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We propose a protocol for robust quantum state engineering using composite pulses (CPs) in four-level
systems. The analytical expression of the propagator is derived for the implementation of universal single-qubit
gates and the maximum superposition state. By carefully designing the relative phases between pulses, the CP
sequences can compensate for the pulse area error to any desired order. We present two classes of CP sequences,
one generating robust population inversion and the other generating robust superposition states. As applications,
we employ the well-designed CP sequences to achieve the conversion of the W and Greenberger-Horne-Zeilinger
states with high fidelity in a Rydberg atomic system. It is shown that the CP sequences yield excellent robustness
with respect to the pulse area errors, and they possess a short evolution time.
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I. INTRODUCTION

Accurate and robust coherent control is one of the pre-
requisites for the development of quantum computation
and quantum information [1]. Recent years have witnessed
different techniques [2–6] to improve the precision of coher-
ent control. Among them, adiabatic control is a traditional
technique used for robustly implementing quantum state tran-
sitions, but the defects are also obvious, i.e., a low evolution
rate and imperfect fidelity [7,8]. A promising candidate for
overcoming these defects is the composite pulse technique,
which combines the advantages of both the ultrahigh accuracy
of resonant pulses and the robustness of adiabatic controls.

Composite pulses (CPs), originally developed in nuclear
magnetic resonance (NMR) [9–12], are composed of multiple
single pulses with distinct phases. By simply controlling the
relative phases, CPs allow researchers to compensate for var-
ious systematic errors in the field of quantum computations
[13,14]. Because of this unique advantage, CPs have been
widely applied in different quantum systems, such as trapped
ions [15–24], cold atoms [25–27], and quantum dots [28–30].

Heretofore, studies of CPs have mainly focused on the
achievement of high-fidelity quantum gates [31–33], efficient
detection of chiral molecules [34,35], robust preparation of
quantum states [36–38], etc. In particular, recent confirmatory
experiments were devoted to testing various CP sequences in
an IBM quantum computer [39,40]. Remarkably, however,
studies on CPs have been limited to two- and three-level
systems, with little attention given to multilevel systems.

It is well known that qudits [41,42] with a multilevel
structure are more favorable in quantum chemistry [43] and
quantum simulation [44,45]. For instance, if there are N
qudits that transform from a two-level structure to a four-
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level one, the computational space will be extended from
2N to 4N [46–48]. This expansion can effectively save hard-
ware resources without increasing the hardware complexity
in quantum-computation platforms [41]. Moreover, a larger
computational capacity and higher computational accuracy
have also attracted considerable attention in multilevel sys-
tems [49].

Up to now, multiphoton adiabatic passage [50], tun-
able nonlinear optical amplification and attenuation [51], the
quantum phase transition [52], frequency up-conversion am-
plification without inversion [53], and coherent transfer of
optical vortices [54] have been successively implemented in
four-level systems. More recently, there have been an increas-
ing number of works [55,56] devoted to achieving population
transfer in four-level systems. Despite the demonstrated po-
tential of the four-level systems in various applications, most
studies [50–56] hardly focus on investigating how to suppress
the unknown errors in physical parameters. To take full ad-
vantage of the additional degrees of freedom of a four-level
system, more control fields are always required, accompanied
by an increase in the risk of operational errors [57]. Therefore,
our goal is to develop the CP technique in four-level systems
so that coherent control can still enable us to maintain high
precision in an error-prone environment.

In this work, we achieve robust quantum state engineering
by using composite pulses in four-level systems. The ana-
lytical formula for the propagator is first derived to prepare
universal single-qubit gates and a maximum superposition
state in this system. We then focus on realizing high-fidelity
and robust coherent control via properly modulating the
phases of CP sequences. It is shown that the errors in the
pulse areas can be compensated to any desired order. Finally,
the CP sequence is applied in Rydberg atomic systems, mak-
ing it error-resilient in the conversion between the W and
Greenberger-Horne-Zeilinger (GHZ) states at a short evolu-
tion time.
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II. PHYSICAL MODEL AND GENERAL THEORY

A. General form of the propagator

The four-level system of interest has a ladder-type structure
in which only adjacent energy-level transitions are allowed.
This particular system can be embodied in the hyperfine levels
of some alkali-metal atoms [58], and it enables us to observe
some interesting phenomena, such as electromagnetically in-
duced transparency [59–61]. In the interaction picture, the
total Hamiltonian of this four-level system reads (h̄ = 1)

H = �1eiφ |1〉〈2| + �2eiϕ |2〉〈3| + �3ei�|3〉〈4| + H.c., (1)

where the transitions |m〉 ↔ |m + 1〉 (m = 1, 2, 3) are driven
by control fields with Rabi frequencies �m, and the corre-
sponding phases are φ, ϕ, and �. We assumed that the system
works in the resonance condition for simplicity.

Note that the Hamiltonian (1) is widely studied in sev-
eral physical systems, for instance the Rydberg atom used
for realizing highly efficient Rydberg excitation by chirped
multiphoton adiabatic passage [50] and the spin chain applied
to achieve quantum information transmission at both ends
[62,63]. More specifically, the Hamiltonian of a spin chain
in the single-excitation subspace is actually equivalent to the
Hamiltonian with a ladder-type structure [62,63]. In addi-
tion, such a Hamiltonian can also be adopted to characterize
other four-level structures with similar dipole transitions in
the double-ladder-type [64], N-type [59,65–67], and mirror-
reflected N-type systems [68–71], where no more than two
dipole transitions share a single level.

Assuming that all parameters in the Hamiltonian (1) are
time-independent, the propagator of this system becomes U =
exp(−iHT ) at the evolution time T . After some calculations,
the propagator can be written in a brief form,

U =
4∑

m=1

4∑
n=1

Umn|m〉〈n|, (2)

with

U11 = cos2 θ1 cos θs + sin2 θ1 cos θc,

U22 = cos2 θ2 cos θs + sin2 θ2 cos θc,

U33 = cos2 θ1 cos θc + sin2 θ1 cos θs,

U44 = cos2 θ2 cos θc + sin2 θ2 cos θs,

U13 = U∗
31 = cos θ1 sin θ1(cos θc − cos θs)ei(φ+ϕ),

U24 = U∗
42 = sin θ2 cos θ2(cos θc − cos θs)ei(ϕ+�),

U14 = −U∗
41 = i(cosθ1 sinθ2 sinθs−sin θ1 cosθ2 sinθc)eiγ ,

U23 = −U∗
32 = i(sinθ1 cosθ2 sinθs−cos θ1 sinθ2 sinθc)eiϕ,

U12 = −U∗
21 =−i(cosθ1 cosθ2 sinθs+sinθ1 sinθ2 sinθc)eiφ,

U34 = −U∗
43 =−i(sinθ1 sinθ2 sinθs+cosθ1 cosθ2 sinθc)ei�.

