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Cavity-magnon systems are emerging as a fruitful architecture for the integration of quantum technologies and
spintronic technologies, where magnons are coupled to microwave photons via the magnetic-dipole interaction.
Controllable, the photon-magnon (P-M) couplings provide a powerful means of accessing and manipulating
quantum states in such hybrid systems. Thus, determining the relevant P-M couplings is a fundamental task. Here
we address the quantum estimation problem for the P-M coupling strength in a double-cavity-magnon system
with drive and dissipation. The effects of various physical factors on the estimation precision are investigated
and the underlying physical mechanisms are discussed in detail. Considering that in practical experiments it is
almost infeasible to perform measurements on the global quantum state of this composite system, we identify
the optimal subsystem for performing measurements and estimations. Further, we evaluate the performance of
different Gaussian measurements, indicating that optimal Gaussian measurement almost saturates the ultimate
theoretical bound on the estimation precision given by the quantum Fisher information.
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I. INTRODUCTION

In the field of quantum optics, the electric-dipole interac-
tion of electromagnetic fields with matter is widely studied,
while the magnetic-dipole interaction is often neglected [1,2].
This is because in most cases, the electric-dipole interaction is
much stronger than the magnetic-dipole one. However, when
electromagnetic fields interact with magnetic materials with
very high electron spin density, the magnetic-dipole inter-
action dominates [3]. Yttrium iron garnet (YIG) crystals, a
class of ferrimagnetic materials with low-loss and high-spin
density, have attracted much attention in recent years [4–7].
In particular, the magnon modes excited in YIG crystals and
microwave photons can realize the cavity-magnon polaritons
and the vacuum Rabi splitting [8,9], which induced the cre-
ation of cavity-magnon systems that brought quantum optics
and magnetism researchers together to develop the integration
of quantum physics and spintronic technologies [4].

The photon-magnon (P-M) coupling induced by the
magnetic-dipole interaction in the cavity-magnon system
links some of the most exciting concepts in modern physics
and has been experimentally implemented [4–6]. More re-
cently, many interesting quantum effects have been studied
based on such hybrid systems, including the magnon-photon
(magnon) entanglement [10–14], magnon chaos [15,16],
magnon blocking [17,18], magnon-induced transparency
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[19–21], bistability [22–24], and Kerr effect [20,25,26], to
name a few. Importantly, these phenomena are closely re-
lated to the magnetic-dipole interaction strength. A recent
review article compared the cavity-magnon systems of dif-
ferent structures, giving different ranges of values for their
P-M coupling strengths [4]. From a theoretical viewpoint,
grasping the P-M coupling requires simultaneous solving of
Maxwell’s equations and the Landau-Lifshitz-Gilbert equa-
tion [4,27]. Additionally, exploring the P-M coupling is also
key to building hybrid cavity-magnon systems for quantum
communication technology and realizing potential docking
with quantum information science. Consequently, accurate
knowledge of the P-M coupling strength is an essential task,
extremely important both for understanding magnetic-dipole
interaction and for technical applications, and determines the
depth of exploration in the cavity-magnonics field. However,
the direct measurement of P-M coupling strength is a huge
challenge, costly and even impossible to achieve. A wise
choice is to indirectly estimate the P-M coupling strength
from experimental data on other readily measurable observ-
ables, i.e., by resorting to the quantum estimation theory
(QET) [28–30]. Particularly, this idea has been applied for
the estimating coupling strength both for light-matter interac-
tions (Rabi frequency) [31–36] and optomechanical systems
[37–43].

In recent years, the double-cavity systems have received
increasing attention because the auxiliary cavity can facili-
tate the enhancement or realization of some quantum effects.
Examples include facilitating optomechanical ground-state
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cooling in the unresolved-sideband regime [44], enabling
phonon detection in the optomechanical weak coupling
regime, and constructing PT -symmetric systems such as bal-
anced gain-loss coupled cavities [45,46]. It is worth noting
that some researchers have also integrated double-cavity sys-
tem with YIG sphere recently, indicating that the auxiliary
cavity can enhance the cavity-magnon quantum correlation
[47–50], realize nonreciprocal amplification [51], and control-
lable quantum phase transition [52]. Naturally, a reasonable
prediction is that the auxiliary cavity might be able to assist
the parameter estimation task under some conditions.

With such motivations in mind, in this work, we exploit the
quantum Fisher information (QFI) [53,54] and classical Fisher
information (CFI) [28] to investigate the estimation precision
limits and measurement strategy of the P-M coupling strength
in a driven-dissipative double-cavity-magnon system, where
the primary cavity mode is individually coupled to magnon
and an auxiliary cavity mode. We explore the effect of var-
ious factors such as temperature, loss rate, driving power,
and detuning on the estimation precision limit. Remarkably,
in comparison with the auxiliary cavity unassisted case, we
find that the estimation precision can be greatly improved
by appropriately designing the photon tunneling rate. More-
over, selecting appropriate Kerr nonlinear coefficients of the
magnon can also reduce estimation errors and facilitate pa-
rameter estimation tasks. Although the fingerprint of the P-M
coupling strength is left in the global state of the system,
in practical measurements it is almost impossible to access
the entire system. To this end, we also investigated how the
information about the P-M coupling is distributed in each
subsystem. The results show that within most of the given
parameter regimes, the primary cavity mode is the optimal
subsystem for estimating the P-M coupling strength. Further,
we considered performing practically Gaussian measurements
on it, exploring how much information about the P-M cou-
pling strength can be experimentally extracted.

This paper is organized as follows. In Sec. II, we introduce
the driven-dissipative double-cavity-magnon system used to
estimate the P-M coupling strength and its steady-state and
quantum fluctuations are then derived by the quantum master
equation. In Sec. III, we numerically examine the influence of
various factors on the estimation error and identify the optimal
subsystem for estimating the P-M coupling parameter, and
further explore the performance of several Gaussian measure-
ment strategies. The last section discusses the feasibility of the
experiment and concludes this article. In Appendix A, the P-M
coupling interaction between the magnons and microwave
photons is derived. The stability conditions of the system are
given in Appendix B. In Appendix C, we briefly review some
basic formalism about the parameter estimation of Gaussian
states, including QFI calculations for Gaussian states and
the form of CFI under several Gaussian measurements.
Appendix D provides the normal mode picture of the system.

II. THEORETICAL MODEL AND DYNAMICAL ANALYSIS

A. The model

The double-cavity-magnon system we proposed, sketched
in Fig. 1, consists of a highly polished micrometer-scale YIG

FIG. 1. (a) Diagrammatic representation of the driven-dissipative
double-cavity-magnon system. The cavity 2 is driven by a left inci-
dent microwave field. Two cavity modes are coupled through photon
tunneling. The YIG sphere in the cavity 2 is magnetized to saturation
by an external bias magnetic field HB aligned along the Z direc-
tion, which results in the excited magnon modes in the YIG sphere
coupled to the cavity modes 2 via the P-M coupling interaction.
(b) The diagram of interactions among subsystems in such a hybrid
cavity-magnon system.

sphere and two three-dimensional (3D) copper microwave
cavities, where the YIG sphere is trapped in the primary cavity
2 and the cavity 1 serves as an auxiliary cavity. The two
cavity modes are coupled to each other by a photon tunneling
interaction with a hopping rate J . In realistic systems, it can
be realized through optical backscattering, which depends on
the material defects and surface roughness in experimental
devices [55]. Under the action of external static-uniform bias
magnetic field HB along the Z axis, the YIG sphere will excite
many magnons, and the magnon modes exhibit uniform spin
precession in the YIG sphere [4–6]. At the same time, the
Kerr nonlinear effect of the magnons is also induced owing
to the magnetocrystalline anisotropy [4–6]. In addition, the
magnon mode will couple with the cavity mode 2 via the
beam-splitter-like P-M coupling with coupling strength g.

