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One-step parity measurement of N cat-state qubits via reverse engineering and optimal control
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In this paper, a one-step protocol is proposed for the parity measurement of N cat-state qubits which are
encoded on the cat states of the modes in superconducting Kerr-nonlinear cavities. The parity measurement
is performed with the help of an auxiliary qutrit. Especially, the auxiliary qutrit can (cannot) be excited to
the higher-energy levels when the cat-state qubits are in the even- (odd-) parity state. By designing the Rabi
frequency of the classical fields via reverse engineering and optimal control, the qutrit is driven to an excited
dressed state in the even-parity case, which is robust to the systematic errors of the qutrit-cavity coupling
strengths. Accordingly, the parity of the cat-state qubits can be distinguished with high accuracy by measuring
the final population of the ground state of the auxiliary qutrit. Numerical simulations also show that the protocol
is insensitive to the systematic errors of the classical fields, the inhomogeneity of the coupling strengths,
intercavity cross talk, unwanted qutrit transitions, and decoherence. Therefore, the protocol may provide an
effective approach for parity measurement of multiple cat-state qubits.
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I. INTRODUCTION

Parity measurement [1–6], as a powerful tool to analyze
the symmetry of quantum states, is significant for quantum
information processing. For example, parity measurement has
various applications in entanglement distillation and purifi-
cation [7–11], entanglement swapping [12–14], entanglement
fusing [15–17], quantum teleportation [18–20], and quantum-
phase-transition observation [21]. As a result of the above
applications, parity measurement has been studied in different
physical qubits, such as photons [22–24], superconducting
qubits [25–28], neutral atoms [29–31], trapped ions [32], and
spins [33,34]. These studies [22–34] greatly benefit parity-
measurement-based quantum information tasks with physical
qubits.

Recently, increasing research interest has focused on quan-
tum information processing with logical qubits [35–39].
Compared with a physical qubit, a logical qubit possesses
some additional degrees of freedom and is useful in quan-
tum error correction [40–43], improving the performance
of quantum information tasks. Typically, two ways to con-
struct a logical qubit exist: One is integrating many physical
qubits together [44–47]; the other is using bosonic modes
[48–52]. Logical qubits constructed via the latter are re-
ferred to as bosonic qubits [53,54]. Since bosonic qubits
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allow quantum error correction to extend the number of
excitation qubits instead of the number of physical qubits,
the noise channels remain unchanged [55–57]. Accordingly,
the physical resources for quantum error correction can be
reduced.

The cat-state qubit, encoding quantum information on a
pair of cat states, is a promising type of bosonic qubit in
the field of quantum information processing with a lot of
advantages [58–62]. First, cat-state qubits are noise biased;
i.e., they mainly experience bit-flip noise, while the phase-
flip errors are exponentially suppressed [59,63]. Additional
layers of error correction can focus only on the bit-flip error,
so the number of building blocks is significantly reduced.
Moreover, a cat-state qubit has an enhanced lifetime with
quantum error correction [64]. Because of the advantages of
cat-state qubits, many protocols [65–70] have been proposed
for quantum computation with cat-state qubits. However, par-
ity measurement of multiple cat-state qubits is rarely studied,
although parity measurement is an important means to realize
quantum computation and quantum information processing.
Therefore, in order to further construct a complete quantum
toolbox for large-scale quantum information processing based
on cat-state qubits, it is also necessary to extend the parity
measurement to the system composed of multiple cat-state
qubits.

In this paper, a protocol is proposed for implementing
parity measurement of N cat-state qubits in one step. The
physical model comprises N Kerr-nonlinear cavities and an
auxiliary qutrit. The evolution of each cavity is confined to
a cat-state subspace by utilizing strong Kerr nonlinearity,
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FIG. 1. The physical model of N superconducting Kerr-
nonlinear resonators (cavities) coupling to an auxiliary qutrit.

forming a cat-state qubit [71,72]. The qutrit is resonantly
coupled to all Kerr-nonlinear cavities and is driven by a pair
of classical fields. By properly modulating the frequencies
of the classical fields, we derive an effective Hamiltonian
for the parity-selective qutrit transition. When the cat-state
qubits are in the even-parity states, the qutrit can be excited
to a dressed state of two higher-energy levels after certain
operations. However, the qutrit remains in the ground level
when the cat-state qubits are in the odd-parity states. Conse-
quently, the parity of the cat-state qubits can be distinguished
by measuring the final population of the ground level of the
auxiliary qutrit.