In Eq. (2), we have set

tan 2θ1 = 2A1A2

A2
3 + A2

2 − A2
1

, (3a)

tan 2θ2 = 2A2A3

A2
3 − A2

2 − A2
1

, (3b)

θs = A1 sec θ1 cos θ2, (3c)

θc = A1 csc θ1 sin θ2, (3d)

γ = φ + ϕ + �, (3e)

where Am = �mT (m = 1, 2, 3) represents the pulse area of
the mth control field. The detailed derivation of the propagator
(2) can be found in Appendix A.

Despite a slight difference in form, the propagator (2) we
derive here is actually equivalent to the one in Ref. [72], where
the Lie algebra based on dynamical symmetry is utilized to
construct the expressions for three Rabi frequencies. Under
a proper transformation of physical parameters, these two
expressions can be converted to each other. For details, one
can refer to Appendix B.

B. Single-qubit gates

In this subsection, we demonstrate that universal single-
qubit gates can be obtained in this four-level system, where
the states |1〉 and |4〉 are encoded as a qubit. The general form
of a single-qubit gate in the basis {|1〉, |4〉} can be written as

U(α, β ) =
[

cos α ieiβ sin α

ie−iβ sin α cos α

]
, (4)

where α and β are determined by the desired quantum gate.
It is worth mentioning that Eq. (4) is not just a single-qubit
gate, it may have other uses in specific physical systems. For
example, through setting α = π/4, we can obtain a GHZ state
in the Rydberg atomic system (see also the details in Sec. IV),
when three atoms are initially at the ground state |0〉 [72–74].
Besides, we can realize quantum state transfer between two
ends of a chain with four spins if α is equal to π/2 [62,63].

To achieve this single-qubit gate, only focusing on the
elements U11 and U41 in Eq. (2) is insufficient, and we must
ensure that there is no population leakage to the states |2〉 and
|3〉. Starting from the general expressions for Eqs. (2) and (4),
the elements Um1 (m = 1, 2, 3) have to satisfy the following
relations:

U11 = cos α, U21 = U31 = 0, (5)

where the element U41 can be directly derived by the nor-
malization condition. Note that the constraints in Eq. (5)
automatically lead to U42 = U43 = 0, because U21 = −U43

and cos θc − cos θs = 0. Moreover, the phase β in Eq. (4) is
exactly equal to the phase γ given by Eq. (3e). After some
calculations, the analytical solutions for Eq. (5) read

A1 = A3 =
√

α(2kπ − α), (6a)

A2 = 2(kπ − α), (6b)

where k is a positive integer and 0 < α < 2kπ ; see
Appendix C for details.

C. Maximum superposition state

Another quantum operation performed in this four-level
system is to achieve population transfer from the state |2〉 to
the maximum superposition state (|1〉 + |4〉)/

√
2. The reason

for preparing this superposition state is that it can be used for
the conversion between the W and GHZ states [75–79]. To
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FIG. 1. Two-dimensional surfaces for Eq. (7).

this end, we must set |U12| = |U42| = 1/
√

2 in the propagator
(2). Namely, the equations to be solved become

cosθ1 cosθ2 sinθs + sinθ1 sinθ2 sinθc = 1√
2
, (7a)

sin θ2 cos θ2(cos θc − cos θs) = 1√
2
, (7b)

where we also consider the probability amplitude in the target
state, and the relative phase between the states |1〉 and |4〉 can
be properly modulated by φ, ϕ, and �.

Due to the complexity, it is difficult to directly derive
an analytical form of the solutions for Eq. (7), and we turn
to find numerical solutions instead. According to Eqs. (3a)–
(3d), three pulse areas Am (m = 1, 2, 3) can be regarded as
unknowns of Eq. (7). To obtain feasible solutions for three
pulse areas, we respectively plot two-dimensional surfaces of
these two subequations in the three-dimensional space. Then,
the intersectant curves or points of two surfaces are actually
the solutions to Eq. (7). Through this method, we are able to
find all possible solutions for three pulse areas. In Fig. 1, we
show the two-dimensional surfaces of Eq. (7) within a certain
range of three pulse areas. Obviously, these points at which
two surfaces intersect are the feasible solutions to three pulse
areas, and one group of them are

A1 = 1.225, A2 = 1.420, A3 = 2.352. (8)

Note that this numerical method is quite intuitive and can
quickly find multiple solutions for the pulse areas Am (m =
1, 2, 3). To achieve this goal, we extend the range of pulse
areas in the three-dimensional space to display more points of
intersection between two surfaces. Table I presents some other
solutions for three pulse areas.

TABLE I. Other solutions of the pulse areas for the realization
of the superposition state (|1〉 + |4〉)/

√
2 driven from the initial state

|2〉.

Index A1 A2 A3

1 4.560 1.542 5.055
2 2.558 3.389 5.433
3 1.277 5.318 7.628
4 6.224 4.017 8.427
5 5.020 6.260 10.177
6 2.564 7.137 10.413

III. ERROR COMPENSATION BY COMPOSITE PULSES

A. CPs for complete population inversion

We first study how to design CPs to implement accurate
population inversion from the state |1〉 to |4〉. To this end, we
can simply set α = π/2 in Eq. (6), and the values of three
pulse areas are (k = 1)

A1 = A3 =
√

3

2
π, A2 = π. (9)

Obviously, this is the simplest way to achieve complete popu-
lation inversion. Nevertheless, this single pulse (Hamiltonian)
is highly sensitive to errors, leading to the decline of the
fidelity of population inversion.

To see it more clearly, suppose that there are errors in the
pulse areas

Am = Am(1 + εm), (10)

with dimensionless parameter εm being the error magnitude
of the mth pulse area, m = 1, 2, 3. Here, the errors εm are
supposed to be unrelated to each other, and thus regarded as
independent unknown variables. Through performing a Taylor
expansion at εm = 0, the transition probability of the target
state |4〉 becomes

P41,ε123 = 1−
(

3

4
+ 9

64
π2

)(
ε2

1 +ε2
3

)− 3π2

16
ε2

2

+
(

3

2
− 9π2

32

)
ε1ε3 + · · · . (11)

We can find from Eq. (11) that it is only accurate up to the
second-order in the errors εm. In Figs. 2(a)–2(c), we plot
the transition probability P41,ε123 versus pulse area errors εm

for the single pulse (Hamiltonian). The results show a rapid
decrease in the transition probability near εm = 0, directly
proving that it is impossible to achieve robust population
inversion with a single pulse (Hamiltonian).