Here, the P-M coupling rate g is the physical parameter
we are interested in, i.e., the parameter to be estimated. We
consider a microwave field along the Y axis with the power Pl

and the frequency ωl to directly drive the cavity 2. As such,
the total Hamiltonian of the hybrid cavity-magnon system can
be written as [5,6] (we set h̄ = 1 hereafter)

Ĥ = ωa1 â†
1â1 + ωa2 â†

2â2 + ωmm̂†m̂ + Km̂†m̂m̂†m̂

+ J (â†
1â2 + â1â†

2) + g(â†
2m̂ + â2m̂†)

+ iEl (â
†
2e−iωl t − â2eiωl t ), (1)

where â†
1 (â†

2) and â1 (â2) denote the bosonic creation and an-
nihilation operators for the two cavity modes with frequency
ωa1 and ωa2 , respectively. m̂† (m̂) being the creation (annihi-
lation) operator for the magnon mode with frequency ωm =
γeHB − 2μ0Kanγ

2
e S/VmM2

b [4–6], here γe/2π = 28 GHz/T is
the gyromagnetic ratio for electron (for other parameters see
Appendix A). The fourth item refers to the magnon Kerr effect
with Kerr nonlinear coefficient K . The fifth and sixth items
refer to the photon-photon hopping and the P-M (magnetic-
dipole) interaction, respectively. The last term represents the
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driving to the cavity mode 2 by the microwave field. El =√
γa2 Pl/ωl being the amplitude of driving field, in which γa2

is the total linewidth of cavity mode 2. In addition, as in many
theoretical or experimental articles [22–26], in Eq. (1) we do
not include the magnetostrictive effect of YIG sphere because
it is very weak. On the other hand, the radiation pressure effect
of the microwave field on the YIG sphere is also ignored.
This stems from the fact that the size of the YIG sphere is
much smaller than the wavelength of microwave (e.g., the
wavelength of microwave with a frequency of 10 GHz is
approximately 3 cm which is much larger than the micrometer
scale of YIG sphere). The experimental frequency range of
cavity modes in the cavity-magnon system is on the order of
GHz, due to the lack of efficient THz radiation sources and
corresponding detection electronics [4].

Defining the vector of operators r̂ :=
[â1, â†

1, â2, â†
2, m̂, m̂†]T, the commutation relations between

the operators satisfy [r̂ j, r̂k] = � jk , where � reads as

� :=
3⊕

k=1

�, � :=
[

0 1
−1 0

]
. (2)

To eliminate the time factor in Eq. (1), the rotating frame
with respect to the frequency of the driving microwave ωl is
applied, and the Hamiltonian can be rewritten as

Ĥr = �a1 â†
1â1 + �a2 â†

2â2 + �mm̂†m̂ + Km̂†m̂m̂†m̂

+ J (â†
1â2 + â1â†

2) + g(â†
2m̂ + â2m̂†)

+ iEl (â
†
2 − â2), (3)

where �i = ωi − ωl (i = a1, a2, m) denotes the detuning of
driving microwave from the mode i, in which �i > 0 and
�i < 0 refer to red detuning and blue detuning, respectively.

B. Dynamical analysis

In addition to the driving term, also considering the envi-
ronment, the cavity modes’ losses and the magnon damping
will also be included in dynamic evolution. Our model is thus
essentially a driven-dissipative double-cavity-magnon system.
To describe the dynamical behavior of the system, one can
exploit the Lindblad master equation [56], i.e.,

d ρ̂(t )

dt
= −i[Ĥr, ρ̂(t )] +

6∑
i, j=1

	i j

2
[2r̂i ˆρ(t )r̂ j − {r̂ j r̂i, ρ̂(t )}],

(4)
where ρ̂(t ) denotes the density matrix of the system;
{r̂i, r̂ j} ∈ [{â1, â†

1}, {â2, â†
2}, {m̂, m̂†}] and {r̂i, r̂ j} ∈

[{â†
1, â1}, {â†

2, â2}, {m̂†, m̂}] represent the particle losses
and the phase-insensitive linear amplification processes,
respectively [56]; 	 = 	a1 ⊕ 	a2 ⊕ 	m being the damping
matrix, in which

	k=a1,a2,m =
[

0 γk[n(ωk ) + 1]
γkn(ωk ) 0

]
, (5)

where γk is the decay rate of mode k, and the Bose number
n(ωk ) = [exp(ωk/kBT ) − 1]−1 is the mean occupancy of the
mode k wherein T is the environment temperature and kB the
Boltzmann constant [57,58]. Notice that for optical frequen-
cies (about 10 THz ∼104 THz) n(ωa1,a2 ) can be ignored at

room temperature, however, due to the cavity modes under
consideration are at microwave frequencies, so n(ωa1,a2 ) can
be comparable to mean thermal magnon number n(ωm) [59].

Suppose the driving microwave field is relatively strong,
so each operator can be safely considered as a small quantum
fluctuation above a steady-state value [57,58], i.e.,

r̂ → 〈r̂0〉+δr̂, (6)

where 〈r̂0〉 = Tr[r̂ρ̂(∞)] denoting the vector of steady-state
averages and δr̂ is the quantum fluctuation vector around
the steady-state value. According to Eq. (4), the equation of
motion for the average value of an arbitrary operator Ô is
given by [56,60]

d〈Ô〉
dt

= −i〈[Ô, Ĥr]〉 +
6∑

i, j=1

	i j

2
〈[r̂ j, Ô]r̂i − r̂ j[r̂i, Ô]〉. (7)

Selecting Ô ∈ r̂i and setting d〈Ô〉/dt ≡ 0 for steady state
(t → ∞), one can get

〈â1〉 = −iJ〈â2〉
i�a1 + γa1

, (8)

〈â2〉 = (El − ig〈m̂〉)
(
i�a1 + γa1

)
(
i�a1 + γa1

)(
i�a2 + γa2

) + J2
, (9)

〈m̂〉 = −igEl
(
i�a1 + γa1

)
Q

[(
i�a1 + γa1

)(
i�a2 + γa2

) + J2
] , (10)

with

Q = i(�m + 2K|〈m̂〉|2 + K ) + γm

+ g2
(
i�a1 + γa1

)
(
i�a1 + γa1

)(
i�a2 + γa2

) + J2
. (11)

Correspondingly, the strong driving assumption of microwave
field is equivalent to the mean photon number of cavity mode
2 is large, i.e., |〈â2〉|2 
 1. Note that the system may exhibit
multiple steady-state solutions, e.g., Eq. (10) is a unary cubic
equation about the mean magnon number |〈m̂〉|2. In this work,
we only focus on parameter regimes in which the system does
not exhibit multistability.

