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Recycling of a quantum field and optimal states for single-qubit rotations
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We introduce a family of quantized field states that can perform exact (entanglement- and error-free) rotations
of a two-level atom starting from a specific state on the Bloch sphere. We discuss the similarities and differences
between these states and the recently introduced transcoherent states. Our field states have the property that they
are left unchanged after the rotation, and we find they are the asymptotic states obtained when a field interacts
with a succession of identically prepared ancillary atoms. Such a scheme was recently proposed [npj Quantum
Inf. 3, 17 (2017)] as a way to “restore” a field state after its interaction with a two-level atom, so as to reuse it
afterward, thus reducing the energy requirements for successive quantum logical operations. We generalize this
scheme to find optimal pulses for arbitrary rotations and also study analytically what happens if the ancillas are
in a mixed rather than a pure state. Consistent with the numerical results in the original proposal, we find that as
long as the ancilla preparation error is small (of the order of 1/n̄, where n̄ is the average number of atoms in the
pulses considered) it will introduce only higher-order errors in the performance of the restored pulse.
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I. INTRODUCTION

In general, the quantum nature of the radiation field will
prevent the manipulation of the states of an atom with ar-
bitrary accuracy, the ultimate constraints being set either by
atom-field entanglement or by field fluctuations (or both).
The possible consequences of this for quantum information
processing were first pointed out, independently, in [1,2] and
explored subsequently in a series of papers [3–6]. As a trivial
example, if one tried to use a field in a number state |n〉 to
perform what is commonly known as a π/2 pulse in quantum
optics (a π/2 rotation on the Bloch sphere), starting from the
ground state |g〉,

|g〉 → 1√
2

(|g〉 + eiφ|e〉), (1)

where |e〉 is the excited state and φ an arbitrary phase,
conservation of energy would instead produce an atom-field
entangled state of the form

|g〉|n〉 → 1√
2

(|g〉|n〉 + eiφ |e〉|n − 1〉). (2)

The orthogonality of the field states in this expression means
that the atomic state in (2) is totally mixed and could be
described as an incoherent superposition of the desired state
|ψideal〉 [right-hand side of (1)] and an orthogonal one. Here
the error in the operation, which we can define as

ε = 1 − 〈ψideal|ρ (at)|ψideal〉 = 1
2 , (3)

where ρ (at) is the reduced density matrix of the atom, is
maximal and the underlying cause is entanglement due to a
conservation law, a point of view close to that of [2].

*SVuglar@jbu.edu

If instead one had chosen to use a field in a coherent state
|α〉, where the initial number of photons is not sharply defined,
one could in principle do much better, but the number and
phase uncertainties of the coherent state would still have re-
sulted in an error that scales as 1/n̄, with n̄ = |α|2 the average
number of photons in the coherent state [1,7]

ε = π2

64

(
�n

n̄

)2

+ (�φ)2

4
= π2

64n̄
+ 1

16n̄
, (4)

since in a coherent state �n = √
n̄ and �φ = 1/2

√
n̄. A natu-

ral question one can ask at this point is whether there are other
field states that can do even better than the coherent state. This
has been addressed recently in several papers from different
groups [8–10]. An important motivation is the question of the
energy resources needed for quantum computation [3], which
has received renewed attention lately [11].

In this context, the result established in [5], that
“[m]inimum-energy pulses for quantum logic cannot be
shared” is specially relevant. The precise result established
in [5] was that if a pulse containing n̄ photons was used to
perform the same operation (specifically a π/2 pulse) on a
set of N atoms, at least for some initial atomic states a lower
bound on the total error would be

ε � 1

4

N2

2N (N + 1) + 4n̄
, (5)

and hence the error per atom ε/N actually grows with the
number of atoms N , at approximately a linear rate (although,
in reality, sublinear) as long as n̄ � N [12].1 The implication

1A purely linear growth of ε/N was also established in [5] for
a toy model where the creation and annihilation operators in the
Jaynes-Cummings model were replaced by the Susskind-Glogower
exponential of phase operators.
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is that the basic energy requirement of n̄ photons to achieve a
target error ε per atom and operation cannot be circumvented
by using the same pulse multiple times: N operations will still
require a total energy that grows as approximately N/ε.

Surprisingly, in [8] Ikonen et al. proposed a scheme that
seems to get rid of this requirement, at least in principle. Their
proposal involves “cleaning up” the control field after each
interaction with a target atom so as to restore it to (something
close to) its initial state; this would be accomplished by having
it interact successively with a number of ancillary two-level
atoms, prepared in a special superposition state. Perhaps the
most remarkable aspect of their proposal is that preparing the
ancillas, as well as restoring them to their appropriate initial
state, could also be done with a single traveling pulse, which
could, according to their numerical calculations, be reused for
many rounds of ancilla preparation with negligible impact on
the overall error rate.

Here we present a study of how the cleanup process works,
first assuming the preparation of the ancillas is “perfect” at the
beginning of every round. We find that in this case the control
field converges, after interacting with a sufficient number of
ancillas, to a certain pure state (for which we give an analyt-
ical form), which actually minimizes the gate error, i.e., the
average of the error over all possible initial states of the target
atom, for a π -pulse operation. We also show how by preparing
the ancillas in different states one can obtain field states that
minimize the gate error for other rotations. Interestingly, we
find that these are very similar to the transcoherent states
introduced in [9,10] and designed to produce Bloch-sphere
rotations without entanglement when starting from a specific
atomic state (typically the ground or excited state). We discuss
in detail the similarities and differences between our asymp-
totic states and the transcoherent states in Sec. III below.

