyperfine tensor components in several cases, finding a
significant deviation with respect to the semiclassical values
of the model parameters obtained with Eq. (7). We have
studied both Hahn spin echo and FID as protocols applied to
our V0

Si qubit, finding the equations [Eqs. (13) and (14)] that
describe FID when the nuclear spins are noninteracting with
each other. By appropriately rewriting these equations, we
have been able to analytically calculate, at the CCE1 level, the
FID modulation frequencies and directly associate them to the
Hamiltonian eigenvalues, and hence to the system’s magnetic
parameters. Furthermore, by applying the CCE theory, we
have shed some light on the ESEEM phenomenon and the de-
coherence of the qubit, after applying the FID and Hahn-echo
processes. We calculated the Hahn-echo decoherence time
associated to a V0

Si and V−1
Si in 3C-SiC to be in the ms range,

thus gaining at least two orders of magnitude with respect to
FID. We have also evaluated the nonexponential character of
the coherence decay, which is typical for qubits in solid-state
devices. Finally, for the spin echo we have demonstrated that
modeling the three-dimensional distribution of the defect’s
spin density in our CCE simulations has an effect on the
coherence modulations (ESEEM), but not as much on the
decoherence effect, which is important for QT applications.
For the FID process the effect is instead more pronounced.
This is due to the FID process being dominated by one-body
interactions between the qubit and the nuclear spins in the
bath, and to these interactions being more affected by the
ab initio calibration than the two-body ones between nuclear
spins.

IV. METHODS

A. Ab initio calculations

In this study we have used the QUANTUM ESPRESSO (QE)
code [17] for calculating total energies and magnetic proper-
ties of the VSi in 3C-SiC and 4H-SiC. For the cubic polytype
we considered a 7 × 7 × 7 3C-SiC supercell starting from
a primitive fcc (face-centered-cubic) unit cell, containing
686 atoms, for the calculation of the formation energy [36],
whereas a 6 × 6 × 6 supercell, containing 432 atoms, was
employed for the evaluation of the EPR-related parameters
like the hyperfine and ZFS tensor components. Hexagonal
systems were studied in 5 × 5 × 2 supercells. We used the
Perdew-Burke-Ernzerhof implementation [33] of the gen-
eralized gradient approximation for the description of the
exchange-correlation functional. Ultrasoft pseudopotentials
[55] were used for standard ground-state properties, whereas
hyperfine interactions and ZFS tensors were computed with
norm-conserving pseudopotentials [56], as the latter showed
a better agreement with respective experimental results [38].
The formation energy was evaluated for the VSi in various
charged configurations considering a noncollinear scheme for
the magnetization. EPR calculations were instead performed

by using a collinear magnetization along the [001] lattice
direction, in order to better comply with usual experimental
setups, where the external magnetic field is applied along
the growth direction (which coincides with the [001] crystal
direction for most 3C-SiC growths [7]). Convergence was
achieved with an asymmetric 3 × 3 × 3 k-point grid [57] hav-
ing an offset with respect to the � point. Upon completion of
the DFT calculations, the QE wave functions were used as an
input in the QE gauge-including projector augmented-wave
(QE-GIPAW) code [18,35], to calculate the hyperfine tensor
components describing the VSi-nuclear spin interaction. The
spin density in the vicinity of the nucleus was evaluated by ap-
plying a transformation that reconstructs the all-electron wave
functions in the core regions [58], followed by a first-order
perturbation theory approach in which the perturbing potential
is a functional of charge and spin densities (considering only
its exchange part). This procedure, implemented in the GIPAW

code [59], is particularly important for the calculation of the
Fermi-contact term of the hyperfine tensor. In addition, QE
wave functions were used to calculate the ZFS tensor compo-
nents with the aid of the PYZFS code [41]. Finally, in order to
better understand if the stacking sequence of the SiC polytype
has important implications in the magnetic properties of the
defect, hyperfine tensor calculations were also performed for
a neutral VSi in hexagonal 4H-SiC (for both k and h sites).

