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Multipartite generalizations of spin coherent states are introduced and analyzed. These are the spin analogs of
multimode optical coherent states as used in continuous variable quantum information, but generalized to possess
full spin symmetry. Two possible generalizations are given, one of which is a simple tensor product of a given
multipartite quantum state. The second generalization uses the bosonic formulation in the Jordan-Schwinger
map, which we call spinor states. In the unipartite case, spinor states are equivalent to spin coherent states;
however, in the multipartite case, they are no longer equivalent. Some fundamental properties of these states
are discussed, such as their observables and covariances with respect to symmetric operators, form-preserving
transformations, and entanglement. We discuss the utility of such multipartite spin coherent and spinor states as
a way of storing quantum information.
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I. INTRODUCTION

The discovery of coherent states by Schrödinger [1] and its
application to the quantum theory of light by Glauber [2] is
one of the fundamental results in quantum optics. Coherent
states are minimal uncertainty states that follow dynamics
similar to the classical harmonic oscillator. As the amplitude
of the coherent state is increased, the quantum noise rela-
tive to the amplitude decreases [3], giving an example of
the correspondence principle. Their practical use stems from
the fact that they are the idealized quantum state that emerges
from a laser [3]. They are the starting point for examin-
ing more complex states such as squeezed states, where the
quantum fluctuations of one variable can be exchanged with
another [4,5]. By extending the system to the multimode con-
text [6–8], entangled states of light may be produced which
possess Einstein-Podolsky-Rosen (EPR) correlations [9–11].
Using such multimode systems has been the basis for various
applications such as quantum cryptography [12–15] and con-
tinuous variable quantum information [16,17].

While coherent states are naturally occurring states in
optical systems, in other systems involving an ensemble of
identical finite-dimensional quantum particles, spin coher-
ent states are their natural counterpart [18–22]. One major
difference between the two types of coherent states is that
optical coherent states do not have a definite particle number.
Meanwhile, spin coherent states in the ideal case have a fixed
particle number. Experimentally, spin coherent states are often
realized in atomic ensembles, where the internal atomic states
form the spin ensemble [23,24]. Creating a spin coherent state
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is typically the first step in generating spin squeezing [25–27].
In the case of an ensemble of two-level atoms, if they are
polarized in a particular spin direction, the remaining two spin
components may be approximated by canonical position and
momentum operators via the Holstein-Primakoff transforma-
tion [28,29]. In this way spin coherent states mimic optical
coherent states; however, it should be kept in mind that this is
a limiting case and spin ensembles offer richer physics due to
their spin symmetries. One- and two-axis spin squeezing was
proposed [25,30] and realized [31] with atomic ensembles.
The primary application of such squeezed atomic ensembles
to date has been for quantum metrology, where squeezed vari-
ables allow for measurements beyond the standard quantum
limit [24,27].

Most of the theory and experiments relating to spin co-
herent states have focused upon single atomic ensembles.
Experiments involving more than one atomic ensemble have
been performed within the Holstein-Primakoff approxima-
tion, where two-mode squeezed state generation was realized
[32,33]. The regime beyond the Holstein-Primakoff approx-
imated regime has been examined primarily theoretically to
date, extending notions of spin squeezing to two ensembles,
such as with one- and two-axis two-spin squeezed states
[34,35]. Using multiple spin ensembles has been considered
in the context of several quantum information applications,
such as remote state preparation [36], quantum teleporta-
tion [37,38], adiabatic quantum computing [39], and other
quantum algorithms [40–42]. Entanglement between two split
Bose-Einstein condensates (BECs) was experimentally ob-
served using optical imaging [43–45] and more recently with
a physical splitting procedure [46].

In this paper, we examine the multipartite generalization
of spin coherent states. There are two formulations of spin
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coherent states which we show give different generalizations.
For example, we may write a unipartite (i.e., single-ensemble)
spin coherent state consisting of qubits as

|ψ〉⊗N = (α|0〉 + β|1〉)⊗N , (1)

where α, β are normalized complex amplitudes and N is the
number of qubits. This may, for example, be realized by an
atomic ensemble consisting of N atoms, where the states
|0〉, |1〉 label the internal states of the atoms. This may be
equivalently be written

|ψ〉〉 = 1√
N!

(αa† + βb†)⊗N |vac〉, (2)

which we will call a spinor state in this paper. Here a, b are
bosonic annihilation operators and |vac〉 is the vacuum state.
This may, for example, be realized by an atomic BEC, where
a, b correspond to the internal states of the atoms. For the
unipartite case, spin coherent states and spinor states have an
exact mathematical equivalence; hence thus far there has not
been a need to distinguish them. However, in the multipartite
case, we show that spin coherent states and spinor states
are no longer equivalent. Spin coherent states generalize to
the multipartite case in a straightforward way, where we write
some of their basic properties in Sec. III. The basic difference
between the two classes of states is the type of symmetry
that they follow under particle interchange. Multipartite spin
coherent states will serve as a reference to compare their
properties to multipartite spinor states. After showing some
general properties of spinor states in Sec. IV, we show an
elementary example of a bipartite spinor state in Sec. V. We
discuss the potential applications of such states in Sec. VI and
methods to prepare them in Sec. VII.

II. UNIPARTITE SPIN COHERENT AND SPINOR STATES

A. Definitions

We first review unipartite spin coherent states and some
of their properties [18–20,29]. Consider an L-level quantum
system, where the orthogonal states are labeled as |l〉 with l ∈
[0, L − 1]. The single quantum system can be in an arbitrary
superposition state, which we write as

|ψ〉 =
L−1∑
l=0

ψl |l〉, (3)

where ψl are normalized complex amplitudes. Now consider
N duplicates of this quantum system. The total state of this
system, the unipartite spin coherent state, can be written as

|ψ〉⊗N =
(

L−1∑
l=0

ψl |l〉
)⊗N

. (4)

The N duplicates of the quantum system have the same dimen-
sion and are prepared in the same quantum state. Physically,
the spin coherent states can be realized in any system where
many duplicate quantum systems are available. A typical re-
alization of (4) is an atomic ensemble, where the state of
each atom is (3). Considering the number of duplicates to be
typically a large number N � 1, in this paper will call the
unduplicated state (3) the microscopic state, while (4) is the

macroscopic state. We will defer further details of the physical
implementation to Sec. VII, and focus on the fundamental
properties of such spin coherent states.

The spin coherent state (4) is a completely symmetric state
under particle interchange. To see this, write (4) as

|ψ〉⊗N =
L−1∑

l1,l2...,łN =0

ψl1ψl2 · · · ψlN |l1l2 · · · lN 〉. (5)

Exchanging the labels ln ↔ ln′ for n, n′ ∈ [1, N] leaves the
wavefunction unchanged. For this reason, it is possible to
write a mathematically equivalent formulation of a spin co-
herent state using bosonic operators [29]. The equivalent state
to (4) in the bosonic formulation is

|ψ〉〉 = 1√
N!

(
L−1∑
l=0

ψl a
†
l

)N

|vac〉, (6)

where [al , a†
l ′ ] = δll ′ and the vacuum state satisfies al |vac〉 =

0. State (6) is an elementary example of a spinor state. To
distinguish the spinor state from the spin coherent state, we
have used the “double-ket” notation [40] which implies an
N-fold bosonic duplication. There is no mathematical differ-
ence between a single or double ket; it is purely for notational
convenience. However, the double ket is suggestive of the fact
that the state is a macroscopic quantum state for large N .

The spin coherent state (4) and spinor state (6) have a simi-
lar appearance but in fact are not necessarily equivalent, as we
will see later. For now, we point out that the Hilbert space that
the states exist within is rather different. The bosonic formu-
lation results in a considerable reduction in the dimension of
the Hilbert space. To see this, expand (6) as (see Appendix A)

|ψ〉〉 =
N∑

k0=0

· · ·
N∑

kL−1=0

√(
N

k0, . . . , kL−1

)
ψ

k0
0 · · · ψkL−1

L−1

× |k0, . . . , kL−1〉, (7)

where the normalized number states are

|k0, . . . , kL−1〉 = (a†
0)k0 · · · (a†

L−1)kL−1

√
k0! · · · kL−1!

|vac〉, (8)

with
∑L−1

l=0 kl = N . Comparing the wavefunctions (7) and (5)
it is possible to find an equivalence between the two states
as discussed in Appendix A. The primary difference between
the two is that spin coherent states involve underlying atoms
that are distinguishable in principle, whereas spinor states
involve indistinguishable particles. Concretely, for the spin
coherent state (4), the dimension of the Hilbert space is LN .
In comparison, the dimension of the space of (7) is

D(N, L) =
(

N + L − 1

L − 1

)
. (9)

Due to the elimination of states which are not completely
symmetric under particle interchange, the dimension of the
bosonic formulation is considerably smaller. For example, in
an ensemble of two-dimensional atoms (L = 2), the Hilbert
space dimension of (1) is 2N , while the bosonic version (2)
has a dimension N + 1.
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In addition to a mathematical equivalence to spin coherent
states, the spinor states (6) can be physically created from
systems involving indistinguishable bosonic particles, such
as in a spinor BEC. Typically, in this case, al denotes the
annihilation operators for the atoms in different internal states.
Since all other degrees of freedom (e.g., spatial degrees of
freedom) are identical, the atoms in the BEC all occupy the
same physical state given by (3). Such states are also referred
to as spinor BECs [47].