Finally, and as an attempt to understand the results obtained
in [8] when a single itinerant pulse is used repeatedly to pre-
pare and reset the ancillary atoms, we consider what happens
when the initial state of the ancillas is not pure but a statistical
mixture. In that case, the asymptotic state of the field is mixed
as well, but for small enough preparation errors (and large
enough n̄), we find that the state is approximately given by
a mixture of two states, both of which perform the desired
rotation with approximately the same error. This means that,
contrary to our expectations but in general agreement with
the numerical results of [8], cleaning up the control pulse
by having it interact with an ensemble of imperfectly pre-
pared ancillas does not increase the error of the operation
performed by the control pulse substantially (relative to the
perfect-ancilla case), at least as long as the ancilla preparation
error remains sufficiently small itself.

II. CLEANING UP THE FIELD: REPEATED
INTERACTIONS WITH IDENTICAL ANCILLAS

A. The π rotation case

As in [8–10], all our results will be based on the Jaynes-
Cummings model [13], which describes the interaction of
a two-level atom with a single-mode quantized field, in the
rotating-wave approximation. We write the Hamiltonian in the
form

H = h̄g(a|e〉〈g| + a†|g〉〈e|). (6)

Pure states of the atom can be represented as points on the
Bloch sphere [14], and a classical field could, by an appropri-
ate choice of its phase and interaction time, perform arbitrary
rotations on that sphere. For a quantum field, however, we
find that after the interaction the field and atom are generally
entangled, so neither of them is in a pure state. In particular,
the state of the field is modified by the interaction, so if it is
used again an error in the intended rotation will result.

In Ref. [8] the authors proposed a way to clean up the field
state by having it interact sequentially with a set of ancillary
atoms, all prepared in the initial state

|ψ〉ancilla = 1√
2

(|g〉 + i|e〉), (7)

which corresponds to the point on the positive y axis on the
Bloch sphere. This assumes the initial field has zero phase
[with the convention implicit in our choice of Hamiltonian
(6)]. The initial average number of photons n0 and the inter-
action time T with each ancilla should be chosen so that

g
√

n0T � π/2. (8)

This is the condition to cause a rotation of the state of the atom
by π radians around the x axis (a π pulse). As we will see
below, interaction with the ancillas asymptotically produces
a pulse whose average photon number only satisfies Eq. (8)
approximately, yet it is optimal (in a sense to be made precise
below) to perform a π rotation in the interaction time given.
We will also show, in Sec. II B, how to prepare optimal pulses
for other rotations, by preparing the ancillas in different initial
states.

Given an initial product state of the system in the form
|	(0)〉 = (Cg|g〉 + Ce|e〉) ⊗ |
(0)〉, the state at time t can be
written, in matrix notation, in the {|g〉, |e〉} basis, as

|	(t )〉 =
(

Ugg Uge

Ueg Uee

)(
Cg(0)
Ce(0)

)
|
(0)〉, (9)

where the operators Ui j (t ) act on the field state and are given
by

Ugg = cos(gt
√

a†a),

Uge = −i sin(gt
√

a†a)
1√
a†a

a†,

Ueg = −i sin(gt
√

aa†)
1√
aa†

a,

Uee = cos(gt
√

aa†) (10)

[compare Eq. (5) of [14], only noting that in that paper the
atomic basis vectors were chosen in reverse order {|e〉, |g〉}].
Suppose the density matrix of the field after interaction with
n ancillas is ρ

( f )
n . For the next interaction, the starting total

density matrix can be written as

ρn = ρ ( f )
n ⊗ (|ψ〉〈ψ |)ancilla = ρ ( f )

n ⊗
(

1 −i
i 1

)
, (11)

where |ψ〉ancilla is given by (7). After the interaction, the total
density matrix ρn+1 will be

ρn+1 = 1

2

(
Ugg Uge

Ueg Uee

)
ρ ( f )

n

(
1 −i
i 1

)(
U †

gg U †
eg

U †
ge U †

ee

)
, (12)
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where the Ui j operators are evaluated at the time T given by
Eq. (8). Carrying out the multiplication and tracing over the
ancilla, we obtain the new field state

ρ
( f )
n+1 = 1

2 (Uee − iUeg)ρ ( f )
n (U †

ee + iU †
eg)

+ 1
2 (Uge − iUgg)ρ ( f )

n (U †
ge + iU †

gg). (13)

A fixed point of this transformation would be provided
by a pure field state that was a simultaneous eigenstate of
Uee(T ) − iUeg(T ) and Uge(T ) − iUgg(T ) with eigenvalues of
unit magnitude. Such a state can formally be constructed.
Using the explicit expressions (10), it is easy to see that a
state of the form |
π 〉 = ∑∞

n=0 Cn|n〉, with coefficients Cn

satisfying the recursion relation

Cn+1 = cot
(

1
2 gT

√
n + 1

)
Cn, (14)

satisfies

[Uee(T ) − iUeg(T )]|
π 〉 = −|
π 〉,
[Uge(T ) − iUgg(T )]|
π 〉 = −i|
π 〉. (15)

The subscript π anticipates that this state will have something
to do with a π pulse, and indeed it can be seen from Eqs. (15)
and (9) that, after interaction with the ancilla for a time T , the
joint field-atom state is transformed as

1√
2

(|g〉 + i|e〉)|
π 〉 → 1√
2

(|g〉 − i|e〉)|
π 〉. (16)

More specifically, the state |
π 〉 has the property that it causes
an exact π rotation of the ancilla state (7), leaving the global
state unentangled and the field itself unchanged in the process.
It is, of course, not immediately obvious that the iteration (13),
starting from an arbitrary field state, will necessarily converge
to the pure state |
π 〉, and there are also potential problems
with the recursion relation (14): In particular, it would diverge
if 1

2 gT
√

n + 1 was ever equal to an integer multiple of π for
some n.