To tackle this issue, we can employ CP sequences, which
consist of multiple single pulses (Hamiltonians) with the same
pulse area but different phases to be designated. For the sake
of briefness, we use the label �n to represent all phases in
the nth pulse (Hamiltonian), i.e., �n = {φn, ϕn,�n}. Then, the
total propagator for an N-pulse sequence is achieved by the
product of the propagator of each pulse (Hamiltonian),

UN
ε123

= U(�N )U(�N−1) · · · U(�2)U(�1). (12)
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FIG. 2. Transition probability of the target state |4〉 vs pulse area errors for (a)–(c) the single pulse, (d)–(f) the three-pulse sequence, and
(g)–(i) the five-pulse sequence. The pulse areas Am satisfy Eq. (9) and all phases are given by the analytical solutions. One can see in panels
(a)–(c) that the region of high transition probability (P > 99.99%) hardly appears in the single pulse.

The transition probability PN
41,ε123

of the target state |4〉
is determined by the element UN

41,ε123
in the total propagator

(12). Similar to the case of the single pulse (Hamiltonian), we
divide the transition probability PN

41,ε123
= |UN

41,ε123
|2 into mul-

tiple error terms by the Taylor expansion at ε1 = ε2 = ε3 = 0,

PN
41,ε123

=PN
41 +

∞∑
j=0

∞∑
k=0

∞∑
l=0

s jklε
j
1ε

k
2ε

l
3, (k + j + l �= 0),

(13)
where PN

41 is the accurate transition probability of the target
state |4〉 in the absence of errors, and s jkl denote error coeffi-
cients greatly affecting the preselected transition probability.
Note that the expressions for s jkl are associated with not only
Rabi frequencies, but also phases. Based on this feature, we
can utilize the phases to reduce the impact of pulse area errors.
To be specific, we design suitable �n to nullify as many
low-order error coefficients as possible while keeping the
transition probability equal to 1 at ε1 = ε2 = ε3 = 0. That is,

PN
41 = ∣∣UN

41,ε123

∣∣2∣∣∣∣
ε1=ε2=ε3=0

= 1, (14a)

s jkl = 1

j!k!l!

∂ j+k+l

∂ε
j
1∂εk

2∂εl
3

∣∣UN
41,ε123

∣∣2∣∣∣∣
ε1=ε2=ε3=0

= 0,

(14b)

where j, k, l = 0, 1, 2, . . . and j + k + l �= 0. When
low-order error coefficients vanish, a relatively large plateau
of high transition probability can appear in the vicinity of ε1 =
ε2 = ε3 = 0, thereby attaining robust population inversion.

We next take specific pulse numbers to illustrate the design
of the phases of CP sequence. According to Eq. (12), the total
propagator of the three-pulse sequence reads

U3
ε123

= U(�3)U(�2)U(�1). (15)

Since the phases of the first pulse (Hamiltonian) do not affect
the final transition probability, we simply set it to zero, i.e.,
φ1 = ϕ1 = �1 = 0. It is worth stressing that the error coef-
ficients s100, s010, and s001 in Eq. (14b) automatically vanish,
because they contain the term sin kπ or cos 3α. Furthermore,
taking account of the symmetrical structure of �1 and �3 in
propagator (2), we have s jkl = slk j . Therefore, we can use
six controllable phases {φ2, ϕ2,�2, φ3, ϕ3,�3} to solve the
following equations:

s110 = s101 = s200 = s020 = s111 = s210 = 0, (16)

where the numerical solutions are listed in Table II. It is
worth mentioning that nullifying different third-order er-
ror coefficients leads to different robust performances, and
we just select s111 = s210 = 0 here. According to these
numerical solutions, we can infer its analytical form as
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TABLE II. Phases of the three- and five-pulse sequences for population inversion and the maximum superposition state. The subscript ε123

in the sequence UN
ε123

(SN
ε123

) represents the compensation for three pulse area errors, while the subscript εm in UN
εm

indicates the compensation
for the corresponding error εm.

Three pulses Five pulses

Sequence φ2 ϕ2 �2 φ3 ϕ3 �3 φ2 ϕ2 �2 φ3 ϕ3 �3 φ4 ϕ4 �4 φ5 ϕ5 �5

UN
ε123

3.144 3.140 2.095 1.050 6.280 5.239 3.120 3.172 1.237 5.627 0.063 4.348 2.498 3.186 1.847 1.252 6.275 5.037

SN
ε123

3.587 5.281 1.604 3.587 5.281 4.745 2.388 3.141 3.896 3.723 1.806 0.754 1.165 4.948 4.359 1.165 4.948 1.218

UN
ε1

3.142 3.142 4.189 5.236 6.283 1.047 3.047 3.247 1.201 5.566 0.129 4.296 2.483 3.206 1.817 1.216 0.027 5.032

UN
ε2

1.780 2.409 4.189 3.874 0.189 2.221 3.326 3.066 4.963 0.762 0.033 1.746 3.750 3.261 4.299 5.086 6.175 1.333

UN
ε3

3.142 3.142 2.094 1.047 0.000 5.236 3.277 3.054 1.231 5.850 6.119 4.440 2.628 3.028 1.944 1.277 0.004 4.983

{π, π, 2π/3, π/3, 0, 5π/3}, which is verified to be the
exact solutions for Eq. (16). After substituting the analytical
solutions back into the transition probability, we find that
P3

41,ε123
is accurate to sixth order.

In Figs. 2(d)–2(f), we plot the transition probability P3
41,ε123

of the target state |4〉 as a function of the first two pulse area
errors ε1 and ε2 for the three-pulse sequence, where the third
pulse area error ε3 is set to 0%, 5%, and 10%, respectively.
It is easily found that the three-pulse sequence provides a
very broad area of high transition probability (P>99.99%),
whereas the single pulse fails to reach this threshold. Remark-
ably, even if the error in the third pulse area increases to 10%,
the system still maintains a high transition probability across
a wide region.