B. Example: L = 2 level system

To illustrate the above, consider the L = 2 level case,
where the spin coherent state is written

|θ, φ〉⊗N =
(

cos
θ

2
|0〉 + eiφ sin

θ

2
|1〉

)⊗N

, (10)

where the equivalent spinor version is

|θ, φ〉〉 = 1√
N!

(
cos

θ

2
a† + eiφ sin

θ

2
b†

)N

|vac〉, (11)

where θ ∈ [0, π ] and φ ∈ [0, 2π ]. The bosonic operators sat-
isfy commutation relations [a, a†] = [b, b†] = 1 and [a, b] =
0. In this case, the degrees of freedom of the spin coherent
state are identical to that of a qubit, since the spin coherent
state and spinor state transform under the spin-N/2 represen-
tation of SU(2).

The spinor nature of the state may be seen by examining
the total spin operators

Sx =
N∑

n=1

σ x
n ,

Sy =
N∑

n=1

σ y
n ,

Sz =
N∑

n=1

σ z
n , (12)

where σ
j

n is a Pauli spin operator for the nth duplicate qubit.
These obey the commutation relations [S j, Sk] = 2iε jklSl ,
where ε jkl is the Levi-Civita antisymmetric tensor. The total
spin operator can also be written in the bosonic formulation

Sx = a†b + b†a,

Sy = −ia†b + ib†a,

Sz = a†a − b†b. (13)

We use the same notation for the spin coherent state and spinor
state since it will be self-evident which version should be used
in each case, and they have similar properties in most cases.

The expectation values of the total spin operators in either
formulation are

〈Sx〉 = N sin θ cos φ,

〈Sy〉 = N sin θ sin φ,

〈Sz〉 = N cos θ, (14)

which are the same as for a qubit, but multiplied by N . We
may thus understand the spin coherent state to be a polarized
state where all the qubits point in the same spin direction. This
shows the homomorphism between SU(2) to SO(3), which
characterizes spinors [48].

The spin coherent state (10) and spinor state (11) are eigen-
states of the Hamiltonian

H = −n · S, (15)

where n = (nx, ny, nz ) and

nx = sin θ cos φ,

ny = sin θ sin φ,

nz = cos θ. (16)

They are the ground states of their respective Hamiltonians
with eigenvalue −N . For example, for the spinor state,

H |θ, φ〉〉 = −N |θ, φ〉〉, (17)

and similarly for the spin coherent state.

III. MULTIPARTITE SPIN COHERENT STATES

A. Definition

Constructing the spin coherent state as in (4) or (6) follows
a simple procedure: one starts with a single quantum system
and duplicates it N times. While the spin coherent state is
already a many-body state involving N quantum atoms, in
terms of the quantum information stored on the state, it is
equivalent to a single quantum system, since the N quantum
systems are duplicates. For example, the spin coherent state
(10) is parametrized by two variables θ, φ, which is the same
as a pure state of a single qubit.

We now generalize spin coherent states to the multipartite
case. We define the multipartite spin coherent state as

|�〉⊗N =
⎛
⎝ ∑

l1,...,lM

�l1··· lM |l1〉 ⊗ |l2〉 ⊗ · · · ⊗ |lM〉
⎞
⎠⊗N

. (18)

Here, the underlying multipartite state involves M subsystems
with basis states |l1〉 ⊗ |l2〉 ⊗ · · · ⊗ |lM〉. As before, the mul-
tipartite state is duplicated N times.

The physical configuration corresponding to (18) can be
pictured in Fig. 1(a). Physically, this may be realized by
preparing N duplicate quantum systems, each consisting of
M subsystems. In this paper, we call each of the duplicates a
molecule, as suggested by the molecular gas picture shown
in Fig. 1(a). Each molecule is in a state |�〉, and the full
system consists of an ensemble of such molecules. Within
each molecule, each of the M subsystems does not necessarily
need to be the same dimension L. For example, in Fig. 1(a),
the molecule consists of two qubits and a qutrit. In most cases
that we consider in this paper, the dimension L is the same for
all subsystems.

We now define the notion of locality for the multipartite
spin coherent state. Consider rearranging in the configura-
tion of the molecules in Fig. 1(a) into that of Fig. 1(b),
where each of the subsystems of the multipartite wavefunction
are grouped together. The structure of the entanglement still
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FIG. 1. Multipartite spin coherent states and spinor states as
considered in this paper. Spin coherent states (18) are shown in
(a) and (b), while spinor states (30) are shown in (c). Each of the
N “molecules” are in the state |�〉. (b) shows a rearranged version
of (a) and is the identical quantum state. The labeling conventions in
the paper are shown. Thick horizontal lines in the circles are distinct
quantum states and the dot indicates occupancy of the state. Black
dotted lines indicate entanglement between the subsystems. The
figure shows the case of M = 3 subsystems, N = 4 duplicates, and
subsystem dimension L = 2, 3 (qubit or qutrit). Cyan dashed boxes
in (b) and (c) show the notion of locality. Arrows show examples
of local particle interchange. Spinor states are symmetric under local
particle interchange [panel (c)], while spin coherent states [panel (b)]
are not.

remains the same, where each particle is entangled to its cor-
responding subsystem. We call any operation that only deals
with the mth subsystem (m ∈ [1, M]) a local operation [49].

B. Expectation values and covariances

Now let us evaluate the expectation values and variances
of the multipartite spin coherent state. We will primarily con-
sider observables that are symmetric with respect to particle
interchange in a similar way to the spin operators (12) taking
the form

C =
N∑

n=1

cn, (19)

where cn is an operator that acts on the nth molecule of
the spin coherent state, with n ∈ [1, N]. We consider such
operators that are symmetric under particle interchange based
on a physical motivation, that one typically cannot access a
particular microscopic molecule in an ensemble. For example,
in an atomic or molecular gas ensemble, one may be able to
access the global properties of the ensemble, but not a single
atom or molecule of the ensemble.

For such symmetric operators, there is a simple relation-
ship between the microscopic and macroscopic expectation
values. For a unipartite expectation value we have

〈C〉 ≡ 〈�|⊗NC|�〉⊗N

= N〈c〉, (20)

where

〈c〉 = 〈�|cn|�〉. (21)

Here, we have dropped the n label because any of the N
duplicate molecular states are the same.

Expectation values of products of symmetric operators
generally give more complex relations. For example, for two
operators C and D = ∑N

n=1 dn taking the same form as (19),
we have

〈CD〉 = N〈cd〉 + N (N − 1)〈c〉〈d〉, (22)

where

〈cd〉 = 〈�|cndn|�〉. (23)

The contribution from the microscopic correlations is dom-
inated by the single-particle expectation values of order N2.
Covariances, on the other hand, have a simpler relation. For
example, we have

Cov(C, D) = 〈CD〉 − 〈C〉〈D〉
= N (〈cd〉 − 〈c〉〈d〉) = NCov(c, d ). (24)

The simple relation arises from a neat cancellation of terms of
order N2. In this sense, covariances are the natural quantity to
relate the microscopic and macroscopic quantities involving
products of operators. It follows that variances have the same
relation:

Var(C) = 〈C2〉 − 〈C〉2

= N (〈c2〉 − 〈c〉2) = NVar(c). (25)

The above may be straightforwardly generalized to
higher-order correlators. Specifically, central moments relate
macroscopic and microscopic quantities. For example, the
third-order central moments are related as

〈(C − 〈C〉)(D − 〈D〉)(E − 〈E〉)〉
= N〈(c − 〈c〉)(d − 〈d〉)(e − 〈e〉)〉, (26)

where E = ∑N
n=1 en is a symmetric operator.

C. Form-preserving transformations

The multipartite spin coherent state is a subclass of states
that has the specific form (18). Under a general unitary trans-
formation, a spin coherent state will not in general remain a
spin coherent state. It is therefore of interest to know what
transformations leave the state in the class of states (18).

For the multipartite spin coherent states this may be easily
answered. For the states of the form (18), it is clearly any
unitary transformation of the form

U = u⊗N =
N∏

n=1

e−itHn/h̄ = e− it
h̄

∑
n Hn , (27)

where u is a unitary operator acting on the nth duplicate,
Hn is the underlying Hamiltonian for this operation, and t is
the evolution time. The above unitary simply transforms all
the duplicates in the system in the same way, such that all the
final states are all the same state

U |�〉⊗N = |� ′〉⊗N , (28)

where |� ′〉 = u|�〉 is the microscopic transformation for each
molecule.
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A sufficient condition for the preservation of a spin coher-
ent state is then that the Hamiltonian of the associated unitary
transformation has a form that is symmetric under interchange
of the molecules,

H =
∑

n

Hn, (29)

which is evident from (27).

IV. MULTIPARTITE SPINOR STATES

A. Definition

We now make another generalization of the spin coherent
state, this time using the bosonic formulation (6). The multi-
partite spinor state is defined as

|�〉〉 = 1√
N�

⎛
⎝ ∑

l1,...,lM

�l1···lM a†
1,l1

· · · a†
M,lM

⎞
⎠N

|vac〉, (30)

where am,l labels a bosonic annihilation operator for a boson
in the mth subsystem, in the lth state. The wavefunction
�l1··· lM is the same wavefunction that appears in the multi-
partite spin coherent state (18). While �l1···lM is a normalized
wavefunction, the spinor state will not necessarily be nor-
malized; hence we include a normalization factor N� . The
normalization factor is not a universal constant as we saw in
the unipartite case, and is dependent on the particular state �.
We remind the reader of this dependence with a subscript N� .