Because the state |
π 〉 is a π pulse, we expect its average
number of photons n̄ to be close to (π/2gT )2. Anticipating
things again, let us define

n� =
(

�

2gT

)2

, (17)

which will allow us to write the interaction time for a �-
rotation pulse in terms of a number n� of the order of the
average number of photons in the pulse. In our case, for
the π pulse defined by the recursion relation (14), we write
gT = π/2

√
nπ . We can assume, without real loss of gener-

ality, that we choose T so that nπ is an integer, in which
case the recursion relation terminates at nmax = 4nπ − 1. As
this happens before the cotangent function has a chance to
diverge (which would happen for n = 16nπ − 1), we see that
normalizable states |
π 〉 can be found for any integer nπ .

To check the iteration (13) for convergence, we carry out
a series of numerical experiments. Figure 1 shows what typ-
ically happens when the starting field is already quite close
to the final state; it is also in the spirit of the field cleanup
proposed in [8]. For this calculation, we start with a coherent
state |α〉 with α = 5, i.e., n̄ = 25, and have it interact with an
atom initially in the ground state for a time satisfying Eq. (8),

FIG. 1. (a) Photon number distribution for the initial field (blue,
rightmost curve), the field after interaction with an atom initially in
the ground state (red, leftmost curve), and the final field state (yel-
low, tallest curve) after interaction with a large number of ancillas.
(b) Overlap between the final field state and the field state resulting
from the interaction with N ancillas. (c) Average photon number in
the field and (d) purity of the field as a function of the number of
ancilla interactions N .

so the atom is transferred to the excited state and the field
loses, on average, one photon. We then take the resulting
field state (which is slightly mixed and has 〈n〉 = 24) as the
initial field for the interaction with the ancillas. These are
all prepared in the state (7); the interaction time with each
ancilla is chosen to be gT = π/10, i.e., we choose nπ = 25.
The first graph shows the photon number distribution for the
initial field state, the state after interacting with the atom in the
ground state, and the final field state, which has 〈n〉 � 24.7
and near unit purity after interacting with about 50 ancillas.
It also has a slightly narrower number distribution than the
initial state, reflecting the fact that it is slightly amplitude
squeezed. These features can be derived analytically, as we
will show below.

To verify that the final field state is essentially independent
of the initial one, we show, in Fig. 2, the same calculation
but starting from a |
(0)〉 that is nearly orthogonal to |
π 〉.
Specifically, instead of starting the field in a coherent state |α〉
with α = 5 we now choose α = −5, i.e., a field 180◦ out of
phase with the one we use as the initial state in Fig. 1. In spite
of this, the field eventually evolves to the same final state as
in Fig. 1, as shown by the fidelity (overlap between |
π 〉 and
the field after N ancilla iterations) plotted in Fig. 2(b), only
the convergence is somewhat slower (the fidelity starts from
practically zero in this case) and the initial drop in purity is
somewhat more pronounced than in Fig. 1(d).

A useful analytical approximation to the state |
π 〉 can be
obtained as follows. First, writing Cn+1 � C(n) + dC/dn, we
can turn Eq. (14) into a differential equation

dC

dn
=

[
cot

(
π

4
√

nπ

√
n + 1

)
− 1

]
C(n). (18)
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FIG. 2. Same as in Fig. 1, but the initial field state has the oppo-
site phase to the one in Fig. 1.

This can be integrated formally to yield

C(n) = C(0) exp

{∫ n

0

[
cot

(
π

4
√

nπ

√
n′ + 1

)
− 1

]
dn′

}
.

(19)

To get a Gaussian approximation, we can expand the integrand
around n′ = nπ − 1, giving

cot

(
π

4
√

nπ

√
n′ + 1

)
− 1 � − π

4nπ

(n + 1 − nπ ) (20)

and therefore (after normalization)

C(n) � 1√
2
√

nπ

e−(π/8nπ )(n+1−nπ )2
. (21)

The state (21) has an average number of photons n̄ = nπ − 1
and a width �n = √

2nπ/π . The latter is a good approxima-
tion to the results of our numerical experiments, but the former
is slightly off.

We can improve on the approximation (21) by noting that,
when nπ is an integer, cot[(π/4nπ )

√
n + 1] = 1 for n = nπ −

1, so [by the recursion formula (14)] Cnπ
= Cnπ −1. This means

the peak of the function C(n), and hence the point where
dC/dn = 0, should be approximately at n = nπ − 1

2 . We can
then replace the approximation (18) by

dC

dn
=

[
cot

(
π

4
√

nπ

√
n + 1

2

)
− 1

]
C(n) (22)

and proceed with the integration as before, this time expand-
ing the integrand around n = nπ − 1

2 . We also keep one more
term in the expansion, to account for the slight asymmetry
observed in the numerical experiments. The result is

C(n) � 1√
2
√

nπ

e−(π/8nπ )(n+1/2−nπ )2

×
(

1 + π (2 + π )

96n2
π

(n + 1/2 − nπ )3

)
. (23)

FIG. 3. Shown in black are the minimum and maximum errors
(pluses) obtained over ensembles of 256 atoms in random initial
states when a squeezed field with squeeze parameter r is used to
perform a π rotation; the mean (average) error for each set (solid line)
and the minimum of this curve (diamond); and the 10th, 25th, 75th,
and 90th percentiles (dotted lines). Shown in red are the extreme
error values obtained for a field in the state |
π 〉 (triangles), the mean
for this set (diamond), and the corresponding percentiles (pluses).
Shown in cyan is the error when the atom is initially in the ground
state, for a squeezed field (solid line), and for the state |
π 〉 (solid
circle).

Now the average number of photons is approximately given
by

n̄ � nπ − 1

2
+ 2 + π

8
√

nπ

, (24)

which agrees quite well with numerical results [e.g., for nπ =
25 we obtain n̄ = 24.66, while Eq. (24) gives n̄ = 24.63]. The
width of the distribution, on the other hand, is still given to a
good approximation by

�n �
√

2nπ

π
�

√
2n̄

π
(25)

since the difference between the two expressions above is of
order 1/

√
n̄. We note that (25) implies that the state |
π 〉 has

the optimal number squeezing required, according to [8], to
minimize the error in a π pulse rotation, when the gate fidelity
is averaged over all the initial atomic states.