Further, applying linearization approximation (6) to (4),
one can get the bilinear quantum master equation

d ρ̂(t )

dt
= − i[Ĥeff, ρ̂(t )]

+
6∑

i, j=1

	i j

2
[2δr̂i ˆρ(t )δr̂ j − {δr̂ jδr̂i, ρ̂(t )}] (12)

with linearized effective Hamiltonian

Ĥeff = �1δâ†
1δâ1 + �2δâ†

2δâ2 + �effδm̂†δm̂

+ K[〈m̂〉2δm̂†δm̂† + 〈m̂〉∗2
δm̂δm̂]

+ J (δâ†
1δâ2 + δâ1δâ†

2) + g(δâ†
2δm̂ + δâ2δm̂†), (13)

where only the quadratic order terms of fluctuations are re-
tained and �eff = �m + 4K|〈m̂〉|2 is the effective detuning of
magnon in the presence of the Kerr effect.

In particular, this work strongly relies on the framework of
Gaussian state, wherein it is convenient to model our system
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by dimensionless quadrature operators in the phase space.
Defining Hermitian quadrature operators [57,58]

Q̂o := (ô + ô†)/
√

2, (14)

P̂o := (ô − ô†)/
√

2i, (15)

where o = a1, a2, and m; the corresponding fluctuations are
δQ̂o and δP̂o. The Lyapunov equation for the steady-state
covariance matrix V can be obtained through Eq. (12), i.e.,

AV + VAT = −D, (16)

with

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

−γa1 �a1 0 J 0 0
−�a1 −γa1 −J 0 0 0

0 J −γa2 �a2 0 g
−J 0 −�a2 −γa2 −g 0
0 0 0 g + �+
0 0 −g 0 �− −

⎤
⎥⎥⎥⎥⎥⎥⎦

(17)

and

D = diag
{[

2n
(
ωa1

) + 1
]
γa1 ,

[
2n

(
ωa1

) + 1
]
γa1 ,[

2n
(
ωa2

) + 1
]
γa2 ,

[
2n

(
ωa2

) + 1
]
γa2 ,

[2n(ωm) + 1]γm, [2n(ωm) + 1]γm
}
, (18)

where A and D are the drift and diffusion matrices, respec-
tively; ± = −γm ± 2 Im(〈m̂〉2)K and �± = ±(�eff + K ) −
2 Re(〈m̂〉2)K .

The covariance matrix V ′s i j element are given by Vi j :=
〈δR̂i(∞)δR̂ j (∞) + δR̂ j (∞)δR̂i(∞)〉/2, where fluctuation
quadrature operator vector δR̂ := [δQ̂a1 , δP̂a1 , δQ̂a2 , δP̂a2 ,

δQ̂m, δP̂m]T is defined and satisfies commutation relations
[δR̂ j, δR̂k] = i� jk . This indicates that the steady second mo-
ment of the system is encoded on the covariance matrix V ,
formally

V :=

⎡
⎢⎣

La1 Ca1,a2 Ca1,m

CT
a2,a1

La2 Ca2,m

CT
m,a1

CT
m,a2

Lm

⎤
⎥⎦, (19)

where Li and Ci, j being a 2 × 2 subblock matrices of V (i, j =
a1, a2, m), they represent the local properties of mode i and
the quantum correlation between modes i and j, respectively.
Here, we emphasize that our current work requires the cavity-
magnon system to be in the stable region. We have selected
proper parameters to satisfy the specific stability condition
shown in Appendix B.

III. ESTIMATION OF PHOTON-MAGNON
COUPLING STRENGTH

With QFI, the precision limit of estimating the P-M cou-
pling strength g is quantified by the quantum Cramér-Rao
bound (QCRB) inequality, i.e. [28–30],

Var(ĝ) � 1

NFg
, (20)

where Var(ĝ) is the mean-square error of unbiased estimator;
N is the number of independent repetition of the estimation
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FIG. 2. The QFIs versus the microwave driving power at dif-
ferent environment temperatures T , where QFI for (a) the global
system, (b) the cavity mode 1, (c) the cavity mode 2, (d) the magnon
mode.

protocol. In practical experiments, it is more feasible to mea-
sure only one of the subsystems. The interaction between
subsystems leads to the transfer of interested parameter in-
formation between them. Thus, two questions naturally arise:
(1) What is the precision limit for estimating g based on each
subsystem? (2) Which is the optimal subsystem for estimating
g (defined as the subsystem that contains the most information
about g under the same conditions)?

In this section, we explore how various physical factors
affect the estimation precision of the P-M coupling rate,
such as the driving power Pl , the environment temperature
T , the dissipation rates of cavity modes and magnon mode,
the Kerr coefficient K , the photon tunneling rate J , the cav-
ity modes detuning �a, and the magnon detuning �m. We
then explore the optimal subsystem for estimating the P-M
coupling parameter. Finally, the performance of Gaussian
measurements performed on the optimal subsystem is eval-
uated. Particularly, in what follows, we obtain QFI mainly
through numerical simulations, as the analytical solution is
too cumbersome. Details of the Gaussian parameter esti-
mation in this hybrid system are provided in Appendix C.
For simplicity, we assume that the parameters of the two
cavities are completely consistent. Unless stated otherwise,
here and in what follows, the parameters are chosen as Pl =
500 mW, ωl = 2π × 10 GHz, T = 10 mK, γa1 = γa2 = γa =
2π × 5 MHz, γm = 2π × 40 MHz, �a1 = �a2 = �a = 2π ×
40 MHz, �m = 2π × 60 MHz, K = 2π × 2 μHz, J = 2π ×
26 MHz, g = 2π × 41 MHz, whose values are mostly based
on the latest experimental data [4–6,12,20,22].

A. Effect of power and temperature

As shown in Fig. 2, the QFIs for the whole system and
the three subsystems are plotted as a function of microwave
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driving power Pl at different environment temperatures, man-
ifesting that all QFIs are nearly zero when the driving is weak
(Pl = 1 mW), i.e., the error for estimating the P-M coupling
parameter is relatively large. However, all QFIs are gradually
enhanced with the increase of Pl , implying that microwave
driving is beneficial for improving the estimation precision of
g. This is easy to understand. Since the increase of external
driving directly gives rise to an increase in the mean parti-
cle number of various modes in the double-cavity-magnon
system, and the effective magnetic-dipole interaction is also
enhanced, resulting in a reduced estimation error. Here, we
emphasize that the mean particle number of all modes is
much greater than 1 even when Pl = 1 mW, which ensures
the linearization approximation holds. In addition, in the case
of Pl = 1 W, the mean magnon number 〈m̂†m̂〉 � 6 × 1013 �
2S = 1.75 × 1017 holds for a 250-µm-diameter YIG sphere,
indicating that the low-lying excitations assumption required
for utilizing Holstein-Primakoff transformation in deriving the
Hamiltonian Ĥ has not been violated (see Appendix A).