The total propagator of the five-pulse sequence can be
expressed as

U5
ε123

= U(�5)U(�4)U(�3)U(�2)U(�1). (17)

We now have 12 controllable phases that can be used for
solving the equations

s110 = s101 = s200 = s020 = s111 = s210 = 0, (18a)

s201 = s120 = s211 = s121 = s220 = s202 = 0, (18b)

where the corresponding numerical solutions are presented in
Table II.

Similar to the case of the three-pulse sequence, we
can confirm that the analytical solutions for Eq. (18) are
{π, π, 2π/5, 9π/5, 0, 7π/5, 4π/5, π, 3π/5, 2π/5, 0,

8π/5}, and P5
41,ε123

is now accurate to the tenth order.
Figures 2(g)–2(i) show the transition probability P5

41,ε123
of

the state |4〉 as a function of the first two pulse area errors
ε1 and ε2 for the five-pulse sequence, where the third pulse
area error ε3 is set to 0%, 5%, and 10%, respectively. We can
see that the robustness against the pulse area errors εm can
be further promoted by the five-pulse sequence. Such a result
substantiates the effectiveness of our designed sequences for
robust population inversion. Furthermore, it is easily observed
that the robustness of the target state |4〉 against the pulse area
errors becomes better as the number of pulses increases.

Next, we consider some special situations in which the
three pulse areas have a certain correlation, such as ε1 =
ε2 = ε3 = ε. On this occasion, we can also utilize the Taylor
expansion to construct CP sequences for compensation of the
errors. Due to the reduction of the number of error terms,

it is easier to eliminate higher-order error coefficients under
the same number of pulses. For details, one can refer to
Appendix D.

B. CPs for the maximum superposition state

In this section, we construct another type of CP sequences,
which produce the high-fidelity maximum superposition state
in a robust manner. To achieve this goal, the equations to be
satisfied become

PN
12 = PN

42 = 1

2
, (19a)

a jkl = 1

j!k!l!

∂ j+k+l

∂ε
j
1∂εk

2∂εl
3

∣∣UN
12,ε123

∣∣2∣∣∣∣
ε1=ε2=ε3=0

= 0, (19b)

bnpq = 1

n!p!q!

∂n+p+q

∂εn
1∂ε

p
2 ∂ε

q
3

∣∣UN
42,ε123

∣∣2∣∣∣∣
ε1=ε2=ε3=0

= 0, (19c)

where Eq. (19a) indicates that the population of the states |1〉
and |4〉 maintains 1/2 in the absence of pulse area errors,
and ajkl and bnpq are the error coefficients of the transition
probability from the state |2〉 to |1〉 and |4〉, respectively,
j, k, l, n, p, q = 0, 1, 2, . . . . We numerically solve the phases
for the three- and five-pulse sequences (labeled as the S3

ε123
and

S5
ε123

sequences), and the corresponding solutions are given in
Table II. For simplicity, we plot in Fig. 3 the fidelity of the
superposition state (|1〉 + |4〉)/

√
2 as a function of the first

two pulse area errors ε1 and ε2 for the five-pulse sequence,
where the third pulse area error ε3 is set to 5%. Compared
to the single pulse, the five-pulse sequence, as anticipated,
provides a wider area of high fidelity.

IV. APPLICATIONS

The CP sequences we have derived above can be applied to
realize the conversion between the W and GHZ states in a ro-
bust fashion. Recently, Zheng et al . achieved this conversion
in the Rydberg atomic system by using the Lewis-Riesenfeld
invariant (LRI) method [73]. Subsequently, a Lie-algebraic
approach based on dynamical symmetries [72] was proposed
to further reduce the evolution time. To be specific, at the
same maximum amplitude of Rabi frequencies, the evolution
time is about three times faster than that of the LRI method
[73]. Afterwards, a quantum-brachistochrone formalism [80]
was developed to obtain the time-optimal dynamical evolution
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FIG. 3. Fidelity of the superposition state (|1〉 + |4〉)/
√

2 vs
pulse area errors for (a) the single pulse and (b) the five-pulse se-
quence. The fidelity is defined by F = 1/2|(〈4| + 〈2|)|ψ (T )〉|2. The
pulse areas Am satisfy Eq. (9) and the phases are given in Table II.

in this conversion [74], shorter than the above two methods
[72,73].

It is imperative to point out that the existing methods
[72–74] lack a specialized compensation for parameter errors,
especially a deviation in driving fields. In the following, we
employ the CP sequences for achieving this conversion in a
robust way.

The physical system of interest involves three identical
neutral atoms. As shown in Fig. 4(a), each atom has a ground
state |0k〉 and a Rydberg state |rk〉, where the subscript k repre-
sents the kth atom, k = 1, 2, 3. All atoms are simultaneously
driven by four driving fields with Rabi frequencies λm and
the corresponding phases χm, m = 1, 2, 3, 4. Here, the fourth

FIG. 4. (a) Energy-level structure of three identical Rydberg
atoms driven by four external driving fields. (b) Rydberg interaction
between adjacent atoms with strength V .

driving field is only employed to eliminate energy-level shifts
[73]. Moreover, there is a detuning in each driving field and
atom, labeled as �m. As shown in Fig. 4(b), adjacent atoms
have Rydberg interaction with strength V . Therefore, in the
interaction picture, the system Hamiltonian reads

H (t ) =
3∑

k=1

4∑
m=1

[λmeiχm |0k〉〈rk| + �m|rk〉〈rk| + H.c.]

+
∑
p<q

V |rprq〉〈rprq|, (20)

where p, q = 1, 2, 3.
When the physical parameters satisfy

{V,�4} 	 {λ4,�1, δ2, δ3} 	 {λ1, λ2, λ3} (21)

with δ2 = V − �2 and δ3 = 2V − �3, according to the
second-order perturbation theory, we can ignore high-
frequency components in Eq. (20), and the effective Hamil-
tonian of this system becomes [73]

Heff =
√

3λ1ei[χ1+(�1+ξ1 )t]|010203〉〈W|
+

√
3λ3ei[χ3+(δ3+ξ2 )t]|W′〉〈r1r2r3|

+ λ2{ei[χ2+(δ2+ξ3 )t] + 2ei[χ2+(δ2+ξ4 )t]}|W〉〈W′|
− λ2ei[χ2+(δ2+ξ3 )t](|0102r3〉〈r1r203|
+ |01r203〉〈r102r3| + |r10203〉〈01r2r3|) + H.c.,