B. CCE theory

In 3C-SiC samples there are thousands of paramagnetic
nuclear spins, each of which exerts an influence on our qubit.
In order to deal with nuclear spins in large baths, various theo-
ries have been introduced in the literature. Among them, CCE
theory is particularly useful to calculate the qubit’s coherence,
which is our objective. CCE theory has been developed in
Ref. [24] and is perfectly suited for qubits experiencing ran-
dom interactions within a bath of finite size. As a matter of
fact, whenever there are few nuclear spins in the bath, the
qubit may not complete its decoherence within the nuclear
spin flip-flop time and higher-order cluster correlations (cf.
Fig. 6) could be necessary to model the dynamics. In this
case, among the various theories developed such as the den-
sity matrix cluster expansion (CE) [60], the pair-correlation
approximation [61] and the linked-cluster expansion (LCE)
[62], only the CCE converges to the exact coherent dynamics
of clusters containing multiple spins. In particular, a cluster in
this context is defined as a group of fully interacting nuclear
spins. CCE theory owes its high convergence property to the
fact that it is a bridge between the LCE and CE approaches.
One is not required to evaluate Feynman diagrams and is
simultaneously free from the large-bath restriction of the CE.
However, typically CCE theory does not converge whenever
its N th truncation, or CCEN (see below), is not sufficient to
model the dynamics. In this case, a small term in the recursive
expansion in the denominator of Eq. (31) below is not bal-
anced by a similar next-order term in the numerator and the
final result blows up, thus lying outside of the expected range
for coherence. The coherent dynamics of finite clusters of
nuclear spins in the bath is of special interest in systems with
random couplings between the qubit and bath. Interesting ex-
amples are nitrogen-vacancy (NV) centers in diamond and VSi
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29Si 13C Interaction

(a) (b)

Cluster

FIG. 6. Functioning scheme of the CCE theory, for a generic
bath in 3C-SiC containing two 29Si nuclear spins (in red) and two
13C nuclear spins (in blue). The spins are in general all interacting
with each other via the last term of Eq. (1) and are represented
in the up or down states with respect to the magnetic field axis.
(a) CCE1 approximation in which clusters contain a single nuclear
spin. (b) CCE2 approximation containing also two-dimensional clus-
ters (for simplicity only one is shown).

in SiC, which are magnetically coupled to randomly located
nuclear spins in the vicinity. For such systems, the analysis
in Ref. [61] taking into account only pair correlations is not
sufficient, e.g., to describe free evolution, which is governed
by singular interactions between the qubit and the nuclear
spins. CCE theory has the advantage of being in principle
exact, while simultaneously being of great practical utility as
an approximation scheme whenever many-body correlations
within the bath are not relevant and being more flexible than
pair-correlation approaches when higher-order correlations
are needed.

In the CCE theory the spin baths are considered in a
thermal equilibrium state at t = 0 [24]. At the typical ex-
perimental temperatures of ∼10 K [9,30], it is reasonable to
consider a completely randomized bath. In our CCE code we
use the mixed state

ρB(0) =
N⊗

i=1

Ii

2
, (29)

where Ii is the ith nuclear spin identity operator. Further-
more, in order to obtain a correct statistical sampling of the
random bath-generating procedure, we calculate the qubit
coherence as an average of the coherences associated to N
different random baths, or N different realizations of the
numerical procedure. Hence, in calculating the qubit coher-
ence we confirmed that the converged value [9] for N in our
simulations is N = 50 (see Appendix A). In the generation
of the random baths, other numerical parameters whose con-
vergence is necessary are the radius of the spherical bath,
Rbath, and the distance between nuclear spins beyond which
they are no longer interacting, or nuclear spin connectivity
rdipole. The converged values for these parameters (Ap-
pendix A) are found to be Rbath = 5 nm and rdipole = 0.8 nm,
as in Ref. [9].

Once all of this is taken care of, we have implemented CCE
theory through the equations [63]

ρC (t ) = UCρC (0)U †
C , (30)

L̃{C} = L{C}(t )∏
C′ L̃{C′⊂C}

, (31)

L(t ) = L̃{0}
∏

i

L̃{i}
∏
i, j

L̃{i j} . . . . (32)

Equation (30) describes the dynamics of the density matrix of
the qubit interacting with a given cluster of nuclear spins C,
the Hamiltonian in the time-evolution operator UC being given
by Eq. (1) restricted to the sole presence of the nuclear spins
within cluster C. Equation (30) enters in Eq. (31) through
L{C}(t ), which can be written as