Figure 3 explores this further by comparing the action of
the state |
π 〉 to that of the “standard” squeezed states (i.e.,
states obtained by a displacement of the squeezed vacuum),
for ensembles of 256 random initial atomic states, uniformly
distributed on the Bloch sphere (a different ensemble is used
for each value of the squeezing parameter r). The black dia-
mond shows the minimum of the mean error curve, which, for
this particular numerical experiment, is all but indistinguish-
able from the mean error achieved with the state |
π 〉 (red
diamond).

Figure 3 also shows explicitly the gate error when the
initial atomic state is the ground state |g〉, as a cyan line for
the squeezed states, and as a cyan circle for the state |
π 〉.
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FIG. 4. Rotation in the Bloch sphere produced by the state |
�〉,
when the initial ancilla state is given by Eq. (26). The rotation takes
place in the vertical plane whose intersection with the x-y plane is
shown by a dotted straight line; the axis of rotation (not shown)
would lie on the x-y plane, at an angle of π/2 − φ to the left of the x
axis.

Interestingly, this error is very close to the mean for the state
|
π 〉, but can be still reduced substantially by increasing the
squeezing, albeit at the cost of increasing the average error.
This is relevant to the discussion of transcoherent states in
Sec. III below.

B. Arbitrary rotation case

The nature of the field state produced by the iteration
process described in the preceding section was, in our nu-
merical experiments, determined exclusively by the choice
(7) of the atomic ancilla’s state. As the fixed point of the
iteration process, this final field state must be left invariant
by the interaction with the ancilla. Since the ancilla state is
on the equator of the Bloch sphere, with equal amplitudes for
the excited and ground states, it makes sense that the rotation
caused by the field should correspond to a π pulse, since
that would take the atom to another equatorial state, without
causing a change in the number of photons in the field.

From this we can conjecture that if we carry out a similar
iteration starting from a different ancilla state, such as

|ψi〉 = cos
θ

2
|g〉 + eiφ sin

θ

2
|e〉, (26)

where θ and φ are the colatitude and azimuth of the point
representing the state in the Bloch sphere, the final field state
will also produce a rotation of the Bloch vector such that the
excited- and ground-state probabilities do not change. This is
accomplished by a rotation by an angle � = 2θ in a plane
containing both the z axis and the initial Bloch vector, starting
on one side of the z axis and ending (with the same colatitude)
on the other side (see Fig. 4). In what follows we show that
this is indeed the case.

If, after interacting for a time T each with n atoms in
the initial state (26), the field’s density operator is ρ

( f )
n , after

interaction with the n + 1 atom the atom-field density matrix
will be [compare Eq. (12)]

ρn+1 =
(

Ugg Uge

Ueg Uee

)
ρ ( f )

n

(
c2 e−iφsc

eiφsc s2

)(
U †

gg U †
eg

U †
ge U †

ee

)
,

(27)
where c ≡ cos(θ/2) and s ≡ sin(θ/2) have been introduced
for convenience. The recursion relation for the field density
matrix, generalizing Eq. (13), is

ρ
( f )
n+1 = (seiφUee + cUeg)ρ ( f )

n (se−iφU †
ee + cU †

eg)

+ (seiφUge + cUgg)ρ ( f )
n (se−iφU †

ge + cU †
gg). (28)

The fixed point of this transformation is now the pure state
ρ ( f ) = |
�〉〈
�| (with � = 2θ ), with |
�〉 simultaneously
satisfying(

cos
θ

2
Ueg + eiφ sin

θ

2
Uee

)
|
�〉 = −eiφ sin

θ

2
|
�〉,

(
cos

θ

2
Ugg + eiφ sin

θ

2
Uge

)
|
�〉 = cos

θ

2
|
�〉. (29)

It is easy to verify that the coefficients of |
�〉 are given by
the recursion relation

Cn+1 = −ieiφ tan

(
θ

2

)
cot

(
1

2
gT

√
n + 1

)
Cn. (30)

Comparing this to Eq. (14), we see that it also terminates at
nmax = (π/gT )2 − 1 (independently of θ ), but that the peak
will be around the value n� defined by Eq. (17), with � =
2θ . For small �, therefore, nmax can be much greater that
n�; however, we have found numerically that the coefficients
Cn become completely negligible long before one reaches
n = nmax [something that also follows from the approximate
results (32) and (33) below]. Using (9), (26), and (29), the
effect of letting the state |
�〉 interact with the state (26) for
the time T is to produce the transformation(

cos
θ

2
|g〉 + eiφ sin

θ

2
|e〉

)
|
�〉

→
(

cos
θ

2
|g〉 − eiφ sin

θ

2
|e〉

)
|
�〉, (31)

which corresponds to the rotation described above and shown
in Fig. 4.

An approximate expression for the state |
�〉 can be ob-
tained along the same lines as in the preceding section. Each
coefficient Cn consists of a factor ein(φ−π/2) times

|Cn| �
(

�

4πn� sin(�/2)

)1/4

e−(n−n�+1/2)�/8n� sin(�/2)

×
(

1 + �(2 + � cot(�/2)

96n2
� sin(�/2)

(n − n� + 1/2)3

)
, (32)

with n� defined as in Eq. (17). The width of the distribution is
approximately

�n �
√

2n̄ sin(�/2)

�
. (33)

According to [10], this is the optimal number squeezing to
minimize the error for a � rotation, when averaged over all
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the initial states in the Bloch sphere, so the states |
�〉 are
optimal in that sense. In particular, for the case of a π/2

rotation, we find �n =
√

2
√

2n̄/π , which, according to [8],
is the optimum squeezing for a π/2 pulse.