Furthermore, one can see that the P-M coupling’s informa-
tion contained in the global state is always greater than that
in the state of each subsystem. This also indirectly reflects the
non-negative property of QFI, i.e., the more subsystems used,
the higher QFI obtained. On the other hand, the QFI of the
global system is always greater than or equal to the indepen-
dent summation of that of each subsystem. This is because
the global system has some additional quantum correlation
terms [see Ci, j in Eq. (19)] compared to the direct sum of the
subsystems, where the quantum correlation terms also contain
information about g. Particularly, the imprint of g is mainly in
cavity mode 2, followed by cavity mode 1, while the magnon
mode contains the least, i.e., Fa2

g > Fa1
g > Fm

g in the given
parameter regime. Obviously, at this point the cavity mode
2 is the optimal subsystem for estimating g. Physically, the
distribution of the imprint of g among subsystems relies on
the interactions and correlations between subsystems. Later,
we will specifically discuss this issue.

Consistent with our expectation, as the temperature in-
creases (red → green → blue), all the QFIs drop off, indi-
cating that adding thermal fluctuation to the system always
decreases the estimation precision. Physically, the thermal
fluctuations in general lead to a degradation of the quantum
correlations of the system, thereby increasing the estimation
error of P-M coupling rate. Note that the boosting effects
of the quantum resources on estimation precision have been
realized by many researchers working in the field.

B. Effect of the damping channels

It is of practical importance to investigate the influence of
the dissipation rate on the estimation error. Presented in Fig. 3,
the density plot represents the global QFI Fg as a function
of the cavity mode decay rate γa and the magnon damping
γm. According to Fig. 3, it reveals that with the increase of
γm keeping γa unaltered Fg monotonically decreases, i.e., the
magnon dissipation is always detrimental for estimating the P-
M coupling rate. In contrast, for a fixed γm the estimation error
first decreases and then increases with the increase of cavity
decay rate γa. This indicates that there exists an optimized
value of γa where the estimation error reaches a minimum.
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FIG. 3. The density plot represents the QFI for the global system
as a function of cavity mode loss γa and magnon damping γm.

The physical reason behind this counterintuitive phe-
nomenon is that when

√
γa is small, increasing γa causes

the increase of the microwave driving strength owing to El ∝√
γa, resulting in enhancement of estimation precision (using

the results of Fig. 2). Nevertheless, when γa increases further,
the dissipation of the cavity modes dominates the dynamics,
which yields a significant increase in the estimation error. As
a result, the final estimation precision is determined by the
competition between the two opposite effects caused by the
cavity mode loss. The behavior of the QFI of each subsystem
is rather similar to that of the global system, hence, their
figures are omitted here.

In addition, we should also point out that if the loss rates of
the two microwave cavities are different, when fixing the rate
of cavity mode 1, increasing that of cavity mode 2 will obtain
similar results. However, keeping the loss rate of cavity mode
2 fixed while increasing that of cavity mode 1 only leads to
a decrease in estimation precision. This is due to the fact the
driving field is applied on the cavity mode 2 rather than the
cavity mode 1.

C. Effect of Kerr nonlinearity and photon tunneling

In Fig. 4, the density plot denotes the QFIs as a function
of the Kerr coefficient K and the photon tunneling rate J ,
manifesting that although the magnon mode is a necessary
element to realize P-M coupling, most of the global QFI
comes mainly from the contribution of the two cavity mode
subsystems, with a small contribution from the magnon. One
reason is that the damping of the magnon is greater than that of
the cavity modes (the incoherence effect of the magnon modes
is greater), while another reason is the photon-tunneling-
induced cavity modes swap, i.e., dissemination of information
about g. In this sense, cavity mode 1 can act as an auxiliary
mode to carry information about the P-M coupling rate, which
may help improve estimation precision. Indeed, we can see
that by appropriately designing the tunneling rate J , the global
QFI increases, manifesting that the auxiliary cavity can reduce
the estimation error in comparison with the unassisted case
(J = 0). This is because effective P-M coupling depends not
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FIG. 4. The QFIs vary with the Kerr coefficient K and the
photon-tunneling rate J , where QFI for (a) the global system, (b) the
cavity mode 1, (c) the cavity mode 2, (d) the magnon mode.

only on the coupling strength, but is also closely related to the
frequency matching between the modes, and photon-tunneling
interactions can adjust the frequencies of the mixed cavity
modes. Similar to the global QFI, the QFI of cavity mode 2 is
also significantly improved under appropriate photon tunnel-
ing rates. This is of great practical importance because, as we
will see later, the cavity mode 2 is the optimal subsystem for
making Gaussian measurements in most parameter regions.
Note that when the photon-tunneling interaction is completely
dominant (i.e., J is sufficiently large), this is also detrimental
to the estimation since the magnetic-dipole interaction can be
almost neglected in the cavity-magnon system.

On the other hand, all QFIs display a tendency to increase
first and then decrease when fixed J increases K . We can see
that the appropriate Kerr coefficient can also greatly enhance
the estimation precision compared to the case without the Kerr
effect. Physically, this is due to the fact that the Kerr nonlinear
effect causes quantum squeezing on the magnon. In addition,
the appropriate Kerr-effect-induced magnon frequency shift
is also a reason for the improved estimation precision, as it
can enhance effective P-M coupling. Nevertheless, as K is fur-
ther increased, the effective frequency difference between the
magnon and the cavity modes is increased. This will weaken
the effective P-M coupling interaction, increasing estimation
error. The above analysis indicates that, when other param-
eters are fixed, a wise match between the Kerr nonlinearity
coefficient and the photon-tunneling rate is required to obtain
the highest estimation precision.

D. Effect of detuning

In Fig. 5(a), we depict the QFIs as a function of the cavity
mode detuning �a, showing that the global QFI still mainly
comes from the two cavity modes. In particular, we can see
that there are two peaks (one is the main peak and the other is
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FIG. 5. The QFIs of global system and subsystems as a function
of (a) the cavity mode detuning �a and (b) the magnon detuning �m,
respectively.

the secondary peak) on each of the red, green, and blue curves
in the red-detuned region. Similar results are also observed
in the blue-detuned region, but the secondary peak is not
significant. Physically, these valley-peak structures of QFIs
originate from the presence of two hybridized cavity modes
interacting with the magnon mode. Particularly, the locations
of these peaks are not only dependent on the selection of
�m but are also closely related to photon tunneling and the
Kerr effect since both can adjust the effective mode detuning.
The normal mode picture in Appendix D makes this clear.
In addition, we find that the red-detuned region is more con-
ducive to estimating g, giving the highest estimation precision.
This indicates that even including photon tunneling and Kerr
nonlinear effects, in the red-detuning region, the effective P-M
coupling is still relatively strong due to �m being greater than
0. Note that this result holds without considering tunneling
and Kerr nonlinearity effects. This is because the P-M cou-
pling is essentially beam-splitter-like coupling, and the closer
the frequencies of the two modes are, the stronger the coupling
will be.