To understand what kind of a state the spinor state is, let us
write the states on the mth subsystem. The normalized number
states are defined as

|k0, . . . , kL−1〉m = (a†
m,0)k0 · · · (a†

m,L−1)kL−1

√
k0! · · · kL−1!

|vac〉, (31)

where
∑L−1

l=0 kl = N . This type of state can be pictured in the
way shown in Fig. 1(c). The N bosons on each subsystem can
be distributed among the L levels, where each level can be
occupied by more than one boson. A difference that is imme-
diately apparent here is that the identity of the unduplicated
state is less easily seen in the spinor case compared to the spin
coherent state. Despite the relatively simple form of wave-
function (30), its underlying state is ultimately an entangled
state of M qudits, each of dimension D(N, L), as given in (9).
For example, for an L = 2 subsystem, the dimension of the
full system is (N + 1)M .

B. Form-preserving transformations

In a way similar to multipartite spin coherent states, we
examine unitary transformations that preserve the form of the
spinor states. Namely, we look for unitary transformations that
realize |�〉〉 → |� ′〉〉.

In contrast to the spin coherent state case where it is pos-
sible to write a form-preserving unitary for general unitary
transformations |�〉⊗N → |� ′〉⊗N , for spinor states this is
more difficult due to the collective nature of subsystems. How-
ever, local linear unitary transformations are form preserving.

Consider a transformation of the form

Vm = exp

(
−i

∑
ll ′

Hll ′a
†
m,l am,l ′

)
, (32)

where Hll ′ is a Hermitian matrix. Applying this to the spinor
state we have

V1|�〉〉 = V1√
N�

⎛
⎝ ∑

l1,...,lM

�l1··· lM a†
1,l1

· · · a†
M,lM

⎞
⎠N

× V †
1 V1|vac〉

= 1√
N�

⎛
⎝ ∑

l1,...,lM

�l1··· lMV1a†
1,l1

V †
1 · · · a†

M,lM

⎞
⎠N

|vac〉

= 1√
N�

⎛
⎝ ∑

l1,...,lM

∑
l ′1

�l1···lM vl1l ′1 a†
1,l ′1

· · · a†
M,lM

⎞
⎠N

|vac〉,

(33)

where we have chosen m = 1 without loss of generality and
used the fact that a linear unitary transformation restricted to
the mth subsystem linearly transforms the bosonic operators
according to

Vma†
m,lV

†
m =

∑
l ′

vll ′a
†
m,l ′ . (34)

Hence we conclude that applying any local operator of the
form (32) will preserve the spinor nature of the state,

Vm|�〉〉 = |� ′〉〉, (35)

where the transformation of the bosonic operators works in
exactly the same way as a local transformation for the under-
lying state. That is, for the underlying state

|�〉 =
∑

l1,...,lM

�l1··· lM |l1, . . . , lM〉, (36)

applying the local operation on the mth subsystem

Vm = exp

(
−i

∑
ll ′

Hll ′ |l〉m〈l ′|m
)

(37)

gives the state

|� ′〉 = Vm|�〉. (38)

Clearly, multiple applications of local transformations also
preserve the spinor state form.

C. Inequivalence to spin coherent states

Some of the above aspects, such as the state-dependent
normalization and the lack of a general form-preserving trans-
formation, already suggest that the spinor state is in fact
inequivalent to spin coherent states in the multipartite case.
Here we explicitly show the reason for this inequivalence.

We show the inequivalence by contradiction, by explicitly
trying to establish a mapping in a way similar to that done in
Appendix A. Considering the M = 2, L = 2, N = 2 case, we

022438-5



TIM BYRNES PHYSICAL REVIEW A 109, 022438 (2024)

write the spin coherent state

(α|00〉 + β|01〉 + γ |10〉 + ω|11〉)⊗2

= α2|00〉|00〉 + β2|01〉|01〉 + γ 2|10〉|10〉 + ω2|11〉|11〉
+ αβ(|00〉|01〉 + |01〉|00〉) + αγ (|00〉|10〉 + |10〉|00〉)

+ βω(|01〉|11〉 + |11〉|01〉) + γω(|10〉|11〉 + |11〉|10〉)

+ αω(|00〉|11〉 + |11〉|00〉) + βγ (|01〉|10〉 + |10〉|01〉),
(39)

where α, β, γ , and ω are normalized complex coefficients. We
may see how the form of the spin coherent state makes each
of the terms with the same coefficient symmetrized under a
bipartite interchange. In the general case, spin coherent states
involve number states that are symmetric under an M-particle
interchange.

Compare this to the unnormalized spinor state with the
same coefficients:

(αa†
1a†

2 + βa†
1b†

2 + γ b†
1a†

2 + ωb†
1b†

2)2|vac〉
= [α2(a†

1a†
2)2 + β2(a†

1b†
2)2 + γ 2(b†

1a†
2)2 + ω2(b†

1b†
2)2

+ 2αβ(a†
1)2a†

2b†
2 + 2αγ a†

1b†
1(a†

2)2 + βωa†
1b†

1(b†
2)2

+ γω(b†
1)2a†

2b†
2 + 2(αω + βγ )a†

1b†
1a†

2b†
2]|vac〉, (40)

where we have defined am ≡ am,0, bm ≡ am,1 for notational
simplicity. Comparing coefficients, for most of the terms there
is no problem in establishing a mapping between the spinor
and spin coherent case. For instance, looking at the term with
coefficient αβ, the bosonic state maps to

(a†
1)2a†

2b†
2|vac〉 ↔ |00〉|01〉 + |01〉|00〉

= |0〉⊗2
1 (|01〉2 + |10〉2), (41)

where in the last line we rearranged and labeled the qubits to
better show which subsystem they lie on. We see that in this
case the states are consistent with the mapping given in Ap-
pendix A (see also Ref. [29]). We note we have not considered
the proper normalization, and only discuss the identity of the
states.

Issues arise when considering the terms in the last lines of
(39) and (40). Mapping the αω and βγ terms, we require two
different states to both map to the same bosonic state:

a†
1b†

1a†
2b†

2|vac〉 ?↔ |00〉|11〉 + |11〉|00〉,
a†

1b†
1a†

2b†
2|vac〉 ?↔ |01〉|10〉 + |10〉|01〉. (42)

The states on the right-hand side are distinct states, and it
is problematic that distinct states do not exist in the spinor
formulation. Furthermore, both of the mappings above are in-
consistent with the mapping of Appendix A, since one would
expect the mapping

a†
1b†

1a†
2b†

2|vac〉
↔ 1

4 (|00〉|11〉 + |11〉|00〉 + |01〉|10〉 + |10〉|01〉)

= 1
4 (|01〉1 + |10〉1)(|01〉2 + |10〉2). (43)

A consistent mapping is, however, possible if one assumes
αω = βγ , which is satisfied for unentangled states.

The above shows that a precise mapping between a spin
coherent state and spinor states is no longer possible with
multipartite states, in the general case. The difference between
the two classes of states originates from the different types
of symmetry that they possess. As suggested in (39), spin
coherent states are symmetric under interchange of any two
molecules. This means one must interchange all the subsys-
tems together. Meanwhile, spinor states are symmetric under
local interchange of the particles. The spinor state consists
of a superposition of a tensor product of number states (31),
which are symmetric under interchange of any two particles
on the mth subsystem. In this way, the two classes of states
are distinct. Nevertheless, it is clear from their definitions
that they both contain the same information of the underlying
multipartite state �. Hence, they can be considered different
ways of storing the same quantum information, both in a
highly duplicated way.

We note the results shown above merely show that the spin
coherent state (18) and the spinor state (30) are different states
in their nature. It does not mean, for instance, that spinor states
cannot be implemented with distinguishable particles. In fact,
spinor states can always be realized with either indistinguish-
able or distinguishable particles using the mapping shown in
Appendix A. Any spinor state can always be expanded in
terms of the number states (31), after which the mapping (A2)
can be used. Hence, a multipartite spinor state can be equally
implemented with a BEC as well as an atomic ensemble.

V. THE BIPARTITE SPINOR STATE

We now examine a specific example of a spinor state
to gain more intuition about their properties. We consider
the M = 2 (bipartite), L = 2 (two-level) case for general N
(duplication factor).

A. State parametrization

Let us consider a general bipartite two-level spinor state

|�〉〉 = 1√
N�

(�00a†
1a†

2 + �01a†
1b†

2 + �10b†
1a†

2 + �11b†
1b†

2)N

× |vac〉, (44)

where we again use the same definitions of the bosonic oper-
ators as in (40). Using the form-preserving transformation of
Sec. IV B, we may write the spinor state in Schmidt form,

|�〉〉 = 1√
N�

V1V2(cos χa†
1a†

2 + sin χb†
1b†

2)N |vac〉, (45)

where for m ∈ {1, 2}
Vm = exp(−inm · Smθm/2), (46)

and nm is a unit vector with three real components, Sm =
(Sx

m, Sy
m, Sz

m). The parameters nm and θm are the same param-
eters that would be chosen to put the unduplicated version of
the state

�00|00〉 + �01|01〉 + �10|10〉 + �11|11〉 (47)

into Schmidt form.

022438-6



MULTIPARTITE SPIN COHERENT STATES AND SPINOR … PHYSICAL REVIEW A 109, 022438 (2024)

The normalization is best evaluated in Schmidt form. Using
(45) the normalization factor is evaluated as

N� = 〈vac|(cos χa1a2 + sin χb1b2)N

× (cos χa†
1a†

2 + sin χb†
1b†

2)N |vac〉

= (N!)2
N∑

k=0

cos2k χ sin2N−2k χ (48)

= (N!)2(cos2N+2 χ − sin2N+2 χ )

cos 2χ
, (49)

where in the first line we used V †
mVm = I and in the second line

we expanded the brackets and used the normalized number
states (31). We see explicitly the state-dependent aspect of the
normalization factor.