L{C}(t ) = tr{ρC (t )S+}
tr{ρC (0)S+} . (33)

Equation (31) describes the contribution of cluster C to the
coherence. Since the clusters are uncorrelated, the coherence
in Eq. (32) is defined as the product of each cluster’s contribu-
tion. As a consequence, we can stop the expansion in Eq. (32)
at a given order of approximation of the theory, which is
represented by the number of nuclear spins within the largest
clusters we choose to divide the bath in. Therefore, CCEN is
the implementation of CCE theory where the biggest clusters
we consider contain N different nuclear spins. In this paper
we focus exclusively on the CCE1 and CCE2 approaches,
with clusters containing single and interacting pairs of nuclear
spins, respectively (see Fig. 6 for the functioning scheme of
the CCE1 and CCE2 approaches).
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APPENDIX A: CONVERGENCE AND CHOICE
OF PARAMETERS

In this Appendix we present results on the convergence of
the parameters of our simulations. Figure 7(a) shows the de-
pendence of the coherence on the axial component D in a FID
process when the transversal component E of the ZFS tensor
is absent. These results are obtained with the PYCCE code
[64]. Figure 7(b) shows that the presence of E = −0.41 MHz
value for the transversal component only marginally changes
the result. Hence, our choice of neglecting E is justified and
further validates the ab initio findings. In Fig. 8 we study the
dependence of the coherence on the radius of the spherical
bath Rbath at the CCE1 level, which is sufficient for analyzing
the FID. The figure shows that already for a bath with a radius
of dimension Rbath = 2.5 nm the result is almost completely
converged, justifying our choice of Rbath = 5 nm. Figure 9
shows the dependence of the coherence on the number of
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(a) (b)

FIG. 7. CCE2 absolute value of the coherence of a neutral VSi

in 3C-SiC as a function of free-evolution time, with different val-
ues for the axial component D of the ZFS tensor, for an external
magnetic field of 500 G. The dynamics implemented is a free evolu-
tion, or FID process, and the results are averaged over 50 different
baths. (a) The transversal component E of the ZFS tensor is ab-
sent. (b) The transversal component E of the ZFS tensor is present
(E = −0.41 MHz). The curves are obtained with the PYCCE code
[64].

realizations of the bath N, again at the CCE1 level and for
a reduced bath of Rbath = 4 nm. Note that already a mean
over 50 different baths is sufficient to obtain a reasonably
well-converged coherence curve, which is why we choose
N = 50 in the main body of the paper.

Finally, in Fig. 10 we compare the FID curves from
Fig. 3(a) with similar ones obtained by introducing a 20%
modification of the hyperfine tensor due to a slight core spin-
polarization correction. We see that the qualitative effect on
the absolute value of the FID coherence is marginal. Conse-
quently, it is not observable in the Hahn-echo process which
is shielded from the nuclear spin bath.

APPENDIX B: INDUCTION CONSIDERATIONS

In this Appendix we give a nonrigorous derivation of
Eq. (19) of the main text, starting from Eq. (15), by exploiting
induction considerations. We consider the case where there is
a single nuclear spin in our bath, i.e., n = 1. In this case, by
using trigonometric formulas, Eq. (15) can be written as

�1(τ ) = 1

2

{
SI1 cos

[(
ωI1

2
− 
I1

2

)
τ

]

+ DI1 cos

[(
ωI1

2
+ 
I1

2

)
τ

]}
, (B1)

(a) (b)

FIG. 8. CCE1 absolute value of the coherence of a neutral VSi

in 3C-SiC as a function of free-evolution time, with different values
for the radius of the spherical bath Rbath, for an external magnetic
field of 340 G (a) and 500 G (b). The dynamics implemented is a
free evolution, or FID process, and the results are averaged over 50
different baths.