This gives us a possible way to prepare optimal field states
to perform arbitrary rotations in the Bloch sphere. One needs
to start from a set of ancillas prepared in a state like (26),
with θ = �/2, and a field in, e.g., a coherent state. Successive
interactions, each lasting for a time T , with the atoms in
the set eventually will generate a field state that will rotate
the ancilla state exactly, without entanglement and without
changing itself, and will rotate all other initial atomic states
with minimal error, on average. (The effect of small errors in
the preparation of the ancillas is considered in Sec. IV below.)

III. SIMILARITIES AND DIFFERENCES WITH
TRANSCOHERENT STATES

In [9] Goldberg and Steinberg introduced a set of field
states they named transcoherent, whose purpose was to per-
form an exact π/2 atomic rotation, starting from either the
ground state or the excited state. More recently, in [10] these
states were generalized to perform arbitrary � rotations, al-
ways starting from either |g〉 or |e〉. The transcoherent states
are defined by recursion relations similar (but not identical)
to (30) and also have Gaussian approximations similar to
Eq. (32) in the limit of large photon numbers.

There are two main differences between the transcoherent
states and our |
�〉 states. First, the transcoherent states are
designed to perform an exact rotation by an angle � starting
from the ground or excited state, whereas for the states |
�〉
the rotation is only exact when starting from a state of the form
(26), with θ = �/2 (see also Fig. 4). Second, when starting
from the special state (26), our |
�〉 are left unchanged by the
interaction with the atom, whereas the transcoherent states in
general are not (although, as shown in [9], they can still be
reused after the interaction with an advantage over coherent
states).

Another important difference, which follows from the
above, is that the transcoherent states are only optimal for the
special initial atomic state for which they are designed (as they
rotate that state with zero error), whereas our |
�〉 states are
also optimal “on average” for arbitrary initial atomic states, as
discussed at the end of the preceding section. In particular, the
squeezing of the transcoherent states is given by [10]

�ntransc =
√

n̄ sin �

�
, (34)

which is not optimal in general and in particular means that
one cannot actually make a transcoherent state for a π rota-
tion, unlike our |
π 〉 of Sec. II A.

Figure 5 illustrates some of these differences for the case
of a π/2 rotation. Both the state |
π/2〉 and the transcoherent
state perform about as well as a squeezed state with the same
degree of squeezing on a random atomic state while clearly
exceeding the squeezed state performance for special initial
atomic states, either very close to |g〉 (for the transcoherent
state) or very close to the state (26) with θ = π/4 (for the
state |
π/2〉). Of course, for exactly those initial atomic states,

FIG. 5. Shown in black are the minimum and maximum errors
(pluses) obtained over an ensemble of 256 atoms in random initial
states when a squeezed field with squeeze parameter r is used to
perform a π/2 rotation; the mean (average) error for each set (solid
line) and the minimum of this curve (diamond); and the 10th, 25th,
75th, and 90th percentiles (dotted lines). Shown in red and dark
yellow are the extreme error values obtained for the field state |
π/2〉
and a transcoherent state (triangles), respectively, the means for
the corresponding set (diamond), and the corresponding percentiles
(pluses). Shown in cyan is the error when the atom is initially in the
ground state, for a squeezed field (solid line), and for the state |
π/2〉
(circle).

the error would go to zero and fall outside the range of the
figure, but evidently our random sample of initial atomic states
did not happen to include those states. This explains why the
minimum of the cyan solid curve, which is calculated for an
initial atomic state |g〉 and a squeezed field state, happens to be
lower than the minimum error calculated for the transcoherent
state over the random ensemble (dark yellow triangle).

If we leave aside those exceptional initial atomic states, for
which perfect (error-free) rotations are possible, and consider
instead the average error over a random ensemble of initial
atomic states, we note that, for this particular numerical ex-
periment, this is minimized by a squeezed field state (black
diamond) whose degree of squeezing is pretty close to that
of the state |
π/2〉 (red diamond). More generally, the fig-
ure shows that when acting on a random sample of initial
atomic states the average performance of both the transcoher-
ent and the |
π/2〉 states is very close to that of an ordinary
squeezed state with the same degree of squeezing. This holds
not only for the mean error but also, approximately, for the
various percentiles shown in Fig. 5 (and, for the state |
π 〉,
in Fig. 3 as well). In other words, while these special field
states presumably can perform rotations with very small error
starting from some initial atomic states [those close to either
Eq. (26), for the state |
2θ 〉, or to |g〉 or |e〉 for a transcoherent
state], the improvement over an ordinary squeezed state seems
to be appreciable only for a small subset of the atomic states
sampled, perhaps only about 10% or less.

It is probably fair to say that each of these kinds of field
states will be useful in different situations: If the initial atomic
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state is known to be |g〉 or |e〉, then the transcoherent states
will be optimal, whereas if the initial state is completely
unknown, our |
�〉 (or, alternatively, a squeezed state with
the same degree of squeezing) will minimize the average error.
Still other possibilities (initial state with known azimuth) are
discussed in [10].

IV. IMPERFECTLY PREPARED ANCILLAS

In Sec. II we assumed the ancilla state (7) or (26) was
prepared exactly, but, of course, if a pulse with a finite number
of photons is used, this is unlikely to be the case. Assuming
the ancillas start in the ground state, one might, in view of
[9,10], consider using the appropriate transcoherent state, but
this field will be changed by the interaction, and if reused for
the next ancilla, some error will be inevitable.