Figure 5(b) plots the QFIs as a function of the magnon
detuning �m. One can see that in the �m < 0 region, all QFIs
are relatively small, implying a higher estimation error. In the
�m > 0 region, all QFI curves exhibit a wide peak, indicating
that we are easier to obtain high estimation precision. This is
because the Kerr effect can induce an appreciable frequency
shift of the magnon mode, resulting in a wide peak that is
insensitive to �m [25]. Note that the frequency of the magnon
can be flexibly adjusted by the external bias magnetic field
HB, which indirectly changes the �m, thus realizing the mod-
ulation of the estimation precision. This means that when
other parameters are fixed, there exists some ideal HB that can
provide relatively high estimation precision.
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FIG. 6. The ratio of the QFI of the subsystem to that of the global
system is shown as a function of (a) the photon-tunneling rate J and
(b) the Kerr coefficient K , respectively.

E. Optimal subsystem for estimating g

Notice that it is very difficult or even infeasible to mea-
sure the entire double-cavity-magnon system owing to the
limitations of the measurement means. Thus, a wise choice
would be to access and measure one of the subsystems. In
this scenario, it becomes crucial to determine the optimal
subsystem, i.e., the one that contains the most information
about the estimated parameter. To this end, we define the
ratio of the QFI of each subsystem to the global QFI, namely,
ξ1 = Fa1

g /Fg, ξ2 = Fa2
g /Fg, and ξ3 = Fm

g /Fg, respectively.
In the discussion about Fig. 2, we have pointed out that

cavity mode 2 is the optimal subsystem for estimating the
P-M coupling strength, indicating that ξ2 is greater than ξ1

and ξ3. In addition, when studying the impact of damping
channels on estimation precision, the result that cavity mode 2
is the optimal subsystem still holds (note that in order to avoid
figure duplication, the QFIs of the subsystems are not drawn
in Fig. 3). However, according to Fig. 5, we find that cavity
mode 2 is not always the optimal subsystem, as seen in the
blue-detuned region. But in the red-detuned region, the cavity
mode 2 is an ideal candidate for extracting information from
g. Below, we will focus on the impact of photon-tunneling rate
J and Kerr nonlinearity coefficient K on ξ j ( j = 1, 2, 3).

Figure 6(a) plots ξ j ( j = 1, 2, 3) as functions of the
photon-tunneling strength J, indicating that when J = 0, ξ2 >

ξ3 > ξ1 = 0 holds. In other words, accessing cavity mode 2 is
able to pick up the most information about the P-M coupling
parameter, followed by the magnon, while cavity mode 1 does
not contain information about g. This originates from the fact
that no information can swap between cavity modes 1 and 2
without photon hopping interaction, so that ξ1 = 0. The rea-
son for ξ2 > ξ3 is that the photon number of the cavity mode

2 is more than the magnon number owing to the direct driving
and γa < γm. With the increase of J , one finds that ξ2 and
ξ3 decrease simultaneously, while ξ1 increases. This reveals
that part of the information about g is transferred to cavity
mode 1 via the photon-tunneling interaction. Moreover, the
stronger the photon-tunneling effect, the greater the informa-
tion containing g in cavity mode 1, resulting in ξ2 > ξ1 > ξ3.
In particular, ξ2 > ξ1, ξ3 holds all the time, manifesting that
the amount of information about the P-M coupling rate in
cavity mode 2 is always the most, i.e., the cavity mode 2 is
the optimal subsystem for estimating g for the given parameter
regime.

In Fig. 6(b), we present behaviors of ξ j ( j = 1, 2, 3) ver-
sus the Kerr coefficient K . One can see that when K starts
increasing from 0, ξ1 and ξ2 increase first and then decrease,
while ξ3 has the opposite trend. This is due to the fact that the
tradeoff and competition between the P-M coupling and the
photon tunneling can be affected by the Kerr self-interaction
of magnon, while the first two play a decisive role in the
exchange of information between subsystems. With a fur-
ther increase in K , the self-interaction of magnon completely
surpasses photon tunneling and P-M coupling, so that the dis-
tribution of information in each subsystem no longer changes
significantly. Indeed, when changing J or K , the behavior of
ξ3 is always opposite to that of the other two, which reflects
information swap very well. Importantly, ξ2 > ξ1, ξ3 holds
all the time, i.e., the cavity mode 2 is always the optimal
subsystem for estimating the P-M coupling rate.

F. Performance analysis of Gaussian measurements

According to Sec. III E, we already know that cavity mode
2 is the optimal subsystem for estimating g in most parameter
regions except in the blue-detuned region where the QFI is
small. This means that accessing cavity mode 2 for obtaining
information about the P-M coupling parameter is relatively
high efficiency in most cases. Consequently, considering that
only one subsystem can be accessed, we only focus on the
case of the information about g obtained by performing mea-
surements on the cavity mode 2. We will explore which
Gaussian detection method can achieve higher precision for
estimating g by comparing the CFIs of heterodyne detection

(F a2
g,He), homodyne detection (F

Q̂a2
g,Ho and F

P̂a2
g,Ho), and the optimal

Gaussian measurement (F OGM
g ). Note that the details for cal-

culating the CFIs of these measurement settings are provided
in Appendix C 2.

In Fig. 7, we compare the ultimate precision bound given
by QFI Fa2

g with the precisions achieved through the Gaussian

measurements. One finds that Fa2
g > F

Q̂a2
g,Ho > F a2

g,He > F
P̂a2

g,Ho
always holds, indicating that neither widely available ho-
modyne detection nor heterodyne detection is the optimal
measurement setup. In addition, the homodyne measurement
for amplitude quadrature Q̂a2 is better than the heterodyne
detection, and the worst scheme is the homodyne detection
for phase quadrature P̂a2 . Roughly speaking, measuring the
P̂a2 quadrature is hardly helpful for estimating the P-M cou-
pling because the obtained CFI is too small. Physically, this
is because the P-M coupling mainly affects the amplitude of
cavity mode 2 (i.e., mean photon number of cavity mode 2)
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FIG. 7. The QFI Fa2
g and CFIs for the cavity mode 2 against

(a) the microwave driving power Pl , (b) the photon tunneling strength
J , (c) the Kerr coefficient K , (d) the ambient temperature T , where

F a2
g,He, F

Q̂a2
g,Ho, F

P̂a2
g,Ho, and F OGM

g corresponding to heterodyne detection,
homodyne detection for Q̂a2 and P̂a2 quadrature operators, and opti-
mal Gaussian measurement, respectively.

rather than the phase, so the amplitude quadrature of cavity
mode 2 contains more information about g. In particular, we
also obtain the CFIs corresponding to the optimal Gaussian
measurement by means of semidefinite programming (see
black dashed lines). We find that the red solid line and the
black dashed line almost overlap in all subfigures, i.e., the
optimal Gaussian measurement almost constitutes the optimal
setup for estimating the P-M coupling strength.