For the case χ = π/4, we separately evaluate

N� = (N!)2

2N
(N + 1) (50)

following from (48).

B. Hamiltonian

In order to prepare the bipartite spinor state it is useful to
know what Hamiltonian has (44) as its ground state. We first
start by deducing the Hamiltonian that has

|χ〉〉 = 1√
N�

(cos χa†
1a†

2 + sin χb†
1b†

2)N |vac〉 (51)

as its ground state. It may be verified that the Hamiltonian

H0 = sin 2χ
(
Sy

1Sy
2 − Sx

1Sx
2

) + cos 2χ
(
Sz

1 + Sz
2

) − Sz
1Sz

2 (52)

satisfies the eigenvalue equation

H0|χ〉〉 = −N (N + 2)|χ〉〉 (53)

for all N . Hence, the general spinor state (45) may be created
by finding the lowest energy state of

H = V1V2H0V
†

1 V †
2 . (54)

The eigenvalue equation that this satisfies is

H |�〉〉 = −N (N + 2)|�〉〉. (55)

C. Expectation values, covariances, and correlations

Spin operators transform under the unitary operations (46)
in exactly the same way as for Pauli operators. The spin
transformation is

V †
mSi

mVm =
∑

j

Oi j
mS j

m ≡ S̃i
m, (56)

where i, j ∈ {x, y, z} and Om is the rotation matrix on the
Bloch sphere associated with the unitary transformation (46).
We indicate spin operators that are in the Schmidt basis with
a tilde.

While the local transformations give an equivalent trans-
formation of the spin operators in comparison to the usual
qubit (N = 1) Pauli spin operators, the remaining part of the
wavefunction has a different behavior. We therefore work in
the Schmidt basis and evaluate the expectation values and
covariances as given in Appendix B. The exact formulas are

FIG. 2. Expectation values and covariances of spin operators for
the two-qubit spinor state (45). Spins are taken to be in the Schmidt
basis. Solid lines correspond to exact values using the expressions
given in Appendix B, where N = 50 is used for all plots. Dashed
lines indicate approximations for large N or the values for the spin
coherent states (SCS) as indicated. The remaining nonzero covari-
ances are Var(S̃y

m ) = Var(S̃x
m ) and Cov(S̃y

1S̃y
2 ) = −Cov(S̃y

1S̃y
2 ). (f) The

same spinor variances and covariances as (b)–(e) but plotted on a
larger scale to show their maximum values. The dotted line shows
the limiting value (65) and (66) for all curves.

given in Appendix B; here we give some approximate formu-
las that are valid in the limit of large N .

We will compare the expectation values and covariances of
the spinor state to the corresponding spin coherent state,

|�〉⊗N = V1V2(cos χ |00〉 + sin χ |11〉)⊗N , (57)

where the transformation to the Schmidt basis is the same as
for the spinor case (46).

1. Single spin expectation values

For the first-order expectation values we have for m ∈
{1, 2} 〈

S̃x
m

〉 = 〈
S̃y

m

〉 = 0, (58)

which is the same as obtained for spin coherent states.
For the diagonal spin operator in the Schmidt basis we have

for large N

〈
S̃z

m

〉 ≈ N
cos 2χ

|cos2χ | = Nsgn(cos 2χ ). (59)

In Fig. 2(a) we plot the normalized expectation value and also
plot the limiting case for N → ∞. We also compare it to the
spin coherent state which in this case is 〈S̃z

m〉 = N cos 2χ . The
spin coherent case is simply N times the qubit expectation
value, following (20). Hence, as N increases from N = 1,
the original cosine function approaches a step function. The
origins of this sharper dependence are the additional factorials
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introduced in the number state definitions (31) with the second
subsystem.

2. Covariances

It is convenient to summarize the covariances in terms
of a symmetrized covariance matrix defined with matrix
elements as

V jk = 1
2 〈{ξ j, ξk}〉 − 〈ξ j〉〈ξk〉, (60)

where {C, D} = CD + DC is the anticommutator and we take
the operator set as

ξ = (
S̃x

1, S̃y
1, S̃z

1, S̃x
2, S̃y

2, S̃z
2

)
. (61)

In the limit of large N and away from the vicinity of χ = π/4,
we approximately obtain (see Appendix B)

Vspinor ≈

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

N
| cos 2χ | 0 0 N sin 2χ

| cos 2χ | 0 0

0 N
| cos 2χ | 0 0 −N sin 2χ

| cos 2χ | 0

0 0 tan2 2χ 0 0 tan2 2χ

N sin 2χ

| cos 2χ | 0 0 N
| cos 2χ | 0 0

0 −N sin 2χ

| cos 2χ | 0 0 N
| cos 2χ | 0

0 0 tan2 2χ 0 0 tan2 2χ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (62)

This can be compared to the (exact) covariance matrix for the spin coherent state (57), which is

VSCS = N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 sin 2χ 0 0

0 1 0 0 − sin 2χ 0

0 0 sin2 2χ 0 0 sin2 2χ

sin 2χ 0 0 1 0 0

0 − sin 2χ 0 0 1 0

0 0 sin2 2χ 0 0 sin2 2χ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (63)

which can be simply evaluated using (24).

We first see that all zero elements of the covariance matrix
are in common between the spinor and spin coherent state
versions. This arises due to the fact that in an expansion in
terms of number states,

|χ〉〉 = 1√
N�

∑
k

cosk χ sinN−k χ |k〉1|k〉2, (64)

and only operators that preserve the relative number are
nonzero. Hence the only nonzero two-spin expectation values
are 〈S j

1S j
2〉 and 〈(S j

m)2〉 for j ∈ {x, y, z}.
A comparison of the variances of local spin operators is

shown in Figs. 2(b) and 2(c). For the variance of Sx
m and Sy

m

the variance takes larger values than that of a spin coherent
state. As the state approaches the maximally entangled point
χ = π/4, the large N variance magnitude increases due to
the factor of | cos 2χ | in the denominator in (62). For the
variance of Sz

m, for much of the domain of χ , it takes values
less than that of the spin coherent state. This is due to the
fact that terms proportional to N and N2 are suppressed and
only the constant term survives (see Appendix B). Again near
χ = π/4 the variance increases and overtakes the value for
the spin coherent state. While the variances in (62) appear to
diverge, in fact for finite N , all the variances approach a finite
value

lim
χ→π/4

Var
(
S̃ j

m

) = N (N + 2)

3
, (65)

for j ∈ {x, y, z}. This may be also seen in Fig. 2(f), where a
larger range of the variances is plotted.

The covariances show a similar dependence; these are plot-
ted in Figs. 2(d) and 2(e). First, we see the expected pattern
of correlations for Cov(Sx

1, Sx
2 ), Cov(Sz

1, Sz
2) and anticorrela-

tions for Cov(Sy
1, Sy

2) = −Cov(Sx
1, Sx

2 ). The magnitude of the
covariances Cov(Sx

1, Sx
2 ), Cov(Sy

1, Sy
2) exceed that of a spin co-

herent state while Cov(Sz
1, Sz

2) takes typically smaller values.
Near χ = π/4, the covariances take large values, but take a
limiting value of

lim
χ→π/4

Cov
(
S̃ j

1, S̃ j
2

) = (−1)δ jy
N (N + 2)

3
, (66)

for j ∈ {x, y, z} and δi j is a Kronecker delta. This is shown in
Fig. 2(f).

3. Correlations

The different dependencies of the covariances for the
spinor states and spin coherent state suggest that, quantita-
tively, these states have different correlations. In fact, they
are quite closely related as may be seen by looking at their
correlations, which can be defined as

Corr(C, D) = Cov(C, D)√
Var(C)Var(D)

. (67)

In effect, this quantity normalizes the covariance with the
variance of the underlying variables themselves. The large
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covariance as seen in Figs. 2(d) and 2(e) may be understood
as arising from the large variance of the original single spin
variables [Figs. 2(b) and 2(c)].

Evaluating this for the spinor states, we find

Corr
(
S̃x

1, S̃x
2

) = sin 2χ,

Corr
(
S̃y

1, S̃y
2

) = − sin 2χ,

Corr
(
S̃z

1, S̃z
2

) = 1. (68)

Remarkably, these are exact relations valid for all N , as may
be found using the general expressions in Appendix B. Fur-
thermore, exactly the same expressions are obtained for the
spin coherent states, as may be easily verified from (63). In
this sense, the spinor and spin coherent states have the same
two-spin correlations.

In summary, spinor expectation values and covariances
follow the same pattern of zero values. For the nonzero ex-
pectation values they do not have the same type of dependence
as the spin coherent state versions of the expectation values,
although there is a resemblance in terms of sign and turning
points. They, however, have exactly the same two-spin corre-
lations as defined by (67). Local spin transformations work in
exactly the same way as for qubits, due to the relations (56).
Hence, any difference between spin coherent state expectation
values and the spinor expectation values will result from a
different dependence of the nonzero expectation values and
covariances as shown in Fig. 2.