(22)

where

|W〉 = 1√
3

(|0102r3〉 + |01r203〉 + |r10203〉), (23a)

|W′〉 = 1√
3

(|r1r203〉 + |r102r3〉 + |01r2r3〉), (23b)

ξ1 = 4λ2
4

�4 + V
− 6λ2

4

�4
, (23c)

ξ2 = 4λ2
4

�4 + V
− 6λ2

4

�4 + 2V
, (23d)

ξ3 = − 2λ2
4

�4 + V
, (23e)

ξ4 = 3λ2
4

�4
− 8λ2

4

�4 + V
+ 3λ2

4

�4 + 2V
. (23f)

Once we set �1 = −ξ1, δ2 = −ξ4, δ3 = −ξ2, and make the
system satisfy the large detuning condition: δ2 	 λ2, the ef-
fective Hamiltonian (22) can be further simplified as

H ′
eff = �1eiφ|010203〉〈W| + �2eiϕ|W〉〈W′|

+ �3ei�|W′〉〈r1r2r3| + H.c. (24)

with �1 = √
3λ1, �2 = 2λ2, �3 = √

3λ3, φ = χ1, ϕ = χ2,
and � = χ3. It is easily found that the effective Hamilto-
nian (24) possesses a four-level structure studied in Sec. II A.
Therefore, the conversion between the W and GHZ states
can be viewed as population transfer between the states |2〉
and (|1〉 + |4〉)/

√
2 in the four-level system, where |GHZ〉 =

(|010203〉 + |r1r2r3〉)/
√

2.
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FIG. 5. GHZ-state fidelity vs pulse area errors for (a) the LRI
method and (b) the S5

ε123
sequence. The third pulse area error ε3 is set

to 5%.

Next, we investigate the robustness with respect to the
pulse area errors by using CP sequences. In reality, due to the
nonuniform spatial distribution of driving fields, neutral atoms
may not be accurately manipulated. Besides, the intensity
of driving fields varies over time, and thus always changes
throughout the entire evolution process. These adverse factors
may lead to errors in the pulse areas, which are denoted as
A′

m = A′
m(1 + εm), where A′

m = λmT , m = 1, 2, 3. In this sit-
uation, we apply the S5

ε123
sequence with the pulse areas given

by Eq. (8) and the phases presented in Table II to realize the
robust conversion between the W and GHZ states. To make a
comparison between the S5

ε123
sequence and the LRI method

[73], we plot the GHZ-state fidelity F = |〈GHZ|ψ (T )〉|2 as
a function of the pulse area errors in Fig. 5. The result shows
that while the LRI method is somewhat robust to the error ε2

in the second pulse area, the overall fidelity is not particularly
high in the presence of pulse area errors. Especially, the center
region of high fidelity is far away from εm = 0, compromising
the robustness for this system. In contrast, Fig. 5(b) shows that
the S5

ε123
sequence maintains high fidelity in the center region,

regardless of how the errors in three pulse areas vary within
a certain range. Obviously, the S5

ε123
sequence may be a more

suitable choice in an error-prone environment.
To see the robust performance more clearly, we now con-

sider a special case of all errors being the same, i.e., ε1 = ε2 =
ε3 = ε. Such a case may occur when there is a deviation in
the evolution time. Since there is only a single error ε, the
solutions for the phases are different from those of the SN

ε123

FIG. 6. (a) GHZ-state fidelity vs the pulse area error ε for the
S3

ε sequence and the LRI method. (b) Time evolution of the GHZ-
state fidelity using the S3

ε sequence and the LRI method. Note that
the appearance of slight oscillations [e.g., see the inset in panel (b)]
during the evolution process is due to the high-frequency components
in the Hamiltonian (20).

sequence. For example, the phases of the three-pulse sequence
(labeled as the S3

ε sequence) are

�2 = {φ2, ϕ2,�2} = {4.189, 3.142, 2.094}, (25a)

�3 = {φ3, ϕ3,�3} = {0.000, 1.047, 0.254}. (25b)

We plot the GHZ-state fidelity versus the error ε in Fig. 6(a).
In the LRI method, it is necessary to demand high accuracy of
Rabi frequencies and the evolution time to guarantee the va-
lidity of the conversion process. Once the system exhibits the
pulse area errors, the GHZ-state fidelity significantly drops,
as shown by the light solid curve in Fig. 6(a). For the S3

ε

sequence, the fidelity profile is much flatter around ε = 0,
indicating greater robustness to the pulse area errors within
a certain range.

Another important point that is worthy of attention is the
evolution time. The time evolution of the GHZ-state fidelity
is plotted in Fig. 6(b), where we employ the full Hamilto-
nian (20) rather than the effective Hamiltonian (24) to solve
the Schrödinger equation. The total evolution time of the
LRI method and the S3

ε sequence are denoted as TLRI and
TS , respectively. We can see that, under the same maximum
amplitude of Rabi frequencies, the evolution time is sharply
reduced in the S3

ε sequence. Therefore, compared to the LRI
method, the S3

ε sequence can achieve better robustness against
the pulse area errors and possess a shorter evolution time.
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V. CONCLUSION

In summary, we have implemented robust quantum state
engineering by constructing CP sequences in four-level sys-
tems. Through deriving the analytical expression of the
propagator, universal single-qubit gates are easily attained by
properly choosing the pulse areas. Furthermore, we also pre-
pare a maximum superposition state by numerically solving
the pulse areas in a three-dimensional parameter space. To
make the preparation process robust against pulse area errors,
we take advantage of CP sequences in which the relative
phases are designed for nullifying low-order error coefficients
in the transition probability. We mainly construct two classes
of CP sequences: one for robust population inversion and the
other for robust preparation of the maximum superposition
state. It is verified that both sequences work well even when
the system exhibits various errors.

For applications, the well-designed CP sequences can be
used for achieving the robust conversion of the W and GHZ
states with high-fidelity in the Rydberg atomic system. The
results demonstrate that the CP sequence can dramatically
reduce the influence of pulse area errors in this conversion.
Therefore, both advantages of robustness against errors and
short evolution time are favorable for its experimental real-
ization in an error-prone environment. We believe that the
universality and flexibility of the proposed CP sequences
make it a fascinating tool to implement high-fidelity quantum
computations in multilevel systems.
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APPENDIX A: DETAILED DERIVATION OF EQ. (2)

In this Appendix, we deduce in detail the analytical ex-
pression of the propagator without pulse area errors in the
four-level system.