It should be pointed out that the optimal positive-operator-
valued measurement setup is constituted by a set of projection
operators over the eigenvectors of symmetric logarithmic
derivative La2

g , where La2
g is composed of the first moments and

covariance matrix of the cavity mode 2 [61–64]. In principle,
one can always theoretically construct optimal measurements
based on this conclusion. However, such optimal measure-
ment is generally not experimentally feasible, especially in the
current model where such interactions are relatively complex.
In this scenario, the optimal Gaussian measurement is much
more favored because it is experimentally feasible. In addi-
tion, the practical imperfections tend to offset the difference
between optimal and nearly optimal setups in the laboratory
[65]. This also reflects the fact that the estimation precision
limit given by Fa2

g is experimentally achievable. Unfortu-
nately, due to difficulties in mathematical techniques, we do
not yet know the specific form of the optimal Gaussian mea-
surement. In theory, it should be the product of the quadrature
operators of the observed mode (e.g., complex combination
of amplitude and phase quadrature operators). In addition, it
may depend on the values of the parameters to be evaluated.
In this sense, this optimal Gaussian measurement needs to be

implemented adaptively by accumulated data. We will further
investigate such a question elsewhere, which has enormous
practical significance.

IV. CONCLUSION AND DISCUSSION

In summary, we have explored the quantum parameter
estimation problem of the P-M coupling strength in a driven-
dissipative double-cavity-magnon system, where one cavity
is primary and the other is auxiliary. We found that (i) with
the increase of the driving power, the estimation error grad-
ually decreases; (ii) temperature and magnon damping are
always detrimental for estimating the P-M coupling strength;
(iii) the dissipation rate of the cavity mode does not always
have a detrimental effect on the estimation error, and the exis-
tence of a critical dissipation rate giving the highest estimation
precision; (iv) by designing appropriate Kerr coefficient and
photon tunneling rate, the estimation error can be signif-
icantly reduced; (v) compared to the blue-detuned region,
the red-detuned region of the cavities is more conducive to
achieving high-precision estimation; moreover, the external
bias magnetic field applied to the YIG sphere can indirectly
adjust estimation error due to its ability to modulate magnon
detuning; (vi) the summation of QFI for all subsystems is
always less than or equal to the QFI of the global system. Our
analysis also revealed that the optimal subsystem for carrying
out measurements and estimations is the primary cavity mode
since in most parameter regions the majority of information
about the P-M coupling rate is encoded in its reduced state.

Further, we explored the CFI obtained by performing dif-
ferent Gaussian measurements on the primary cavity mode
and compared them with QFI to evaluate the practical perfor-
mance of measurements. The results indicated that homodyne
and heterodyne detections are not optimal measurement
strategies for the extraction of the P-M coupling information.
The homodyne detection for amplitude quadrature surpasses
the heterodyne detection, and the worst is the homodyne
detection for phase quadrature. Particularly, the optimal Gaus-
sian measurement is almost the optimal measurement strategy,
i.e., it can extract almost all the information about the P-M
coupling parameter from the primary cavity mode. We note
that increasing the number of auxiliary cavities can improve
the QFI, but at the same time introduces more dissipations
and makes the experiment more difficult. We also note that
once the P-M coupling strength is comparable to the magnon
or cavity mode frequencies, one can no longer consider
photon and magnon dissipation separately, as is done here.
Potentially, we can also investigate the estimation problem of
other parameters in cavity-magnon systems, such as photon-
tunneling rate, frequency, and Kerr coefficient of magnons.
However, the optimal structure of the composite system may
not be a double-cavity structure with one primary and one aux-
iliary. We believe that this work provides some insights into
the use of magnetic-dipole interaction for quantum precision
measurements or quantum information processing.

Finally, we should point out that our approach is based on
the linearization approximation of the cavity optomechanics
and cavity magnomechanics [57,58], and the QFI is embed-
ded in the steady-state values and quantum fluctuations of
the cavity-magnon system. However, when the cavity-magnon
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system is not in a steady state, e.g., when the system dynamics
exhibits limit cycles or chaos, the linearization approximation
fails and the Gaussian state no longer effectively describes the
quantum properties of the system, the strict quantum master
equations should be used instead to analyze the QFI. In this
case, the system may be able to provide a larger QFI in com-
parison with our current results. There have been reports that
chaotic dynamics can assist quantum parameter estimation in
some parameter regions [66], but its physical realization is
challenging.

Besides, more recently, the experimental extraction of the
QFI has received widespread attention and made some im-
portant progress [67–70]. These studies are mainly based on
spin systems and nitrogen-vacancy (NV) centers. It should
be emphasized that QFI itself does not directly correspond
to observable Hermitian operators, but it is closely related
to many measurable physical quantities, such as asymmet-
ric cross-correlation spectrum [29], energy fluctuation [68],
and quantum geometric tensor [70]. This is the principle of
extracting QFI in experiments. However, to the best of our
knowledge, the experimental extraction of QFI in continuous
variable systems has not been reported until now. It is worth
mentioning that the first moment and covariance matrix of
Gaussian steady state in cavity-magnon systems can be recon-
structed in the laboratory [4–7], and the relevant technology
of Gaussian measurement is relatively mature. Our theory is
therefore expected to be experimentally confirmed. Neverthe-
less, if the cavity-magnon system is not in a steady state, its
quantum characteristics cannot be represented by using the
first moment and covariance matrix. It is thus necessary to
capture quantum states at different times through quantum
state tomography technology, which is a great challenge for
experiments due to the system being infinitely dimensional.
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APPENDIX A: DERIVATION OF HAMILTONIAN FOR YIG
SPHERE AND CAVITY MODE 2

The quantized interaction form between cavity modes
(coupled cavity) is well known to everyone [57]. We thus
will only provide a detailed introduction to the interaction
between the YIG sphere and cavity mode 2. The cavity mode
2 includes electric field energy and magnetic field energy,
while the magnetized YIG sphere includes Zeeman energy,
demagnetization energy, and anisotropic energy of magne-
tocrystalline, and there is magnetic-dipole interaction between
the two. Therefore, the total Hamiltonian can be written as

[5,6,71]

Ĥa2m = 1

2

∫ (
ε0E2 + B2

μ0

)
dv −

∫
M · HBdv

−μ0

2

∫
M · Handv − μ0

∫
M · B dv, (A1)

where E and B are the electric and magnetic components
of the electromagnetic field inside the cavity 2, respectively;
ε0 and μ0 are, respectively, the vacuum permittivity and
vacuum permeability; HB = HB�ez being the stable magnetic
field applied along the Z axis on the YIG sphere, aimed
at magnetizing the YIG sphere. The corresponding magne-
tization strength is M = γe S/Vm = (Mx, My, Mz), in which
S ≡ (Sx, Sy, Sz) denotes the macrospin and Vm the volume
of the YIG sphere; Han = (−2KanMz/M2

b)�ez represents the
anisotropic field owing to the magnetocrystalline anisotropy
(relying on the angle between the crystallographic axis of
the YIG sphere and the direction of the externally applied
stable magnetic field) [72], in which Kan and Mb are the
first-order anisotropy constant of the YIG sphere and the
saturation magnetization, respectively; the last term repre-
sents the magnetic-dipole interaction between cavity mode 2
and magnon. Note that demagnetization energy is ignored in
Eq. (A1) because it is a constant term [5,6].