D. EPR correlations

Due to the same way that spinor states transform under
local transformations to their unduplicated counterpart, they
share similar entanglement properties. This is best illustrated
with the spinor version of the Bell state [50,51],

|�+〉〉 = 1

N!
√

N + 1
(a†

1a†
2 + b†

1b†
2)N |vac〉, (69)

which is the point χ = π/4 in (51). Making an expansion in
the number basis we observe that this is a maximally entan-
gled state,

|�+〉〉 = 1√
N + 1

N∑
k=0

|k〉1|k〉2. (70)

These states have a basis invariance property, which may be
shown by making a change of basis to the x basis; we have for
m ∈ {1, 2}

am = ax
m + bx

m√
2

,

bm = ax
m − bx

m√
2

, (71)

such that we may rewrite

|�+〉〉 = 1

N!
√

N + 1
(ax

1
†ax

2
† + bx

1
†bx

2
†)N |vac〉. (72)

FIG. 3. Entanglement in the bipartite spinor state (44) and spin
coherent state (57). (a) Von Neumann entropy normalized to the
maximum entanglement Emax = log2 N + 1 for the spinor state and
Emax = log2 2N = N for the spin coherent state. Minimum eigenvalue
of (b) the left-hand side of (77) and (c) the left-hand side of the
Hoffman-Takeuchi (HT) inequality (79). In (b) and (c) negative val-
ues indicate the presence of entanglement. In all cases N = 50.

In the y basis the operators transform as

am = ay
m + iby

m√
2

,

bm = iay
m + by

m√
2

, (73)

|�+〉〉 = (−i)N

N!
√

N + 1
(ay

1
†by

2
† + by

1
†ay

2
†)N |vac〉. (74)

This may be also shown in the number space representation
(70) [35].

The states (69), (72), and (74) show the same pattern of
EPR correlations and anticorrelations. Quantitatively, we have
[52]

Var
(
Sz

1 − Sz
2

) = Var
(
Sx

1 − Sx
2

) = Var
(
Sy

1 + Sy
2

) = 0, (75)

which may be evaluated by expanding in the number basis.
For N large, this can be described as a macroscopic EPR state.

We note that the above basis-invariant aspect of the Bell
state merely qualitatively captures the notion of EPR correla-
tions. EPR steering inequalities can be used to more quantita-
tively detect the presence of EPR correlations [53–55].

E. Entanglement

The spinor Bell state (69) with χ = π/4 is a maximally
entangled state. Quantifying the entanglement for arbitrary χ

can be done using entanglement measures such as the von
Neumann entropy, given by

E = −Tr(ρ log2 ρ) = −
∑

k

λk log2 λk, (76)

where ρ = Tr2|�〉〉〈〈�| and λk are the eigenvalues of ρ.
In this case we have λk = cos2k χ sin2N−2k χ/N� and the
entropy plotted in Fig. 3(a). We see that the entropy gives
the maximum value Emax = log2(N + 1) as expected. For a
spin coherent state the entanglement is also a maximum at
χ = π/4 but it reaches a larger value Emax = log2 2N = N
due to the larger Hilbert space that is available.
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For continuous variable quantum optics, the covariance
matrix (60) plays a central role in characterizing states. In
particular, it can be used to detect entanglement between
modes using Simon’s criterion [56]. A generalization of this
to arbitrary operators was previously performed, where it was
shown that for separable states [57]

PT(V ) + i

2
PT(�) � 0, (77)

where PT performs the partial transpose operation on the
operators involved in the expectation values. Here, � is the
commutation matrix defined with matrix elements � jk =
−i〈[ξ j, ξk]〉, where the operator set is given in (61). For the
operators defined in (61), the commutation matrix is

� = 2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
〈
S̃z

1

〉 −〈
S̃y

1

〉
0 0 0

−〈
S̃z

1

〉
0

〈
S̃x

1

〉
0 0 0〈

S̃y
1

〉 −〈
S̃x

1

〉
0 0 0 0

0 0 0 0
〈
S̃z

2

〉 −〈
S̃y

2

〉
0 0 0 −〈

S̃z
2

〉
0

〈
S̃x

2

〉
0 0 0

〈
S̃y

2

〉 −〈
S̃x

2

〉
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(78)

The partial transpose version of V involves changing the sign
of S̃y

2 [57] and corresponds to removing the minus sign (and
thereby making them positive) in the elements of (62) and
(63). Meanwhile, for the commutation matrix, since 〈S̃y

2〉 = 0
in our case, PT(�) = �. Evaluating the minimum eigenvalue
of the left-hand side of (77) is shown in Fig. 3(b). For the
spinor covariance matrix, we use the exact expressions as

given in Appendix B, not the approximate matrix (62). We
see that entanglement is successfully detected except for the
maximally entangled point χ = π/4. This point fails due to
� = 0 at this point. The covariance matrix criterion always
fails if � = 0 as it is an uncertainty-relation-based approach,
and requires a nonzero evaluation of the commutator of the
chosen operator set. However, for all remaining points entan-
glement is successfully detected.

To better handle entanglement detection in the vicinity
of χ = π/4, other approaches are available, such as those
discussed in Refs. [58–61]. Among these, one of the best
performing criteria is the Hoffman-Takeuchi inequality [62].
This criterion is especially appropriate in our case since the
Holstein-Primakoff approximation is not used. This criterion
states that for separable states

Var
(
Sx

1 − Sx
2

) + Var
(
Sy

1 + Sy
2

) + Var
(
Sz

1 − Sz
2

) − 4N � 0.

(79)

Figure 3(c) shows a plot of the left-hand side of (79), which
shows that entanglement is detected in the full range and
reaches the maximum violation at χ = π/4. Interestingly, de-
spite the different amount of entanglement between the spinor
and spin coherent states, the level of the violation for the two
states is the same at χ = π/4.

F. Wigner functions

We next visualize the bipartite spinor state using the spin
Wigner function [29,63]. Generalizing the spin Wigner func-
tion to the multipartite case with equal dimensions on each
subsystem we have

W (θ1, φ1, . . . , θM , φM ) =
2 j∑

L1=0

· · ·
2 j∑

LM=0

j∑
m1=− j

· · ·
j∑

mM=− j

j∑
m′

1=− j

· · ·
j∑

m′
M=− j

ρ �m �m′ (−1)M j+∑M
n=1 m′

n

×
M∏

n=1

〈 j, mn; j,−m′
n|Ln, mn − m′

n〉YLn,mn−m′
n
(θn, φn), (80)

where we have changed notation from the number state no-
tation (31) to angular momentum, which has an equivalence
according to the Jordan-Schwinger representation as [29]

| j, m〉 = |k = j + m〉 = (a†) j+m(b†) j−m

√
( j + m)!( j − m)!

. (81)

Here j = N/2 is the total angular momentum quantum
number and m ∈ [− j, j] is the z-projection quantum number.
The matrix elements 〈 j, m; j, m′|L, M〉 are Clebsch-Gordan
coefficients which are nonzero only if M = m + m′, and
YL,M (θ, φ) are the spherical harmonics. The matrix elements
are defined as

ρ �m �m′ = 〈 j, m1| · · · 〈 j, mM |ρ| j, m′
1〉 · · · | j, m′

M〉, (82)

and we denoted �m = (m1, . . . , mM ).
The Wigner function has the property that a local spin

unitary transformation (46) rotates the spherical distributions

in (θm, φm) on the sphere. For our bipartite spinor state (45),
it will therefore be sufficient to consider the state in the
Schmidt basis (51). The effect of the remaining unitary ro-
tations in (45) can be deduced by rotations on the Bloch
sphere.

Figures 4(a) and 4(c) show the bipartite Wigner functions
for (51), which is a function of four parameters θ1, φ1, θ2,
and φ2. In order to visualize this distribution, we choose fixed
values of θ2 and φ2 and plot the remaining variables. We
observe that the Wigner distributions are similar to spin co-
herent states that are centered around θ1 = θ2 and φ1 = −φ2.
To understand this relationship, we calculate the state after
projecting out the second ensemble in the spin coherent state
basis for a spinor Bell state (χ = π/4),

〈〈θ2, φ2|�+〉〉√〈〈�+|θ2, φ2〉〉〈〈θ2, φ2|�+〉〉 = |θ2,−φ2〉〉1, (83)

022438-10



MULTIPARTITE SPIN COHERENT STATES AND SPINOR … PHYSICAL REVIEW A 109, 022438 (2024)

FIG. 4. Wigner functions for bipartite spinor state. Bipartite
Wigner functions for fixed (a) θ2 = π/2, φ2 = 0 and (c) θ2 = π/4,
φ2 = π/2. Unipartite Wigner functions for the state (83) with pa-
rameters (b) θ2 = π/2, φ2 = 0 and (d) θ2 = π/4, φ2 = π/2. (e) The
marginal Wigner function (86). (f) Unipartite Wigner function for
(87) with χ = π/8.

which gives a state on subsystem 1. Here we used the fact that
the spinor Bell state can be written [35]

|�+〉〉 = 1√
N + 1

N∑
k=0

|k〉(θ,φ)|k〉(θ,−φ), (84)

where

|k〉(θ,φ) = e−iSzφ/2e−iSyθ/2|k〉 (85)

are number states in a rotated basis and we used the fact that
|k = N〉(θ,φ) = |θ, φ〉〉. Figures 4(b) and 4(d) show the unipar-
tite Wigner functions for the state (83). We see an obvious
resemblance to Figs. 4(a) and 4(c). The Wigner functions
hence serve as a visualization of the correlations that exist
between the two subsystems.