(a) (b)

FIG. 9. CCE1 absolute value of the coherence of a neutral VSi

in 3C-SiC as a function of free-evolution time, with different values
for the number of bath realizations N , for an external magnetic field
of 500 G. The dynamics implemented is a free evolution, or FID
process, and the radius of the spherical bath is Rbath = 4 nm. (a) The
hyperfine tensor components are calculated via Eq. (7) of the main
text. (b) The hyperfine tensor components are calculated via ab initio
methods based on DFT (Table I of the main text).

and thus we have two terms and two modulation frequencies,
one for each term. In the case n = 2 we have instead four
terms and eight modulation frequencies, two for each term,
as it can be seen by the following formula:

�2 = 1

8

{
SI1 SI2

[
cos

[(
ωI1

2
− 
I1

2
+ ωI2

2
− 
I2

2

)
τ

]

+ cos

[(
ωI1

2
− 
I1

2
− ωI2

2
+ 
I2

2

)
τ

]]

+ SI1 DI2

[
cos

[(
ωI1

2
− 
I1

2
+ ωI2

2
+ 
I2

2

)
τ

]

+ cos

[(
ωI1

2
− 
I1

2
− ωI2

2
− 
I2

2

)
τ

]]

+ DI1 SI2

[
cos

[(
ωI1

2
+ 
I1

2
+ ωI2

2
− 
I2

2

)
τ

]

FIG. 10. FID evaluated with CCE2 with semiclassical and ab
initio hyperfine tensor components: absolute value of the coherence
of a neutral VSi in 3C-SiC as a function of free-evolution time, for
an external magnetic field of 200 G. The result is averaged over 50
different baths. In the dashed and dotted curves the hyperfine tensor
has been varied by 20%.

022603-10



STABILITY AND DECOHERENCE ANALYSIS … PHYSICAL REVIEW A 109, 022603 (2024)

+ cos

[(
ωI1

2
+ 
I1

2
− ωI2

2
+ 
I2

2

)
τ

]]

+ DI1 DI2

[
cos

[(
ωI1

2
+ 
I1

2
+ ωI2

2
+ 
I2

2

)
τ

]

+ cos

[(
ωI1

2
+ 
I1

2
− ωI2

2
− 
I2

2

)
τ

]]}
. (B2)

By analyzing Eqs. (B1) and (B2) we find some common
behavior that allows to infer the form of the equation valid in
the general n = N case to be exactly Eq. (19). Furthermore,
in the general case we have 2N terms and 22N−1 modulation
frequencies, 2N−1 for each term. The number of terms and
the number of frequencies per term are not random, and can
be understood, or counted, as the number of ways in which
we can dispose N elements from a set of 2 elements, where
the same element can be repeated at most N times (they are
thus called dispositions with repetitions). For what concerns
the number of terms we have to dispose N elements from
the set of values {SIi , DIi} they can take, with a maximum of
N possible repetitions. The number of these dispositions is
precisely 2N . Instead, for the number of frequencies per term
we have to dispose N − 1 pairs of elements (pairs of signs),
all but the first one, from the set of values {+,−} they can
take, with a maximum of N − 1 possible repetitions, fixing at
the same time the first pair to a (+−) if the term they are
multiplied by starts with an S or to a (++) if the term they
are multiplied by starts with a D. Since the cosine is an even
function, we can make the opposite choice, S −→ (−+) and
D −→ (−−), but also in this case the rules remain the same
and nothing changes.

Finally, we give the version of Eq. (18) in which also the
cos(ω1τ ) term is put inside of �N , i.e.,

〈Sy〉 = 1

22N

{
SI1 . . . SIN [(− + − + · · · − +)

+ · · · + (− + + − · · · + −)

+ (+ − − + · · · − +) + · · · + (+ − + − · · · + −)]

+ SI1 . . . DIN [(− + · · · − + − −)

+ · · · + (+ − · · · + − − −)

+ (− + · · · − + + +) + · · ·
+ (+ − · · · + − + +)] + · · ·
+ SI1 . . . DIi . . . DIN [(− + · · · − − · · · − −)

+ · · · + (+ − · · · − − · · · + +)

+ (− + · · · + + · · · − −)

+ · · · + (+ − · · · + + · · · + +)] + · · ·
+ DI1 . . . DIN [(− − − − · · · − −)

+ · · · + (− − + + · · · + +)

+ (+ + − − · · · − −) + · · ·
+ (+ + + + · · · + +)]

}
, (B3)

where now a new notation is used,

(+ − · · · + −) ≡ cos
[
(ω1 + ωI1/2 − 
I1/2 + · · ·

+ ωIN /2 − 
IN /2)τ
]
. (B4)

In this case there are 22N modulation frequencies, thus
their number is doubled in size, as noticed in the main text.
Furthermore, each of the final modulation frequencies appear-
ing in Eq. (B3) can be written as a linear combination of
the eigenvalues of the pure-dephasing Hamiltonian, given in
Eq. (1), in the CCE1 case (see Appendix C).