Suppose that the magnetic field direction inside the cavity 2
is along the X axis, i.e., B = −√

ωa2/μ0Va(â2 + â†
2)�ex, where

Va is the volume of the cavity 2. One can introduce magnon
mode to represent a collective excitation of a large number of
spins by the Holstein-Primakoff transform [73]

Ŝz = S − m̂†m̂, (A2a)

Ŝ+ =
√

2S − m̂†m̂m̂, (A2b)

Ŝ− = m̂†
√

2S − m̂†m̂, (A2c)

Ŝ± = Ŝx ± iŜy, (A2d)

where S is the total spin number of the YIG sphere. In partic-
ular, 2S 
 〈m̂†m̂〉 in general holds owing to a fact 2S = 5ρVm

is very huge for a YIG sphere with spin density ρ ≈ 4.22 ×
1027 m−3 [4–6]. This results in the following being approxi-
mately valid: Ŝ+ � √

2Sm̂ and Ŝ− � √
2Sm̂†. By putting the

pieces together, the Ĥa2m can be rewritten as

Ĥa2m = ωa2 â†
2â2 − γeHBŜz + μ0Kanγ

2
e Ŝ2

z

VmM2
b

+ gam(â2 + â†
2)(Ŝ+ + Ŝ−), (A3)

where gam = √
μ0γ 2

e ωa2/4Va is the coupling strength between
the cavity mode 2 and the spins. Using

√
2Sm̂ and

√
2Sm̂† to

replace Ŝ±, and considering the rotating-wave approximation,
one can finally obtain

Ĥa2m = ωa2 â†
2â2 + ωmm̂†m̂ + Km̂†m̂m̂†m̂

+ g(â2m̂† + â†
2m̂), (A4)

where ωm = γeHB − 2μ0Kanγ
2
e S/VmM2

b being the frequency
of the magnon, indicating that the frequency of the magnon
can be tuned by the bias magnetic field; K = μ0Kanγ

2
e /VmM2

b

is Kerr nonlinear coefficient; g = √
2Sgam stands for the P-M

coupling strength.
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APPENDIX B: STABILITY CONDITIONS
FOR THE SYSTEM

The stability of the system is ensured by Routh-Hurwitz
criterion [74], namely, the all eigenvalues of the drift ma-
trix A have negative real parts, indicating that the system
is stable. To this end, we need to evaluate the characteristic
equation of A, i.e., |A − λ16| = 0, yielding the characteristic
equation

λ6 + α1λ
5 + α2λ

4 + α3λ
3 + α4λ

2 + α5λ + α6 = 0, (B1)

where

α0 = 1, (B2)

α1 = 4γa − η1, (B3)

α2 = 2(g2 + J2) + 6γ 2
a + 2�2

a − 4η1 + η2, (B4)

α3 = 4γ 3
a − η1(g2 + 2η5) − 6γ 2

a η1 + γaμ0, (B5)

α4 = γ 4
a − 4γ 3

a η1 + γ 2
a μ2 − γaμ3 + 2 +−η5, (B6)

α5 = 2g4γa − J4η1 + g2μ5 − 2J2μ6 − η4μ7, (B7)

α6 = g4η4 + η2μ8 − g2μ9, (B8)

with

η1 = + + −, η2 = +− − �+�−,

η3 = �+ − �−, η4 = γ 2
a + �2

a,

η5 = J2 + �2
a, μ0 = 6g2 + 4(η5 + η2),

μ1 = g4 + 2g2J2 + J4 − 2J2�2
a + �4

a,

μ2 = 6(g2 + η2) + 2η5, μ3 = (
4�2

a + 3g2 + 4J4
)
η1,

μ4 = 2 �+�−η5 − g2�a(2�a − η3),

μ5 = 2γ 3
a + J2(2γa − η1) − (

3γ 2
a + �2

a

)
× η1 + 2γa�a(�a − �+ + �−),

μ6 = η4η1 − 2γaη2, μ7 = η4η1 − 4γaη2,

μ8 = J4 + 2J2(γ 2
a − �2

a

) + η2
4,

μ9 = η4(γaη1 + �aη3) + J2(γaη1 − �aη3).

Note that for simplicity, here we have assumed that the param-
eters of the two cavity modes are completely consistent, i.e.,
γa1 = γa2 = γa and �a1 = �a2 = �a (all numerical results in
the main text are also based on this assumption). Based on
coefficient αk , one can construct six Hurwitz matrices, where
the dimension of the kth matrix is k × k (1 � k � 6), the cor-
responding matrix elements are determined by the following
conditions [75]:

Hk
i j =

{
0, 2i − j < 0 or 2i − j > k
α2i− j, otherwise (B9)

where 1 � i, j � k. For example, when k = 1 and 3, we can
easily obtain by Eq. (B9)

H1 = [α1], H3 =
⎡
⎣α1 1 0

α3 α2 α1

0 0 α3

⎤
⎦. (B10)

The stability condition of the system is that all the determi-
nants of Hurwitz matrices are positive, i.e.,

∀ det
[
Hk

]
> 0 holds, 1 � k � 6. (B11)

Based on Eq. (B11), the following conditions are obtained,
i.e.,

αi > 0 (1 � i, j � k); α1α2 > α3, (B12)

α1α2α3 > α2
3 + α2

1α4; T1 > T2; T3 > T4, (B13)

with

T1 = (α1α4 − α5)
(
α1α2α3 − α2

3 − α2
1α4

)
,

T2 = α1α
2
5 + α5(α1α2 − α3)2,

T3 = α2
1α6(2α2α5 + α3α4) + α3

3α6

+α1α2α3α4α5 + α2
5 (2α1α4 + α2α3),

T4 = α2
1

(
α1α

2
6 + α2

4α5
) + α3

5 + α4α5α
2
3

+α1
(
α2α6α

2
3 + 3α3α5α6 + α2

2α
2
5

)
.

Equations (B12) and (B13) ensure the stability of the driven-
dissipative double-cavity-magnon system.

APPENDIX C: PARAMETER ESTIMATION THEORY
FOR QUANTUM GAUSSIAN STATES

For the convenience of the reader, here we introduce the
main aspects of the Gaussian parameter estimation framework
based on the discussed cavity-magnon system.

1. Quantum Fisher information for Gaussian states

Known the first moment 〈R̂0〉 := [〈Q̂a1〉, 〈P̂a1〉, 〈Q̂a2〉,
〈P̂a2〉, 〈Q̂m〉, 〈P̂m〉]T and steady-state covariance matrix V , the
QFI of the global state reads as [61–64]

Fg = 2 vec[∂gV]†M−1vec[∂gV] + ∂g〈R̂0〉TV−1∂g〈R̂0〉, (C1)

where M = (4V† ⊗ V + � ⊗ �); vec[G] denotes the vec-
torization of a matrix G (n dimension), which is defined
as vec[G] := [G(:, 1)T,G(:, 2)T, · · · ,G(:, n)T]T, and G(:, n)
being the nth column of G. One can see that its first term
is the contribution owing to the dependence of the second
moment on g, while the second term is the contribution
originating from the dependence of the first moment on g.
In the process of numerical simulation, in order to achieve
sufficient numerical accuracy, the first-order derivative of any
g-dependent function is treated by the Lagrange interpolation
method [76,77]. To find the optimal subsystem for estimating
g, we introduce the QFI for each subsystem

F i
g = 2 vec[∂gLi]