Figure 4(e) shows the marginal Wigner function for the
variables θ1 and θ2, defined as

W (θ1, θ2) =
∫ 2π

0

∫ 2π

0
dφ1dφ2W (θ1, φ1, θ2, φ2). (86)

We again see the correlation between the θ1 and θ2 variables.
As expected the main correlations appear along the diagonal
θ1 = θ2 due to the presence of EPR correlations. There is in-
terestingly a higher concentration at the poles θ = 0, π , which
we attribute to a similar effect to that seen in Fig. 2(a) where
the distribution tends to concentrate at the poles. Finally, in
Fig. 4(f) we show the Wigner function for the state where
subsystem 2 is traced out:

ρ1 = Tr2|χ〉〉〈〈χ |

= 1

N�

N∑
k=0

cos2k χ sin2N−2k χ |k〉〈k|. (87)

For the maximally entangled state χ = π/4, the Wigner func-
tions are completely uniform in θ1, φ1. We therefore plot a

partially entangled state χ = π/8, which shows a distribution
reminiscent of a thermal state, which is featureless in the φ

direction, but is exponentially distributed in the θ direction.
The Wigner function shows features that are analogous

to two-mode squeezed states in optical systems [16]. For
two-mode squeezed states, correlations are seen between
quadratures along the lines x1 = x2 and p1 = −p2 [6,7,53].
Here they are distributed on the angular variables on the
Bloch sphere for each subsystem. We emphasize that these
correlations go beyond the Holstein-Primakoff mapping that
is typically performed on atomic systems. For the maximally
entangled state χ = π/4, there is no single spin direction
that is polarized, and (87) gives a completely mixed state.
With the exception of χ in the vicinity of 0, π/2, the spin
operators cannot be approximated by quadratures, and the
Holstein-Primakoff approximation breaks down.

VI. ERRORS IN QUANTUM INFORMATION STORAGE

In this section, we discuss the potential application of mul-
tipartite spin coherent states (18) and spinor states (30) as a
means of storing quantum information. From the general form
of these two classes of states it is obvious that both classes of
states are capable of realizing a quantum register for a quan-
tum computer—in both cases they are simply N-fold dupli-
cates of a quantum register state. The difference between the
two classes of states is the type of symmetry they obey. The
spinor states are symmetric under local particle interchange,
while spin coherent states are symmetric under multipartite
interchange [i.e., interchange of the molecules in Fig. 1(a)].

An important issue is how well quantum information can
be stored in such states in the presence of errors. To qualify
as a good way to store quantum information, the states must
not be excessively sensitive to errors, and must be readily
accessible under measurement. To give a contrasting exam-
ple, a particularly poor way of storing quantum information
would be to use Schrödinger cat state qubits, i.e., α|0, 0〉⊗N +
β|π, 0〉⊗N in the notation of (10), and α and β are complex
coefficients. Such states are known to decohere extremely
quickly and any quantum information would be lost easily.
In addition, to read out the coherence between the qubits
(i.e., an x-basis-type measurement), high-order spin-changing
interactions must be measured, which may be experimentally
challenging. Here we discuss the potential advantages as com-
pared to the unduplicated N = 1 case when stored as spin
coherent and spinor states.

A. Spin coherent states

Let us consider single-particle errors given by Kraus op-
erators E (l )

n , which act on the nth molecule, and l labels the

error type. These satisfy
∑

l E (l )
n

†
E (l )

n = I . Then a particular
error instance on the spin coherent state is

E�l =
N∏

n=1

E (ln )
n , (88)

where �l = (l1, . . . , ln, . . . , lN ). We consider such errors as
the most likely form of errors to occur, since typically
single-particle errors are most probable. In fact, errors of
the form E (l )

n could also include multiparticle interactions
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between the same molecule; hence, our model is more general
than a single-particle error model. We furthermore assume
that the error types are identical across all the molecules, i.e.,
E (l )

n = E (l )
n′ . This is physically reasonable in cases such as

when the length scale of the process causing the error is much
larger than the physical size of the ensemble. For example, if
the length scale of magnetic field fluctuations is larger than
the size of a gas ensemble, all molecules are affected equally.

For this type of error, the state after the error is∑
�l
E�l |�〉⊗N 〈�|⊗NE†

�l = ρ⊗N , (89)

where ρ = ∑
l E (l )

n |�〉〈�|E (l )
n

†
is the density matrix of the

nth molecule. For symmetric observables of the form (19), the
relations such as that discussed in Sec. III B still hold for such
a state. For example,

〈C〉ρ⊗N = N〈c〉ρ,

Varρ⊗N (C) = NVarρ (c), (90)

where we have made explicit what state the expectation values
are being taken with a subscript. Relations (90) show that for
symmetric observables, spin coherent states have a perfor-
mance equivalent to the original states. Namely, if one uses
normalized variables such as 〈C〉/N and Var(C)/N , there is
no longer any N dependence and exactly the same averages
are obtained as the microscopic versions. This is as expected,
since spin coherent states are simply product states and are
independent.

For symmetric observables, (90) shows that the use of spin
coherent states is no better but also no worse than the undu-
plicated case in the case of single-particle decoherence. There
are nevertheless some aspects which make them beneficial
from a quantum information point of view. The first is that
the normalized noise of such symmetric observables has a
scaling as

√
Var(C)

〈C〉 = 1√
N

√
Var(c)

〈c〉 . (91)

Hence, compared to the original microscopic versions, the
noise of such observables is reduced by a factor of

√
N .

Hence, a much larger signal-to-noise ratio is obtained with
spin coherent states. Of course, we note that this is the same
statistical scaling as would be obtained from N runs of a
quantum computer. As discussed further in the next section,
the advantage is present when spin coherent states could be
generated in a single run of the experiment, such that it would
not require the N-fold additional time resources.

Another potential benefit is in a digital error correction
scenario. Consider a situation where the information that is
stored is classical binary digital information. Reading out such
a register is a common task in several important quantum
algorithms. For example, in Grover’s algorithm, the final state
readout of the register is the search target state in the z basis.
Another example is adiabatic quantum computing, where the
quantum register contains the ground-state configuration of
the Ising Hamiltonian in the z basis. Yet another example is
the readout of the quantum phase estimation register, where
the register shows the binary representation of the phase, also

FIG. 5. Digital error correction with spin coherent states and
spinor states. The logical error probability εL versus microscopic
error probability ε. (a) The exact expression single-ensemble case
M = 1 given by (95) and the two-ensemble case M = 2 given by
(104). (b) The same as (a) but on a semilogarithmic plot and showing
the approximation in (95) and (104) as dotted lines. N = 50 is used
for all calculations.

in the z basis. The common element of all these algorithms is
that partway during the execution of the quantum algorithm,
the quantum register is in a superposition state, but at the end
of the algorithm the state is in a z-basis state of the form⊗M

m=1 |σm〉 where σm ∈ {0, 1}.
In the spin coherent state case, in this scenario, the quantum

register after the completion of the quantum algorithm is

M⊗
m=1

|σm〉⊗N (92)

in the ideal error-free case. In the presence of independent
errors, this state is modified to

M⊗
m=1

(
p(0)

m |0〉〈0| + p(1)
m |1〉〈1|)⊗N

, (93)

where p(0)
m + p(1)

m = 1. We have assumed bit-flip errors which
is the only type of error that is relevant in this case (phase-flip
errors do not affect a z measurement). In this case, we may
take advantage of the duplicity of the spin coherent state. For a
particular ensemble labeled by m, the probability of obtaining
k bits in the state |0〉 and N − k in the state |1〉 is

Pm(k) =
(

N

k

)
(1 − ε)kεN−k, (94)

where we have taken σm = 0 without loss of generality and
the error probability ε = p(1)

m . After a measurement of (93)
is made, a majority vote is taken to obtain the final result.
The observable in this case is sgn(Sz

m) and hence it is not a
symmetric observable as considered before.

The logical error probability is then given by the error that
more than half the bits in the ensemble are in the state |1〉,
given by

εL =
N/2∑
k=0

Pm(k) ≈ [4(1 − ε)ε]N/2

√
N

, (95)

where the approximation is valid for ε � 1/2. We see that
now there is an exponential suppression of logical errors in
this situation. Figure 5 shows the strong logical error suppres-
sion effect and the performance of the approximation. This
is possible because of the a priori knowledge that the state
should be either in the state |0〉 or |1〉.
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B. Spinor states

For spinor states, we expect a similar behavior in the pres-
ence of errors, due to the similar duplication that is present
in these states. Although it is more difficult to make the same
general statements that were made for spin coherent states, we
show some specific examples which illustrate that analogous
behavior is present.

First let us consider the effect of single-particle errors on
spin expectation values. Considering the case of bosonic loss,
the Kraus operators are [64]

E (l )
a =

√
(1 − γ )l

l!
√

γ
a†aal , (96)

where 1 − γ is the loss probability. Now let us evaluate the
Kraus operators by applying them on spin observables S j

for j ∈ {x, y, z}, rather than on the state. For collective spin
operators, one may evaluate [35]

∞∑
l,l ′=0

E (l )
a

†
E (l ′ )

b

†
S jE (l ′ )

b E (l )
a = γ S j, (97)

where we have assumed that the loss probability is the same
for both a and b atoms. We see that loss results in an N-
independent factor multiplying the spin operators. This is
again similar to the result (90) where the decoherence effect
is equivalent to the microscopic case. In this case, the factor
of γ may in fact be accounted for by normalizing the spins to
the number operator N̂ = a†a + b†b, which obeys

∞∑
l,l ′=0

E (l )
a

†
E (l ′ )

b

†
N̂E (l ′ )

b E (l )
a = γ N̂ . (98)

Hence, measuring 〈S j〉/〈N̂〉 removes the effect of atom loss
for spin observables. Covariances can be handled in a similar
way.