Now, an interesting calculation to perform is the one in-
volving the modulation frequencies, which can be analytically
obtained through Eq. (19), in a specific case. The Fourier
transform of the signal in time, given in Eq. (19), is easily
obtained and can be written as

�̃N (ω) = π

22N−1

{
SI1 . . . SIN [[+ − + − · · · + −]

+ [− + − + · · · − +] + · · ·
+ [+ − − + · · · − +] + [− + + − · · · + −]]

+ SI1 . . . DIN [[+ − + − · · · + +]

+ [− + − + · · · − −] + · · ·
+ [+ − − + · · · − −]+[− + + − · · · + +]]+ · · ·
+ SI1 . . . DIi . . . DIN [[+ − · · · + + · · · + +]

+ [− + · · · − − · · · − −] + · · ·
+ [+ − · · · − − · · · − −]

+ [− + · · · + + · · · + +]]

+ · · · + DI1 . . . DIN [[+ + + + · · · + +]

+ [− − − − · · · − −] + · · ·
+ [+ + − − · · · − −] + [− − + + · · · + +]]

}
,

(B5)

where now, each term inside the curly brackets is multiplied
by a sum of Dirac delta functions, and we have introduced the
notation

[+ − · · · + −] ≡ δ
[
ω + ωI1/2 − 
I1/2 + · · ·

+ ωIN /2 − 
IN /2
]
. (B6)

In passing from Eqs. (19) to (B5), we have used the known
result

F[cos(ω0t )] = π (δ[ω + ω0] + δ[ω − ω0]). (B7)

By examining the signal in frequency, given in Eq. (B5), we
see that the Fourier transform will display deltalike peaks
in correspondence to each modulation frequency inside the
arguments of the delta functions. To exemplify this by means
of an example, we report in Fig. 11 the imaginary part
of the FID time signal of a V0

Si interacting with a single
29Si nucleus in the second-neighbor shell, for simplicity, and
its normalized Fourier transform obtained via a numerical
fast Fourier transform (FFT) algorithm. Since in this case
N = 1, the modulation frequencies are 4 and are quantita-
tively predicted by Eq. (B3) to be 0.9448, 0.9576, 0.9574,
and 0.9451 GHz, respectively. The relative amplitude of the
central peaks is given by (1 − ωI +A


I
)/(1 + ωI +A


I
) = 0.27 [see

Fig. 11(b)]. Even though Eq. (B3) can be used to find the
modulation frequencies displayed in Fig. 3, a graphical de-
piction of the peaks of the corresponding Fourier transform
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(a) (b)

FIG. 11. FID evaluated with CCE1 with ab initio hyperfine ten-
sor components: (a) Imaginary part of the coherence of a neutral
VSi in 3C-SiC as a function of free-evolution time, for an external
magnetic field of 340 G. The bath contains a single 29Si nucleus in
the second-neighbor shell. (b) Normalized Fourier transform of the
signal in the time domain obtained via a numerical FFT algorithm.

as in Fig. 11(b) is impractical due to the presence of ∼23000

of them for an entire nuclear spin bath. Furthermore, most
of them would not be visible due to the reduced resolution
necessary to in principle show all of them in the horizontal
axis and the ever-decreasing relative amplitudes of the central
peaks. In this sense, the example in Fig. 11 is extremely useful
as a proof of principle of Eq. (B3) in that it shows all the
frequencies predicted as peaks in the corresponding Fourier
transform in a simple case. Once we have demonstrated the
reliability of Eq. (B3) through the example in Fig. 11 and how

we have obtained it, we can proceed towards its application
to finding the dominant frequencies of the curves in Fig. 3.
We already know that the dominant frequencies, the ones
represented by peaks with unitary amplitude in the FFT, are
multiplied by the term SS . . . S (the first term) since after
normalization they are multiplied by 1 and the others by a
number between 0 and 1. As we detail in this Appendix, these
frequencies are 2N (∼21500 for a full bath). One of them, the
others being very close, differing in the second decimal place
[see Fig. 11(b)], is contained in the term (+ − + − · · · + −),
i.e.,