In this section we wish to study analytically what happens
to a field that interacts sequentially with an ensemble of ancil-
las that, because of preparation errors, is described by a mixed
state density operator ρ. Our main result is that, if the density
operator has the diagonal form

ρa = (1 − λ)|v1〉〈v1| + λ|v1〉⊥〈v1|⊥ (35)

for orthogonal states |v1〉 and |v1〉⊥ and λ � 1, the fixed point
of the iteration process

ρ
( f )
n+1 = Tra

(
Uρ ( f )

n ⊗ ρaU
†) (36)

is a field described approximately (to lowest order in λ, and in
1/n̄, the average number of photons) by the density matrix

ρ ( f ) = (1 − λ)|
1〉〈
1| + λ|
2〉〈
2|. (37)

Here |
1〉 is the field state that would result from the repeated
interaction with an ensemble of ancillas in the pure state |v1〉,
whereas |
2〉 is a state orthogonal to |
1〉. Assuming, without
loss of generality, that the state |v1〉 has the form (26), an
explicit expression for the state |
2〉 is

|
2〉 = 1√
N2

(csUgg − eiφc2Uge − e−iφs2Ueg + scUee)|
1〉

= 1√
N2

( s

c
(1 + Uee) − c

s
(1 − Ugg)

)
|
1〉, (38)

where c ≡ cos(θ/2), s ≡ sin(θ/2), and N2 is a normalization
constant. For the specific case of a π pulse, with θ = φ =
π/2, we have

|
2〉 = 1√
N2

(Uee + Ugg)|
1〉

�
√

π

2nπ

∞∑
n=0

(
n − nπ + 1

2

)
Cn|n〉, (39)

where Cn are the coefficients of the state |
π 〉, given approx-
imately by Eq. (23), and nπ , assumed large, is given by (17)
with � = π . [The proofs of the results (37) and (38) are given
in the Appendix.]

If the field state |
1〉, with an average number of photons
n̄ � nπ , is used to try to perform a π rotation on an atom,
the error, averaged over all possible initial states, will be ε1 �
π/6n̄. If instead the field state |
2〉 is used, the error [which
can be calculated from the above expressions and the explicit

forms (10), with gt = π/2
√

n̄] will be ε2 = 7π/16n̄. Hence,
if the mixed state of the field (37) is used, the error will be
ε1 with probability 1 − λ and ε2 with probability λ, for a total
error of

ε = ε1 + λ(ε2 − ε1) � π

6n̄
+ λ

13π

48n̄
. (40)

Recall that λ is the preparation error of the ancillas, so it too
should be expected to scale as 1/n̄. In [8] the authors proposed
a scheme where all the ancillas are prepared and reset by a
single itinerant pulse. Presumably this leads to an error that
grows with the number of ancillas, but as long as this number
is less than n̄ Eq. (40) suggests that the cleanup process for the
field will be reasonably effective, that is, one should be able
to reuse the field at least a few times to perform π rotations
on the target qubits with close to minimal error, as indeed the
numerical simulations of [8] suggest.

Perhaps the most surprising takeaway from the result (40)
is that lack of purity in the field state does not necessarily
translate into a gate error. The field state (37) is mixed, an
incoherent superposition of two orthogonal states, but, as it
happens, both states can accomplish the desired task (the π

rotation of the qubit), because they have approximately the
same number of photons, relatively well defined intensity
and phase, and would interact with the atom for the same
length of time. Under those circumstances, the lack of purity
(characterized by λ in the equations above) only matters when
it comes to weighing in the relative gate error for each of the
two fields: As Eq. (40) shows, if ε1 and ε2 were the same, λ

would not even contribute to the total gate error.
Essentially, this means that prior entanglement of the field

with something else is not necessarily a source of error for
a gate operation. As already suggested by our discussion in
Sec. III, very different kinds of field states can yield essen-
tially the same average error, as long as they have the same
amplitude and phase fluctuations. From this perspective, the
main problem with reusing a pulse is that prior interaction will
typically increase �n, because of the possibility of gaining
or losing a photon in the process. In the recycling scheme of
[8], this is a more pronounced risk factor for the main pulse
(because it is expected to interact with atoms that may be close
to the ground or the excited state) than for the pulse being used
to reset the ancillas (which only need to be taken from one
near-equatorial state to another); this may be, ultimately, why
the latter pulse can be used to clean up the former.

V. CONCLUSION

We have presented here an analytical treatment of the field
cleanup protocol proposed in [8] and showed that, for the case
of perfectly prepared ancillas, the cleanup process actually
results in the preparation of a field state that has a number
of similarities to the transcoherent states introduced in [9,10].
In particular, the field states we found have, like the transco-
herent states, the property of being able to carry out an atomic
state rotation with zero error and no field-atom entanglement,
for some particular initial atomic state. In addition, and un-
like the transcoherent states, the field states introduced here
minimize the average error of the operation over all the initial
atomic states.
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We have also considered to some extent the question of
what happens when an initial field state interacts repeatedly
with imperfectly prepared ancillas and found the somewhat
surprising result that, even though this reduces the purity of
the resulting field state, it does not necessarily increase the
gate error substantially. More precisely, as Eq. (40) shows,
the increase in the gate error scales as the ancilla preparation
error divided by the average number of photons in the pulse,
so if the ancilla preparation error [λ in Eq. (40)] also scales as
1/n̄, the gate error (which already scales as 1/n̄ in the perfect
ancilla case) only increases by an amount of order 1/n̄2. This,
we believe, goes some way towards explaining what, in our
opinion, is the most remarkable result in [8], namely, the
numerical calculations showing that a single preparation pulse
could be reused over and over to prepare the ancillas, without
a substantial impact on the gate error (or rather, with an error
that, initially at least, increases very slowly with the number
of reuses).