We first rewrite the system Hamiltonian (1) by means of
eigenvalues and eigenstates, i.e.,

H =
4∑

i=1

λi|Ei〉〈Ei|, (A1)

with eigenvalues λi,

λ1 = −λ2 = − 1√
2

√
�2

1 + �2
2 + �2

3 − �′, (A2)

λ3 = −λ4 = − 1√
2

√
�2

1 + �2
2 + �2

3 + �′, (A3)

and eigenstates |Ei〉,

|E1〉 = 1

N

⎛
⎜⎝
√

�2
1 + �2

2 + �2
3 − �′(−�2

1 + �2
2 + �2

3 + �′)

2
√

2�1

ei(φ+ϕ+�),

�2
1 + �2

2 − �2
3 − �′

2
ei(ϕ+�),

−�2

√
�2

1 + �2
2 + �2

3 − �′
√

2
ei�, �2�3

⎞
⎟⎠

T

, (A4)

|E2〉 = 1

N

⎛
⎜⎝−

√
�2

1 + �2
2 + �2

3 − �′(−�2
1 + �2

2 + �2
3 + �′)

2
√

2�1

ei(φ+ϕ+�),

�2
1 + �2

2 − �2
3 − �′

2
ei(ϕ+�),

�2

√
�2

1 + �2
2 + �2

3 − �′
√

2
ei�, �2�3

⎞
⎟⎠

T

, (A5)

|E3〉 = 1

N

⎛
⎜⎝
√

�2
1 + �2

2 + �2
3 + �′(−�2

1 + �2
2 + �2

3 − �′)

2
√

2�1

ei(φ+ϕ+�),

�2
1 + �2

2 − �2
3 + �′

2
ei(ϕ+�),

−�2

√
�2

1 + �2
2 + �2

3 + �′
√

2
ei�, �2�3

⎞
⎟⎠

T

, (A6)

|E4〉 = 1

N

⎛
⎜⎝−

√
�2

1 + �2
2 + �2

3 + �′(−�2
1 + �2

2 + �2
3 − �′)

2
√

2�1

ei(φ+ϕ+�),

�2
1 + �2

2 − �2
3 + �′

2
ei(ϕ+�),

�2

√
�2

1 + �2
2 + �2

3 + �′
√

2
ei�, �2�3

⎞
⎟⎠

T

, (A7)
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where T denotes transposition, the normalization coefficient N reads N =
√

(�2
1 + �2

2 − �2
3)2 + (�2

1 + �2
2 − �2

3)�′, and �′ =√
(�2

1 + �2
2 − �2

3)2 + 4�2
2�

2
3.

Then, the form of the propagator at the evolution time T is given by

U =
4∑

i=1

exp(−iλiT )|Ei〉〈Ei| =
4∑

m=1

4∑
n=1

Umn|m〉〈n|, (A8)

with

U11 = 1

2A4

[(
A2

2 + A2
3 − A2

1 + A4
)

cos θs + (−A2
2 − A2

3 + A2
1 + A4

)
cos θc

]
,

U22 = 1

2A4

[(−A2
2 + A2

3 − A2
1 + A4

)
cos θs + (

A2
2 − A2

3 + A2
1 + A4

)
cos θc

]
,

U33 = 1

2A4

[(−A2
2 − A2

3 + A2
1 + A4

)
cos θs + (

A2
2 + A2

3 − A2
1 + A4

)
cos θc

]
,

U44 = 1

2A4

[(
A2

2 − A2
3 + A2

1 + A4
)

cos θs + (−A2
2 + A2

3 − A2
1 + A4

)
cos θc

]
,

U13 = U∗
31 = A1A2

A4
(− cos θs + cos θc)ei(φ+ϕ),

U24 = U∗
42 = A2A3

A4
(− cos θs + cos θc)ei(ϕ+�),

U14 = U∗
41 = −i

√
2

A4

⎛
⎜⎝ A1A2A3√

A2
1 + A2

2 + A2
3 − A4

sin θs − A1A2A3√
A2

1 + A2
2 + A2

3 + A4

sin θc

⎞
⎟⎠eiγ ,

U23 = −U∗
32 = iA2√

2A4

(√
A2

1 + A2
2 + A2

3 − A4 sin θs −
√

A2
1 + A2

2 + A2
3 + A4 sin θc

)
eiϕ,

U12 = −U∗
21 = −iA1√

2A4

⎛
⎜⎝−A2

1 − A2
2 + A2

3 − A4√
A2

1 + A2
2 + A2

3 − A4

sin θs + A2
1 + A2

2 − A2
3 + A4√

A2
1 + A2

2 + A2
3 + A4

sin θc

⎞
⎟⎠eiφ,

U34 = −U∗
43 = −iA3√

2A4

⎛
⎜⎝ A2

1 + A2
2 − A2

3 + A4√
A2

1 + A2
2 + A2

3 − A4

sin θs + −A2
1 + A2

2 − A2
3 + A4√

A2
1 + A2

2 + A2
3 + A4

sin θc

⎞
⎟⎠ei�,

where Am = �mT , m = 1, 2, 3, γ = φ + ϕ + �, A4 =
√

(A2
1 + A2

2 − A2
3)2 + 4A2

2A2
3, and

θs =
√

A2
2 + A2

3 + A2
1 − A4√

2
, (A9a)

θc =
√

A2
2 + A2

3 + A2
1 + A4√

2
. (A9b)

Note that the element U11 can be rewritten as

U11 = 1

2

(
A2

2 + A2
3 − A2

1

A4
+ 1

)
cos θs + 1

2

(
A2

1 − A2
2 − A2

3

A4
+ 1

)
cos θc,

= 1

2

(√√√√ 1

1 + ( 2A1A2

A2
3+A2

2−A2
1

)2 + 1

)
cos θs + 1

2

(
1 −

√√√√ 1

1 + ( 2A1A2

A2
3+A2

2−A2
1

)2

)
cos θc. (A10)

Through setting

tan 2θ1 = 2A1A2

A2
3 + A2

2 − A2
1

, (A11)
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the element U11 is reduced to

U11 = cos2 θ1 cos θs + sin2 θ1 cos θc. (A12)

In a similar way, the element U22 can be simplified as

U22 = cos2 θ2 cos θs + sin2 θ2 cos θc, (A13)

where

tan 2θ2 = 2A2A3

A2
3 − A2

2 − A2
1

. (A14)

Substituting Eqs. (A11) and (A14) into Eqs. (A9a) and (A9b),
we can obtain the simplified expressions for θs and θc,

θs = A1 sec θ1 cos θ2, (A15a)

θc = A1 csc θ1 sin θ2. (A15b)

APPENDIX B: EQUIVALENCY OF TWO PROPAGATORS

In this Appendix, we prove that the propagator given by
Eq. (2) is equivalent to the one in Ref. [72].