The results for dephasing are similar. The Kraus operator
for dephasing in the z basis reads [65]

E (l )
n =

√
κ l

l!
e−κn2/2nk, (99)

where n = a†a and κ is the dephasing strength. In this case
∞∑

l=0

E (l )
n

†
SxE (l )

n = e−κ/2Sx,

∞∑
l=0

E (l )
n

†
SyE (l )

n = e−κ/2Sy, (100)

∞∑
l=0

E (l )
n

†
SzE (l )

n = Sz,

and again we see an N-independent renormalization of the
operators that are orthogonal to the z direction. This is similar
to the result of (90) where the decoherence reduces to be the
same as the microscopic version. Dephasing in other bases
can be deduced by a simple basis change and give similar
results. We note that the moderate effect of dephasing on
these operators is thanks to the low-order product of bosonic
operators in S j . Such observables only change the number
state by one unit at most, which gives rise to the factor of

e−κ/2. States such as Schrödinger cat states are more severely
affected by decoherence, where highly off-diagonal matrix el-
ements are quickly degraded. However, since in spin coherent
states generally low-order spin correlations are used to encode
the quantum information, the effect is not as severe.

For the signal-to-noise enhancement effect analogous to
(91) for spinor states, we must again look at specific cases
as it is difficult to make universal statements. For unipartite
spinor states, we have a mathematical equivalence to spin
coherent states; hence, we again have the same relation for
the normalized noise of spin expectations,√

Var(S j )

〈S j〉 = 1√
N

√
Var(σ j )

〈σ j〉 . (101)

Hence, for unipartite spinor states there is a signal-to-noise
enhancement with the same scaling as spin coherent states.
For the bipartite spinor state (45), the only nonzero single spin
expectation value is S̃z

m and the normalized noise is√
Var

(
S̃z

m

)
〈
S̃z

m

〉 ≈ tan 2χ

N
, (102)

which is valid for N � 1. So in this case, the signal-to-noise
scaling in terms of N is in fact better than the spin coherent
state case. It does, however, become worse in the vicinity
of the maximally entangled point χ = π/4, where it is more
difficult to read off expectation values than the spin coherent
states.

Finally, regarding the digital error correction scenario, the
same results as the spin coherent states hold again due to the
equivalence for unipartite states. Namely, as long as the error-
free final state after the quantum evolution is of the form

M⊗
m=1

|πσm, 0〉〉m (103)

with σm = {0, 1}, the same conclusions for the spin coherent
state case can be made due to the equivalence of unipartite
spin coherent state and spinor states.

As another error-correcting scenario, consider a situation
where, due to gate errors, the states are not exactly (103)
but have a slight imperfection in terms of either an over- or
under-rotation such that the state is instead |θ, φ〉〉. In this case
we obtain the same result as (95) with ε = sin2 θ

2 , which is
the single-particle error probability, assuming without loss of
generality σm = 0.

For residual partial entanglement that is present in the final
spinor state, consider a state of the form (51) where ideally
χ = 0, but there is some error ε = sin2 χ such that with some
probability the σm = 1 case is obtained. This may occur in a
quantum algorithm where the intermediate states are entan-
gled, and due to gate errors the final states are not quite in the
form (103). The logical error probability is then

εL = 1

N�

N/2∑
k=0

(1 − ε)kεN−k ≈
(

ε

1 − ε

)N/2

. (104)

As seen in Fig. 5, there is an even stronger logical error
suppression effect when measuring the sgn(S̃z

m) observable
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than the single-ensemble case. Such an error suppression tech-
nique was demonstrated explicitly in the context of adiabatic
quantum computing with spinor states in Ref. [39].

VII. EXPERIMENTAL PREPARATION

The primary purpose of this paper is to discuss multipartite
extensions of spin coherent and spinor states and analyze their
properties from a fundamental perspective. We now discuss
how such states may be realized experimentally.

Unipartite spin coherent states can be realized in principle
in numerous systems where there are a large number of du-
plicate controllable quantum systems. A particularly suitable
system is an atomic gas ensemble, where there are a large
number of atoms of the same species and there is fixed particle
number. Such atomic ensembles may be trapped by either
optical or magnetic traps, or be physically confined in a glass
cell. The levels |l〉 appearing in (4) then refer to the internal
states of the atoms. Typically, the hyperfine ground states are
used, which have long coherence times. The motional degrees
of freedom decouple to the internal degrees of freedom of the
atoms and, hence, may be ignored [23]. Using optical pump-
ing, the internal state of the atoms is polarized in a particular
spin direction. Once a polarized state is obtained, unitary
rotations realized by optical or microwave or radio-frequency
radiation are applied in order to produce a more general spin
coherent state. At the unipartite level, spin coherent states are
routinely produced in atomic ensembles [23,66,67].

Unipartite spinor states are most directly realized in sys-
tems where there are degenerate bosons, such as in an atomic
Bose-Einstein condensate [68–70]. In (6), the bosonic opera-
tors al annihilate an atom with internal state label l . Typically
for a BEC, the condensation process occurs with respect to
a particular internal spin state; hence, no optical pumping is
necessary. Using the similar coherent manipulation methods
as for thermal atomic gases, a spinor state of the desired form
is produced. We note that due to the mathematical equivalence
of unipartite spin coherent states and spinor states, under
the mapping in Appendix A, in fact atomic ensembles can
also realize spinor states. There is, however, a mathematical
mapping required to connect them, since spinor states involve
degenerate identical bosons, which are not strictly speaking
present in a thermal atomic gas.

For the multipartite spin coherent states, the natural exten-
sion would be for a molecular gas ensemble. This would be a
close realization of the state that is pictured in Fig. 1(a), where
each duplicate in the spin coherent state is literally a molecule.
In order to control the system, again, one would require an op-
tical pumping scheme to polarize the state of all the molecules
to the same state, and from there, coherent manipulation of
the molecular states which illuminates all molecules would
prepare the multiparticle spin coherent state. Such a situation
is reminiscent of nuclear magnetic resonance (NMR), where
control pulses are used to manipulate the states of molecules.
The challenge in the case of liquid state NMR has been to
realize a high-fidelity NMR system that is challenging un-
der present technology [71]. Additionally, in both cases it is
difficult to scale since, as the system grows larger with M,
there are an exponentially larger number of states that must be
discerned within each molecule. The problem arises due to the

control fields hitting all subsystems of the molecules together,
so that the molecular wavefunction is controlled as a whole.
This is in contrast to modern quantum computing architec-
tures, where quantum control is performed by combining
gates on subsystems, which is a more scalable approach.

Another approach to prepare multipartite spin coherent
states would be to simply have N quantum computers which
all prepare the same quantum state. This clearly would triv-
ially prepare the state (18) since it is simply a product state
of N quantum registers. However, this is very expensive from
a resource perspective, as individual microscopic control of
each of the molecules is required. For a molecular gas, there
is little overhead in increasing the size of the ensemble N , as
it merely involves obtaining a larger sample of the gas. For the
quantum control, the same control pulses illuminate the entire
ensemble, which again does not require additional resources.
Hence, the advantages as described in Sec. VI are only really
beneficial unless larger ensembles can be implemented with-
out resources that scale as N .

For multipartite spinor states, the natural realizations are
multiple atomic ensembles or BECs that are entangled to-
gether. In Fig. 1(c), each of the local subsystems would be
a BEC consisting of L internal states. Such a system could
be realized, for example, on an atom chip, where the atomic
clouds are then entangled together [70]. Recently a split-
squeezed BEC was studied using both a physical splitting
procedure [46] and optical imaging [43–45]. While displaying
entanglement, the states generated in these experiments do not
follow a spinor form, due to the nonlinearity that is used to
generate them [59]. As discussed in Sec. IV B, linear bosonic
transformations retain the spinor form, but higher-order inter-
actions do not. The most promising way to realize a spinor
state, in our opinion, is to perform the entangling operations
using quantum nondemolition (QND) measurements, which
can be realized by sending a coherent light beam through
the ensembles and measuring the spin difference between
them [32,72]. Using the equivalence in Appendix A between
atomic ensembles and degenerate bosons, it is also possible to
use multiple atomic ensembles and entangle them together.
In most experiments to date, the entanglement is produced
in a Holstein-Primakoff regime or similar, where only small
amounts of entanglement are generated [32,73,74]. Schemes
to make a maximally entangled spinor state (69) has been
proposed using a sequence of QND measurements [75]. This
scheme works by alternately projecting the state in the z and
x bases, such as to enforce the correlations (75). Using feed-
forward unitary rotations this deterministically prepares the
maximally entangled bipartite spinor state. For a more general
spinor state, imaginary-time evolution methods [76] can be
used, where the ground state of a given Hamiltonian can be
found using a measurement-feedback scheme. For example, to
make a general bipartite spinor state, Hamiltonian (52) is used
in an imaginary-time approach using QND measurements
such as in Ref. [77]. Then local unitary pulses V1 and V2 are
applied to each ensemble individually. This can be done in
atom chips by optical Raman pulses.

The scalability issues that face spin coherent states are
improved for spinor states. The fundamental reason is that
spin coherent states are symmetric under interchange of the
whole molecule, while spinor states are only symmetric under
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local particle interchange. This means that operators that are
symmetric under local interchange can generate spinor states,
which is the case for both the QND interactions and the local
unitary rotations. Thus, increasing the number of subsystems,
M, can then be achieved by simply adding further atomic
ensembles. This is analogous to how scalability is achieved
in modern qubit-based quantum computers, where additional
qubits are augmented and entangled together. This is more
difficult for spin coherent states [Fig. 1(b)], where locally
symmetric operators cannot generate the spin coherent states,
and therefore one must spectroscopically control the entire
molecular system. The exponential number of states which
must be all controlled together makes it more difficult from
a scalability point of view.