†M−1
i vec[∂gLi] + ∂g〈d̂i〉TL−1

i ∂g〈d̂i〉, (C2)

with

Mi = (4L†
i ⊗ Li + � ⊗ �), 〈d̂i〉= [〈Q̂i〉, 〈P̂i〉]T, (C3)

where i = a1, a2, and m; F i
g and 〈d̂i〉 correspond to the QFI

and displacement vector for mode i, respectively.
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2. Classical Fisher information for Gaussian states

a. Homodyne detection

For homodyne detection, the corresponding CFI is [63]

F k
g,Ho = 1

2V2
kk

[2Vkk (∂g〈R̂0〉k )2 + (∂gVkk )2], (C4)

where 〈R̂0〉k being the steady-state value of
the selected quadrature operator (k = 1 ∼
6, corresponds sequentially to Q̂a1 , P̂a1 , Q̂a2 , P̂a2 , Q̂m, P̂m); Vkk

being the diagonal element of the covariance matrix V . For
instance, we have that 〈R̂0〉4 = 〈P̂a2〉 and V44 = 〈[δP̂a2 (∞)]2〉
for k = 4, i.e., performing homodyne detection on the phase
quadrature of cavity mode 2.

b. Heterodyne detection

For heterodyne detection, the corresponding CFI reads as
[63]

F i
g,He = 1

2 Tr[(ℵ−1∂gℵ)2] + ∂g〈d̂i〉Tℵ−1∂g〈d̂i〉, (C5)

where ℵi = Li + 12; 〈d̂i〉 and Li are the first moment and the
covariance matrix of the selected mode, respectively. Partic-
ularly, 12 is a 2 × 2 identity matrix, which represents the
added noise in Li stems from the simultaneous detection of
the conjugated quadratures. For example, if heterodyne detec-
tion is considered for the cavity mode 2, they take the form,
respectively, of 〈d̂i〉 = [〈Q̂a2〉, 〈P̂a2〉]T and Li = La2 .

c. Optimal Gaussian measurement

More generally, the CFIs obtained by performing arbitrary
Gaussian measurements on Gaussian states can be uniformly
expressed as [78]

F GM
g

(
d, σ; σM

GS

) = ∂gdT
(
σ + σM

GS

)−1
∂gd

+ 1
2 Tr

[[(
σ + σM

GS

)−1
∂gσ

]2]
, (C6)

where d and σ are the first moment and covariance matrix of
the observed mode, respectively; σM

GS is the covariance matrix
of Gaussian measurement operator.

When d and σ of the observation mode are fixed, the
optimal σM

GS must be found to maximize F GM
g . However,

this is in general a notoriously difficult task to analytically
obtain the optimal σM

GS. The main obstacle stems from the
objective function FOGM

g = Max
σM

GS

{F GM
g } is a nonlinear function of

the measurement covariance matrix σM
GS. Note also that the

quantum state to which the covariance matrix of the optimal
Gaussian measurement belongs must be a pure state, which
leads to σM

GS = σM
max ≡ SM (SM )T always holding [58]. Here

SM is a symplectic transformation, satisfying the symmetric
constraint condition SM�(SM )T = �. In this scenario, finding
F OGM

g is transformed into the following semidefinite program-
ming (SDP) problem [78]:

F OGM
g := Max

SM

{
F GM

g (d, σ; SM (SM )T)
}
,

s.t. � = SM�(SM )T. (C7)

Currently, we are still concerned with performing measure-
ments on single-mode Gaussian states.

APPENDIX D: NORMAL MODE PICTURE

The effective Hamiltonian of the double-cavity-magnon
system is

Ĥ1,eff = �1δâ†
1δâ1 + �2δâ†

2δâ2 + �effδm̂†δm̂

+ K[〈m̂〉2δm̂†δm̂† + 〈m̂〉∗2
δm̂δm̂]

+ J (δâ†
1δâ2 + δâ1δâ†

2) + g(δâ†
2δm̂ + δâ2δm̂†).

(D1)

Based on the above equation, one can clearly see that only
cavity mode 2 and the magnon are coupled via beam-splitter-
like interaction while the magnon is subject to single-mode
squeezing. However, in the normal mode picture, the two
interactions take on a different form.

Introducing Bogoliubov transformation [79]

M̂ := αδm̂ − β∗δm̂†, (D2a)

M̂† := α∗δm̂† − βδm̂, (D2b)

with

α =
√

(�eff/E + 1)/2, βeiφ = −
√

(�eff/E − 1)/2,

E =
√

�2
eff − 4|〈m̂〉|4K2, φ = arctan(I/R),

where I = Im(2K〈m̂〉2) and R = Re(2K〈m̂〉2) quantified
the magnetocrystalline anisotropy of YIG sphere. Substituting
Eqs. (D2) into Eq. (D1), Ĥ1,eff can be written as

Ĥ1,eff = �1δâ†
1δâ1 + �2δâ†

2δâ2 + EM̂†M̂

+ g[(βM̂ + αM̂†)δâ2 + (β∗M̂† + α∗M̂ )δâ†
2]

+ J (δâ†
1δâ2 + δâ1δâ†

2), (D3)

where g(βM̂δâ2 + β∗M̂†δâ†
2) being the squeezinglike cou-

pling, resulting in the entanglement between the normal
magnon mode M̂ and the cavity mode 2. Notice also that Kerr
coefficient K = 0 makes β = 0 owing to �eff = E , leading
to the squeezinglike coupling disappear. This indicates that
the magnetocrystalline anisotropy is the key to inducing the
entanglement between the magnon and the cavity mode 2.

In order to clearly show the two cavity-magnon interac-
tions corresponding to the double-peak structure in Fig. 5(a),
we further introduce the following transformation, i.e.,

Â+ := f δâ1 − hδâ2, (D4a)

Â− := hδâ1 + f δâ2. (D4b)

Substituting the above formula into Eq. (D1), we can ob-
tain

Ĥ2,eff = �effδm̂†δm̂ + K[〈m̂〉2δm̂†δm̂† + 〈m̂〉∗2
δm̂δm̂]

+ω+Â†
+Â+ + ω−Â†

−Â− + G+(δm̂Â†
+ + δm̂†Â+)

+ G−(δm̂Â†
− + δm̂†Â−), (D5)

where ω± refers to the resonance frequency of hybridized
cavity modes; G± is the coupling strength between the
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hybridized cavity modes and the magnons. Their specific
forms
are

G+ = −gh, G− = f g, (D6)

ω± = 1
2 [(�1 + �2) ±

√
(�1 − �2)2 + 4J2], (D7)

with f = |ω− − �1|/
√

(ω− − �1)2 + J2 and h = J f /(ω− −
�1), in which f 2 + h2 = 1.

Further, Eq. (D3) can be rewritten as

Ĥ2,eff = ω+Â†
+Â+ + ω−Â†

−Â− + EM̂†M̂

+ G+[(βM̂ + αM̂†)Â+ + (β∗M̂† + α∗M̂ )Â†
+]

+ G−[(βM̂ + αM̂†)Â− + (β∗M̂† + α∗M̂ )Â†
−].

(D8)

From Eq. (D8), we can clearly see that the interaction between
the magnon and the two cavity modes is essentially equivalent
to that between the normal magnon mode M̂ and the two
hybrid cavity modes (Â+ and Â−).
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