First, we redefine four new variables that relate to Eq. (3)
as follows:

φα = π

2
− (θ1 + θ2), (B1a)

φβ = −π

2
− (θ1 − θ2), (B1b)

θβ = 1

2
(θc + θs), (B1c)

θα = 1

2
(θc − θs). (B1d)

After substituting Eqs. (B1) into (2), the propagator can be
expressed in terms of four new variables,

U′ =
4∑

m=1

4∑
n=1

U′
mn|m〉〈n|, (B2)

with

U′
11 = − cos θα cos θβ − cos (φα + φβ ) sin θα sin θβ,

U′
22 = cos θα cos θβ − cos (φα − φβ ) sin θα sin θβ,

U′
33 = − cos θα cos θβ + cos (φα + φβ ) sin θα sin θβ,

U′
44 = cos θα cos θβ + cos (φα − φβ ) sin θα sin θβ,

U′
13 = U′

31 = − sin θα sin θβ sin (φα + φβ ),

U′
24 = U′

42 = sin θα sin θβ sin (φα − φβ ),

U′
14 = U′∗

41 = i(sin θα cos θβ cos φα − cos θα sin θβ cos φβ ),

U′
23 = U′∗

32 = i(sin θα cos θβ cos φα + cos θα sin θβ cos φβ ),

U′
12 = U′∗

21 = i(sin θα sin θβ cos φα + cos θα sin θβ sin φβ ),

U′
34 = U′∗

43 = i(sin θα sin θβ cos φα − cos θα sin θβ sin φβ ).

It is easy to find that Eq. (B2) is actually the expres-
sion for the propagator given in Ref. [72], when the system
Hamiltonian is time-independent. Note that the phases are not
considered in Ref. [72], and the expressions for three Rabi
frequencies are derived via the dynamical-symmetry method

rather than Eq. (3). Although the derivation ways are differ-
ent, these two propagators are equivalent to each other and
connected by Eq. (B1).

APPENDIX C: DETAILED DERIVATION
OF IMPLEMENTING SINGLE-QUBIT GATES

In this Appendix, we provide the detailed derivation of
three pulse areas used to implement universal single-qubit
gates, whose information is encoded in the states |1〉 and |4〉.

First, we solve the equation U31 = 0, i.e.,

cos θ1 sin θ2(cos θs − cos θc) = 0. (C1)

Apparently, the solutions for Eq. (C1) are

θ1 = π/2 + kπ, θ2 = kπ, θs = ±θc + 2kπ, (C2)

where k is an arbitrary integer. Through substituting θ1 =
π/2 + kπ into Eq. (3b), we find that either �1 or �2 vanishes.
As a result, the four-level system degrades into a two- or three-
level one, which is beyond our scope. A similar situation also
occurs in the case of θ2 = kπ . Therefore, these two solutions
are discarded here. For the solution of θs = ±θc + 2kπ , we
divide it in two cases,

θc = α, θs = −α + 2kπ, (C3a)

θc = α, θs = α + 2kπ, (C3b)

where α is an arbitrary real number.
For the first case (C3a), according to Eqs. (3c) and (3d), its

specific form can be expressed as

A1 csc θ1 cos θ2 = α, (C4a)

A1 sec θ1 cos θ2 = −α + 2kπ. (C4b)

After some calculations, the parameters θ1 and θ2 can be
solved analytically,

θ1 = ± tan−1

√
(α − 2kπ )2 − A2

1√
A2

1 − α2
, (C5a)

θ2 = ± tan−1
α

√
(α − 2kπ )2 − A2

1

(2kπ − α)
√

A2
1 − α2

. (C5b)

Since the element U42 in the propagator also involves the
term (cos θs − cos θc), we have U42 = 0. At the same time,
the elements U21 and U43 are reduced to

U21 = −U43 = i

(
2kπα − α2 − A2

1

)
sin α

2(kπ − α)�1
. (C6)

Obviously, the equation U21 = U43 = 0 is established when
satisfying

2kπα − α2 − A2
1 = 0. (C7)

As a result, the analytical solution of the pulse area A1 is given
by

A1 = ±
√

α(2kπ − α). (C8)
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According to Eqs. (3a) and (3b), the pulse areas A2 and A3

can be rewritten as

A2 = ±A1 csc 2θ1(cos 2θ1 − cos 2θ2), (C9a)

A3 = ±A1 csc 2θ1 sin 2θ2. (C9b)

Through using Eqs. (C5) and (C8), we acquire the analytical
expressions of A2 and A3, i.e.,

A2 = ±2(kπ − α), (C10a)

A3 = ±
√

α(2kπ − α). (C10b)

Finally, by substituting Eqs. (C5) and (C8) into Eq. (2),
the expression for the propagator of this system in the basis
{|1〉, |2〉, |3〉, |4〉} reads

U=

⎡
⎢⎢⎣

cos α 0 0 ieiβ sin α

0 cos α ieiϕ sin α 0
0 ie−iϕ sin α cos α 0

ie−iβ sin α 0 0 cos α

⎤
⎥⎥⎦,

(C11)
where

β = φ + ϕ + �. (C12)

Therefore, a universal single-qubit gate in the basis
{|1〉, |4〉},

U(α, β ) =
[

cos α ieiβ sin α

ie−iβ sin α cos α

]
, (C13)

is achieved when the pulse areas and the phases satisfy

A1 = A3 = ±
√

α(2kπ − α), (C14a)

A2 = ±2(kπ − α), (C14b)

β = φ + ϕ + �, (C14c)

where k is a positive integer and 0 < α < 2kπ .
For the second case (C3b), the derivation process is similar

to the case (C3a). Substituting the parameters θ1 and θ2 into
the equation U21 = 0 yields the expression for A1 as follows:

A1 = ±
√

−α(2kπ + α), (C15)

where k is a negative integer and −2kπ < α < 0. It is easily
seen that the form of the solution (C15) is the same as the
previous one given by Eq. (C8) through setting α′ = −α.
Therefore, we only have to adopt the first solution (C14).