ωdom =ω1 + ωI1/2 − 
I1/2 + ωI2/2 − 
I2/2 + · · ·
+ ωIN /2 − 
IN /2. (B8)

APPENDIX C: MODULATION FREQUENCIES

In this Appendix we derive the modulation frequencies
from the FID subsection of the main text by following a
different approach. We start with the case of only one nuclear
spin in the bath, i.e., n = 1, and write the pure-dephasing
Hamiltonian (1) in this case,

H = DS2
z + γeBzSz + γ1BzSz + ASzIz + BSzIx. (C1)

The problem’s Hilbert space has dimension dim(H ) = 3 ×
2 = 6, so that the matrix representing Hamiltonian (C1) is a
6 × 6 one. We report the matrix in the following:

⎛
⎜⎜⎜⎜⎜⎜⎝

ω1 + ωI
2 + A

2 B/2 0 0 0 0
B/2 ω1 − ωI

2 − A
2 0 0 0 0

0 0 ωI
2 0 0 0

0 0 0 −ωI
2 0 0

0 0 0 0 ω−1 + ωI
2 − A

2 −B/2
0 0 0 0 −B/2 ω−1 − ωI

2 + A
2

⎞
⎟⎟⎟⎟⎟⎟⎠

. (C2)

This is a block-diagonal matrix with three quadrants, one for
each of the three electron spin’s energy levels. Consequently,
the third quadrant is of no interest for us, whereas the second
one is already diagonal. It is required to diagonalize the first
quadrant to be able to write the first four eigenvalues, which
are given by

ω1 + 
I

2
= E1, (C3)

ω1 − 
I

2
= E2, (C4)

ωI

2
= E3, (C5)

−ωI

2
= E4, (C6)

where 
I is defined in Eq. (16) of the main text. Now, from
Eq. (B3) we have the 22N , in this case 4, modulation frequen-
cies, which are the following:

ω1 − ωI

2
+ 
I

2
= E1 + E4, (C7)

ω1 + ωI

2
− 
I

2
= E2 + E3, (C8)

ω1 − ωI

2
− 
I

2
= E2 + E4, (C9)

ω1 + ωI

2
+ 
I

2
= E1 + E3. (C10)

Equations (C7)–(C10) are the relations regarding the modula-
tion frequencies and our system’s eigenenergies. Furthermore,
analogous relations valid in the case n = N can be easily
obtained by using induction considerations.

APPENDIX D: CCE2-BASED ESTIMATE OF T2 FOR
NEGATIVELY CHARGED SI VACANCY IN 3C-SiC

Here we evaluate the coherence decay for a negatively
charged VSi in 3C-SiC by applying the same Hahn-echo pro-
tocol discussed in Sec. II E of the main text. In this case the
initial state dynamics is a superposition of the {|1/2〉, |3/2〉}
eigenstates of the Sz spin operator

|�〉 = 1√
2

(|3/2〉 + i|1/2〉), (D1)

and the qubit dynamics occur in the corresponding subset
of the Sz. Figure 12 shows the qubit coherence calculated at
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FIG. 12. Hahn echo evaluated with CCE2 ab initio hyperfine tensor components (see Table II in the main text): absolute value of the
coherence of a negatively charged VSi in 3C-SiC as a function of free-evolution time, for an external magnetic field of 200 G. The result is
averaged over 50 different baths.

the CCE2 level of the theory as a function of free-evolution
time for an external magnetic field of 200 G. We used the
ab initio estimates for the hyperfine tensor components for
nuclear spins in the first- and second-neighbor shells reported
in Table II of the main text, which are different with respect to
the same quantities calculated for the neutral defect. In addi-
tion, we notice in this case that due to the two Sz eigenvalues
which are not null, the spin modulation is ruled by two shifted

frequencies with respect to the Larmor one [49]. Therefore,
the dynamics and the interactions with the nuclear spins are
intrinsically different with respect to the S = 1 neutral defect.
As a consequence, the coherence decay seems to show two
time components. Anyway, if we extract the slower one with a
stretched exponential function we can estimate optimal values
of T2 = 1.16 ms and n = 2.05, respectively, which are very
similar to the ones derived for the V0

Si defect.
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