VIII. SUMMARY AND CONCLUSIONS

We have analyzed the multipartite extension of spin coher-
ent states. Two natural generalizations were performed, either
by a tensor product duplication (18) or by generalizing the
wavefunction in the bosonic form (30). The former, which we
call the multipartite spin coherent state, is symmetric under
full interchange of the molecules, i.e., the states that are du-
plicated. The latter, which we call the multipartite spinor state,
is symmetric under local particle interchange. These different
symmetry properties lead to different properties of the state, as
illustrated by the different dependence of expectation values
and covariances of the bipartite spinor state. In contrast to spin
coherent states, which tend to have a relatively simple depen-
dence due to the close relationship to the molecular versions
as shown in Sec. III B, spinor states tend to have discontinuous
behavior, either in the quantity itself, or its first derivative.
This occurs due to the macroscopic occupation of the bosons
that occur particularly near the maximally entangled point,
where bosonic enhancement makes its observables highly
sensitive to the parameters. Despite this, the correlations [in
the sense of (67)] of the maximally entangled bipartite spinor
states were found to be identical to that of spin coherent
states. Under single-particle decoherence, symmetric observ-
ables have a dependence on decoherence that is at the same
level as their corresponding microscopic versions, for both
classes of states. Their duplication can be taken advantage of

with a higher signal-to-noise ratio for symmetric observables,
and is compatible with digital error correction strategies to
reduce logical errors exponentially for classical readouts.

Due to the locally addressable nature of spinor states, and
their favorable properties with errors, these offer an interesting
way of storing quantum information. A scheme for quantum
computation based on spinor states was discussed previously
in Refs. [29,40,41,70]. One of the challenges of the scheme
has been to find ways of mapping existing quantum algorithms
intended for qubits to the spinor quantum computing frame-
work in an experimentally feasible way. The challenge here is
to perform the quantum computation in the same way as with
qubits but in spinor form, using experimentally reasonable
manipulations. We do not discuss this aspect in this paper, but
we note that this has been achieved for several algorithms to
date [39,41,42]. Beyond the passive error correction approach
that was discussed in Sec. VI, there is some evidence that
some error self-correction occurs naturally in atomic systems
through the identical self-rephasing effect (ISRE) [78]. A
more detailed discussion of the exact way a general quantum
algorithm can be implemented is left as future work.
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APPENDIX A: EQUIVALENCE BETWEEN BOSONIC
AND DISTINGUISHABLE STATES

Consider the multinomial expansion of the unipartite
spinor state (6), which is written as

|ψ〉〉 = 1√
N!

N∑
k0=0

· · ·
N∑

kL−1=0

(
N

k0, . . . , kL−1

)
ψ

k0
0 · · · ψkL−1

L−1 (a†
0)k0 · · · (a†

L−1)kL−1 |vac〉. (A1)

Then using the definition (8) for the normalized number state we obtain (7).
Now let us compare this to the expanded spin coherent state (5). Matching the states with the same coefficient ψ

k1
1 · · · ψ

kL
L

gives the equivalence between the bosonic and distinguishable state versions

|k0, . . . , kL−1〉 ↔ 1√( N
k0,...,kL−1

) ∑
q

Pq| 0 · · · 0︸ ︷︷ ︸
k0

1 · · · 1︸ ︷︷ ︸
k1

· · · L − 1 · · · L − 1︸ ︷︷ ︸
kL−1

〉, (A2)

where the state within the sum contains kl of the states in the state |l〉, for l ∈ [0, L − 1]. Pq is a permutation operator that
interchanges any two of the N particles, and the sum runs over all distinct permutations. There are a multinomial

( N
k0,...,kL−1

)
number of such distinct permutations, giving the normalization factor. We note that the L = 2 version of this was discussed in
Ref. [29].

022438-15



TIM BYRNES PHYSICAL REVIEW A 109, 022438 (2024)

Counting the number of possible number states (8) with a
total particle number N gives

N∑
k0=0

N−k0∑
k1=0

N−k0−k1∑
k2=0

· · ·
N−∑L−3

l=0 kl∑
kL−2=0

1 =
(

N + L − 1

L − 1

)
. (A3)

APPENDIX B: EXPECTATION VALUES AND
COVARIANCES OF THE TWO-QUBIT SPINOR STATE

Here we give details of the evaluation of expectation values
for the state (45). We work in the Schmidt basis

|�̃〉〉 = 1√
N�

(cos χa†
1a†

2 + sin χb†
1b†

2)N |vac〉

= N!√
N�

N∑
k=0

�k|k〉1|k〉2, (B1)

where we defined

�k = cosk χ sinN−k χ (B2)

and

|k〉m = (a†
m)k (b†

m)N−k

√
k!(N − k)!

|vac〉. (B3)

1. Single-spin expectation values

All expectation values are evaluated all in the number ba-
sis. For example, the expectation value of S̃z

m for m ∈ {1, 2}
is 〈

S̃z
m

〉 = 〈〈�̃|S̃z
m|�̃〉〉

= (N!)2

N�

N∑
k=0

|�k|2(2k − N )

= 1

cos 2χ (cos2N+2 χ − sin2N+2 χ )

× [N (cos2N+4 χ − sin2N+4 χ )

+ (N + 2) sin2 χ cos2 χ (sin2N χ − cos2N χ )]. (B4)

For large N , we may drop terms that are not proportional to N
and we obtain

〈S̃z
m〉 ≈ N (cos2N+2 χ + sin2N+2 χ )

cos2N+2 χ − sin2N+2 χ
≈ Nsgn(cos 2χ ), (B5)

where we made a further approximation that if |cosχ | >

|sinχ |, the high powers will make the sine term negligible,
and vice versa.

The expectation values of S̃x
m, S̃y

m are zero since these shift
the number of one of the subsystems by one in (B1).

2. Two-spin expectation values

The expectation values of S̃z
1S̃z

1 and (S̃z
m)2 are nonzero due

to the correlated nature of the number states in the z basis. We

evaluate this as〈
S̃z

1S̃z
2

〉 = 〈(
S̃z

m

)2〉
= (N!)2

N�

N∑
k=0

|�k|2(2k − N )2

= 4 + 2N + N2 + N (N + 2) cos 4χ

2 cos2 2χ

− 2(N + 1)(cos2N+2 χ + sin2N+2 χ )

cos 2χ (cos2N+2 χ − sin2N+2 χ )
. (B6)

We may again approximate this expression for large N by
dropping all terms except for those proportional to N or N2.
We then have

〈
S̃z

1S̃z
2

〉 = 〈(
S̃z

m

)2〉 ≈ N2 + 2N

(
1 − 1

| cos 2χ |
)

, (B7)

where we made a similar approximation as (B5).
The expectation values of off-diagonal two-spin expecta-

tion values are zero except for〈
S̃x

1S̃x
2

〉 = −〈
S̃y

1S̃y
2

〉 = 2〈S̃+
1 S̃+

2 〉

= (N!)2

N�

N∑
k=0

k(N − k + 1)�k�k−1

= 1

2 cos2 2χ (cos2N+2 χ − sin2N+2 χ )

× [N sin 4χ (cos2N+2 χ + sin2N+2 χ )

− sin3 2χ (cos2N χ − sin2N+2 χ )], (B8)

where S̃±
m = (S̃x

m ± iS̃y
m)/2 and its application on the num-

ber states is given by S̃+|k〉 = √
(k + 1)(N − k)|k + 1〉 and

S̃−|k〉 = √
k(N − k + 1)|k − 1〉 [29]. The approximation for

large N is obtained by keeping only terms proportional to N ,
giving 〈

S̃x
1S̃x

2

〉 = −〈
S̃y

1S̃y
2

〉 ≈ Nsgn(cos 2χ ) tan 2χ, (B9)

where we made a similar approximation as (B5).
Finally, we have〈(
S̃x

m

)2〉 = 〈(
S̃y

m

)2〉 = 〈
S̃+

m S̃−
m

〉 + 〈
S̃−

m S̃+
m

〉
= (N!)2

N�

N∑
k=0

[k(N − k + 1) + (k + 1)(N − k)]�2
k

= 1

cos2 2χ (cos2N+2 χ − sin2N+2 χ )

× [N (cos2N+4 χ − sin2N+4 χ )

+ (N + 2) sin2 χ cos2 χ (sin2N χ − cos2N χ )].
(B10)

Using a similar approximation to (B5), we obtain

〈(
S̃x

m

)2〉 = 〈(
S̃y

m

)2〉 ≈ N

| cos 2χ | . (B11)
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3. Covariances

The covariance matrix elements are evaluated using def-
inition (60) and the above expressions. The exceptions are
the approximate expressions for Cov(S̃z

1, S̃z
2) and Var(S̃z

m),
where combining (B5) and (B7) does not lead to a good
approximation. Instead, we use the exact expressions (B4)

and (B6) and collect the expressions in powers of N . Terms
proportional to N and N2 are found to be small for large N ,
except at χ = π/4. Neglecting these terms and approximating
the remaining terms gives the approximation

Cov
(
S̃z

1, S̃z
2

) = Var
(
S̃z

m

) ≈ tan2 2χ. (B12)
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