APPENDIX D: CORRELATED ERROR COMPENSATION
BY COMPOSITE PULSES

In this Appendix, we first consider a case of three pulse
areas with the same error, i.e., ε1 = ε2 = ε3 = ε. For simplic-
ity, the phases of CP sequences are assumed to be symmetric,
i.e., �n = �N+1−n. In such a situation, the equations that the
phases needs to satisfy become

PN
41 = ∣∣UN

41,ε

∣∣2∣∣
ε=0 = 1, (D1a)

sk = ∂k

∂εk

∣∣UN
41,ε

∣∣2∣∣∣∣
ε=0

= 0, k = 1, 2, . . . . (D1b)

FIG. 7. Transition probability deviation 1 − P3
41,ε vs the pulse

area error ε for different three-pulse sequences in a logarithmic scale,
where the phases are given by Eq. (D4). The two gray lines indicate
the pulse area errors in the interval [−0.05, 0.05].

As an example, the total propagator of the three-pulse
sequence reads

U3
ε = U(�3)U(�2)U(�1), (D2)

with �3 = �1. In a similar manner, we set the first phases �1

to zero, i.e., φ1 = ϕ1 = �1 = 0. Again, the odd-order error
coefficients in Eq. (D1b) automatically vanish, because they
also contain the term sin kπ or cos 3α. Therefore, we can use
three controllable phases {φ2, ϕ2,�2} to solve the following
equations:

s2 = s4 = s6 = 0. (D3)

Unfortunately, it is verified that Eq. (D3) does not have
solutions. There are two methods to address it. First, we can
adopt cost functions [81,82] to find a set of optimal solutions
for the phases. Such a method sacrifices a bit of accuracy
while obtaining a broad range of error tolerance in exchange.
Second, we can properly reduce the number of subequations.
For example, we use these three phases to solve the first two
subequations: s2 = s4 = 0. Here, we adopt the latter method,
and there are two sets of solutions,

�2 = {φ2, ϕ2,�2} = {
2
3 , 2

3 , 2
3

}
π, (D4a)

�′
2 = {φ2, ϕ2,�2} = {

2
3 , 1, 2

3

}
π. (D4b)

Note that both sets of solutions make the transition probability
P3

41,ε accurate to the sixth order in the pulse area error,

P3
41,ε = 1 + O(ε6). (D5)

In Fig. 7, we plot the transition probability deviation 1 − P3
41,ε

as a function of the pulse area error ε by using Eq. (D4). It

TABLE III. Phases (in units of π ) of different five-pulse
sequences for population inversion.

Index φ2 ϕ2 �2 φ3 ϕ3 �3

�1
2,3 4/5 4/5 4/5 2/5 2/5 2/5

�2
2,3 0.498 0.751 0.493 1.362 1.792 1.352

�3
2,3 0.785 0.911 0.785 0.405 0.275 0.405
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FIG. 8. Transition probability deviation 1 − P5
41,ε vs the pulse

area error ε for different five-pulse sequences in a logarithmic scale,
where �n

2,3 denotes the nth solution in Table III. The two gray lines
indicate the pulse area errors in the interval [−0.05, 0.05].

is easily found that the profile for Eq. (D4a) is wider than
that of Eq. (D4b), because the sixth-order error coefficient of
the former is much smaller than the latter. Considering some
specific systems, such as NMR [9–12] and superconducting
qubits [83,84], the ranges of errors are generally within 5%.
Therefore, we plot in Fig. 7 two additional gray lines, which
represent the pulse area errors in the interval [−0.05, 0.05].
When the pulse error rises to 5%, the three-pulse sequence
using the phases in Eq. (D4b) fails to reach the threshold 10−4

[1]. Therefore, we prioritize Eq. (D4a) as the solution for the
three-pulse sequence.

The total propagator of the five-pulse sequence reads

U5
ε = U(�5)U(�4)U(�3)U(�2)U(�1), (D6)

with �5 = �1 and �4 = �2. We now have six controllable
phases to solve the following equations:

s2 = s4 = s6 = s8 = 0. (D7)

These equations have many solutions, some of which are
listed in Table III. The transition probability P5

41,ε is accurate
to the tenth order in the pulse area error,

P5
41,ε = 1 + O(ε10). (D8)

Figure 8 shows the transition probability deviation 1 −
P5

41,ε versus the pulse area error ε for different five-pulse
sequences. It is obvious that the population deviation is much
smaller than the threshold 10−4 for all five-pulse sequences
when the pulse area error is 5%. Note that the profile for the
first set of solutions is wider than that for the other two sets of
solutions. Therefore, the phases for the five-pulse sequence
are prioritized as �1

2,3. In Fig. 9(a), we plot the transition
probability deviation for different pulse numbers, showing

FIG. 9. Transition probability deviation 1 − PN
41,ε of the state |4〉

vs pulse area errors for different CP sequences with the pulse areas
Am satisfying Eq. (9). (a) ε1 = ε2 = ε3 = ε. (b) ε2 = ε3 = 0. (c) ε1 =
ε3 = 0. (d) ε1 = ε2 = 0. All phases are given in Table II.

that the robustness becomes stronger as the number of pulses
increases.

Interestingly, the optimal solutions for Eqs. (D3) and (D7)
are the same as in Ref. [85]. This implies that the four-level
system may be regarded as a two-level one under some spe-
cial assumptions (we assume the same pulse area errors and
symmetric pulses here).

If only one of the pulse areas exhibits an error and the
rest are accurate, we can still design specific CP sequences
to compensate for it. In this case, the total propagators of the
three- and five-pulse sequences become

U3
εm

= U(�3)U(�2)U(�1), (D9)

U5
εm

= U(�5)U(�4)U(�3)U(�2)U(�1), (D10)

where the corresponding solutions are listed in Table II.
Figures 9(b)–9(d) show the transition probability deviation
1 − PN

41,ε of the state |4〉 as a function of the pulse area errors
εm for different pulse numbers. Obviously, the CP sequences
also have strong robustness against a single type of pulse
area errors. The comparison of Figs. 9(b)–9(d) to Fig. 9(a)
indicates that under the same number of pulses, the profiles for
the UN

εm
sequences are superior to that for the UN

ε sequences.
It is responsible for the fact that one can nullify more error
coefficients in the single error case. We also notice that the
profiles for the UN

ε1
and UN

ε3
sequences are identical, resulting

from the symmetric pulse areas in the propagator (2).
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