To conclude, we should comment on the main limitation
of all these proposals (including our own), which is their re-
liance on the Jaynes-Cummings model, i.e., on a single-mode
treatment of the field, an approximation that can only really
hold for an atom strongly coupled to a resonant cavity. For
an atom, or a set of atoms, in free space, the spontaneous
emission coupling to the vacuum modes is naturally stronger
than the coherent coupling to the driving laser mode and this
results in a larger error than the ones considered in either
[8] or [9,10], albeit one that still scales as 1/n̄ (since that
is the ratio of the spontaneous to the stimulated emission
rate) [15]. On the other hand, as already suggested in [8],
it might be possible to approach the error limits considered
here for atoms (real or artificial) strongly confined in one-
dimensional geometries, such as those found in waveguide
or circuit quantum electrodynamics [16]. We note that for
some of these systems, there are already theoretical proposals
for logical gates requiring only extremely low powers, at the
single-photon level (see, e.g., [17,18]). However, these typi-
cally work in the adiabatic regime and require long interaction
times, with the error scaling as some power of 1/T (e.g., 1/T 2

in [19]); moreover, they may also involve hidden energy costs
for photon routing. This last possibility makes the suggestion
in [8], that some of these techniques might find application for
photon routers or circulators (such as the systems considered
in [20]), particularly intriguing. Still, we anticipate that a full
temporal multimode treatment of the field will be necessary
to ascertain the range of applicability of the present results to
more realistic systems.
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APPENDIX: ANCILLA IN A MIXED STATE

To prove the results (37) and (38) of the main text, we will
first establish the following properties of the states |
�〉. Let
|
1〉 ≡ |
�〉 be the field state that generates an exact rotation

when starting from the atomic state

|v1〉 = cos
θ

2
|g〉 + eiφ sin

θ

2
|e〉, (A1)

with � = 2θ . Let |v′
1〉 be the rotated state [as on the right-

hand side of (31)]; let also |v2〉 ≡ |v1〉⊥ be the state orthogonal
to |v1〉 (opposite point on the Bloch sphere), |v′

2〉 the result
of applying a � rotation to |v2〉, and |v′

2〉⊥ ≡ |v′
1〉 the state

orthogonal to |v′
2〉. Explicitly, we have

|v′
1〉 = cos

θ

2
|g〉 − eiφ sin

θ

2
|e〉,

|v2〉 = sin
θ

2
|g〉 − eiφ cos

θ

2
|e〉,

|v′
2〉 = sin

θ

2
|g〉 + eiφ cos

θ

2
|e〉. (A2)

We then find the following: Under the evolution producing the
rotation �, that is, such that

U |
1〉|v1〉 = |
1〉|v′
1〉, (A3)

we have

U |
1〉|v2〉 � −
(

1 − θ sin θ

2n�

)
|
1〉|v′

2〉 +
√

θ sin θ

n�

|
2〉|v′
1〉,

U |
2〉|v1〉 �
(

1 − θ sin θ

2n�

)
|
2〉|v′

1〉 +
√

θ sin θ

n�

|
1〉|v′
2〉,
(A4)

where |
2〉 is defined by Eq. (38). It is easy to see that |
2〉
is orthogonal to |
1〉, if we observe that Ugg and Uee are
Hermitian, and U †

eg = −Uge. We then have

〈
2|
1〉 ∝ (csUgg − e−iφc2U †
ge − eiφs2U †

eg + scUee)|
1〉
= (csUgg + eiφc2Ueg + e−iφs2Uge + scUee)|
1〉
= 0 (A5)

by Eq. (29).
Besides Eqs. (A3) and (A4), an equation for the evolution

of the initial state |
2〉|v2〉 could also be written in detail, but
for our purposes it is only necessary to observe that it too will
lead to the rotation of |v2〉, except for corrections of the order
of 1/n�:

U |
2〉|v2〉 � |
2〉|v′
2〉 + terms with norm of order

1

n�

.

(A6)

Equations (A3), (A4), and (A6) show that, through order
1/n�, only two field states are involved in the time evolution
of ρ ( f ) ⊗ ρa, when these operators have the forms (35) and
(37); moreover, in the outcome of each rotation each of the
field states ends up associated with an orthogonal atomic state.
Let us then write ρ ( f ) in the form (37), only with λ replaced
by an x to be determined later:

ρ ( f ) = (1 − x)|
1〉〈
1| + x|
2〉〈
2|. (A7)
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Assuming both λ and x to be small and writing ε = √
θ sin θ/n� for brevity, we have the following evolution:

Uρ ( f ) ⊗ ρaU
† = (1 − λ)(1 − x)|
1〉〈
1| ⊗ |v′

1〉〈v′
1|

+ λ(1 − x)
[−(

1 − 1
2ε2

)|
1〉|v′
2〉 + ε|
2〉|v′

1〉
][−(

1 − 1
2ε2

)〈
1|〈v′
2| + ε〈
2|〈v′

1|
]

+ (1 − λ)x
[(

1 − 1
2ε2

)|
2〉|v′
1〉 − ε|
1〉|v′

2〉
][(

1 − 1
2ε2

)〈
2|〈v′
1| + ε〈
1|〈v′

2|
]

+ λx[|
2〉〈
2| ⊗ |v′
2〉〈v′

2| + O(1/n�)]. (A8)

Taking the trace over the atomic system and recalling |v′
1〉 and |v′

2〉 are orthogonal, we get

Tra(Uρ ( f ) ⊗ ρaU
†) = [1 − x + ε2(x − λ)]|
1〉〈
1| + [x + ε2(λ − x)]|
2〉〈
2|. (A9)

Letting x = λ, we recover Eq. (37), and so ρ ( f ) as given by Eq. (37) is indeed the fixed point of the recursion relation (36).
It remains only to prove the results (A4) and (A6). The result (A6) is more or less straightforward, because if the time gt

is chosen appropriately and the field in the operators (10) is treated classically, any initial state will be rotated by the angle
� = 2gt

√
n� and the difference between treating the field classically or quantum mechanically, to lowest order, will always be

terms with a norm (squared) of the order of 1/n̄.
Turning then to the first of Eqs. (A4), we start with the explicit expressions (A2) for the atomic states involved and the usual

representation of the evolution operator U in terms of the field operators Ui j to write

U |
1〉|v2〉 = (s2Ugg − sceiφUge + sce−iφUeg − c2Uee)|
1〉|v′
2〉 + (csUgg − eiφc2Uge − e−iφs2Ueg + scUee)|
1〉|v′

1〉, (A10)

with the usual shorthand s = sin(θ/2) and c = cos(θ/2). The field state in the second term is, by definition, |
2〉, up to a
normalization constant that we will calculate presently. The first term can be simplified if we use the identities in (29) to
eliminate the parts containing the operators Ueg and Uge, which allows us to write

(s2Ugg − sceiφUge + sce−iφUeg − c2Uee)|
1〉 = −|
1〉 + (Ugg − Uee)|
1〉. (A11)

Now it is easy to calculate 〈
1|(Ugg − Uee)|
1〉 to the
relevant order, which is the lowest nonvanishing order. Since
for a � = 2θ pulse we want gt = θ/

√
n�, where n� is ap-

proximately the center of the photon number distribution,
expanding around that point we have

Ugg = cos θ − θ sin θ

2n�

(n̂ − n�),

Uee = cos θ − θ sin θ

2n�

(n̂ + 1 − n�), (A12)

where n̂ is the photon number operator, from which it follows
immediately that

〈
1|(Ugg − Uee)|
1〉 = θ sin θ

2n�

. (A13)

Putting this together with (A11), we can see that Eq. (A10)
can be written as

U |
1〉|v2〉 � −
(

1 − θ sin θ

2n�

)
|
1〉|v′

2〉 +
√
N2|
2〉|v′

1〉
(A14)

plus possibly other terms, proportional to |v′
2〉 and involving

contributions from other field states; however, such terms are
actually negligible to this order, since, as we will see, the norm
of the second term is just what is needed for the expression
(A14) to be already normalized to order 1/n�.

To see this, as well as calculate N2 explicitly, we once
again use Eqs. (29) to eliminate the Ueg and Uge terms, which
yields the second line of Eq. (38). Substitution of the expan-
sion (A12) followed by some trigonometric manipulation then
yields

N2〈
2|
2〉 = θ2

n2
�

〈
1|
[

n̂ − n + sin2

(
θ

2

)]2

|
1〉

� θ2

n2
�

n� sin θ

θ
= θ sin θ

n�

(A15)

since the expectation value on the first line is, to this order,
essentially the variance of the photon number distribution in
the state |
1〉, which we can get from Eq. (33). This shows, as
claimed, that Eq. (A14) is normalized to this order and that the
state |
2〉 will be normalized if we choose N2 = θ sin θ/n�.

To prove the second of Eqs. (A4), we start with the equiva-
lent of Eq. (A10) for an ancilla initially in state |v1〉 and field
in state |
2〉:

U |
2〉|v1〉 = (c2Ugg + sceiφUge − sce−iφUeg − s2Uee)|
2〉|v′
1〉 + (scUgg + s2eiφUge + c2e−iφUge + scUee)|
2〉|v′

2〉. (A16)
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Now we want the projection of the first term onto |
2〉 and of the second term onto |
1〉. For the first one, we note we can write

(c2Ugg + sceiφUge − sce−iφUeg − s2Uee)|
2〉

= 1√
N2

(c2Ugg + sceiφUge − sce−iφUeg − s2Uee)
( s

c
(1 + Uee) − c

s
(1 − Ugg)

)
|
1〉

= 1√
N2

( s

c
(1 + Uee) − c

s
(1 − Ugg)

)
(c2Ugg + sceiφUge − sce−iφUeg − s2Uee)|
1〉

+ sc√
N2

(
eiφUge − e−iφUeg,

s

c
Uee + c

s
Ugg

)
|
1〉

= 1√
N2

( s

c
(1 + Uee) − c

s
(1 − Ugg)

)
|
1〉 + sc√

N2

(
eiφUge − e−iφUeg,

s

c
Uee + c

s
Ugg

)
|
1〉

= |
2〉 + sc√
N2

(
eiφUge − e−iφUeg,

s

c
Uee + c

s
Ugg

)
|
1〉, (A17)

where we have used the results (29) to simplify the second line, so now we only have to evaluate the commutator shown. By
calculating matrix elements in the |n〉 basis and expanding again the relevant operators, we obtain the result(

eiφUge − e−iφUeg,
s

c
Uee + c

s
Ugg

)
� −i

θ sin θ

nπ

(eiφ|n + 1〉〈n| + e−iφ |n〉〈n + 1|). (A18)

We can then use this and the specific expressions for the coefficients of |
1〉 and |
2〉 to calculate the projection of the second
term of (A17) onto |
2〉, keeping in mind that, around the maximum of the photon number distribution, the coefficients of |
1〉
satisfy approximately Cn+1 � −ieiφCn. The result is simply

sc√
N2

〈
2|
(

eiφUge − e−iφUeg,
s

c
Uee + c

s
Ugg

)
|
1〉 � −θ sin θ

2nπ

. (A19)

The second state in (A16) can be manipulated in a similar way, using again Eqs. (29) to show that

(scUgg + s2eiφUge + c2e−iφUge + scUee)|
2〉 = 0 + 1√
N2

(
s2eiφUge + c2e−iφUeg,

s

c
Uee + c

s
Ugg

)
|
1〉. (A20)

Expanding the commutator as before and projecting onto |
1〉 this time, we get

〈
1|(scUgg + s2eiφUge + c2e−iφUge + scUee)|
2〉 �
√

θ sin θ

nπ

. (A21)

Taking (A16), (A17), (A19), and (A21) together, the proof of the second of Eqs. (A4) is complete.
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