To reduce the influence of the systematic errors of the
coupling strengths, we design time-dependent control fields
using reverse engineering [73,74] and optimal control [75,76].
With the help of the designed control fields, the parity mea-
surement is implemented with robustness against systematic
errors of the coupling strengths. We also numerically estimate
the performance of the protocol in the presence of several
disturbing factors. The results demonstrate that the protocol is
also insensitive to systematic errors of the classical fields, the
inhomogeneity of the coupling strengths, the intercavity cross
talk, unwanted transitions, and decoherence. Therefore, the
protocol may be promising for parity measurement of multiple
cat-state qubits.

This paper is organized as follows. In Sec. II, we describe
the physical model for the parity measurement of N cat-state
qubits with an auxiliary qutrit and give the concrete form
of the Hamiltonian. In order to realize the parity-selective
qutrit transition, we derive an effective Hamiltonian by setting
proper parameters. In Sec. III, we use reverse engineering and
optimal control to determine the evolution path and suppress
the influence of the systematic errors in the coupling strengths,
respectively. In Sec. IV, using numerical simulations, we
confirm the feasibility of the protocol and estimate the per-
formance of the protocol in the presence of systematic errors,
the inhomogeneity of the coupling strengths, the intercavity
cross talk, unwanted transitions, and decoherence. Finally,
conclusions are given in Sec. V.

II. PHYSICAL MODEL

In this section, we introduce the physical model for im-
plementing the parity measurement of N cat-state qubits.
As shown in Fig. 1, the physical system contains N

Kerr-nonlinear cavities and an auxiliary qutrit. A resonant
single-mode two-photon (i.e., quadrature) squeezing drive
with strength εn is applied to the nth Kerr-nonlinear cavity
mode Cn (n = 1, 2, . . . , N). The Hamiltonian [71,72] for the
cavities is written as (h̄ = 1)

H0 =
N∑

n=1

−Kna†2
n a2

n + εn
(
a†2

n + a2
n

)
, (1)

where an (a†
n) is the annihilation (creation) operator of the

cavity mode Cn and Kn denotes the Kerr-nonlinearity pa-
rameter of the cavity mode Cn. Assuming Kn = K , εn =
ε, and ε = Kα2, the tensor products of coherent states
{|±α〉1| ± α〉2 · · · |±α〉N } are the degenerate ground eigen-
states of H0 [67], where |±α〉n denotes the coherence states
with the amplitudes ±α of the cavity mode Cn. When
the condition |α| � 1 is satisfied, both of the degenerate
eigenstates {|±α〉1| ± α〉2 · · · |±α〉N } are approximately or-
thogonal. By setting appropriate parameters (which will be
determined in the next section), the evolution of the system
will be confined to the subspace composed of these degenerate
eigenstates.

The auxiliary qutrit has three levels, |g〉q, |e〉q, and | f 〉q, as
shown in Fig. 1. The transition frequencies of the transitions
|e〉q ↔|g〉q, | f 〉q ↔|e〉q, and | f 〉q ↔|g〉q are ωeg, ω f e, and ω f g,
respectively. The transition |e〉q ↔ | f 〉q is resonantly coupled
to the cavity mode Cn with coupling strength gn. A pair of
classical fields with the Rabi frequencies �1(t ) and �2(t ) are
applied to the auxiliary qutrit to drive the transitions |g〉q ↔
|e〉q and |g〉q ↔ | f 〉q, respectively. Under the rotating-wave
approximation, the interaction Hamiltonian of the qutrit is
given by

H1(t ) = Hc + Hq(t ),

Hc =
N∑

n=1

gna†
n|e〉q〈 f | + H.c.,

Hq(t ) = �1(t )|g〉q〈e| + �2(t )|g〉q〈 f | + H.c. (2)

Hence, the Hamiltonian of the whole system is H (t ) =
H0 + H1(t ). Assuming �1(t ) = �2(t ) = �(t )/

√
2, |φ±〉q =

(|e〉q ± | f 〉q)/
√

2, Hq(t ) becomes

H ′
q(t ) = �(t )|g〉q〈φ+| + H.c. (3)

We define the closest energy gap between degener-
ate ground eigenstates {|±α〉1| ± α〉2 · · · |±α〉N } and other
eigenstates of H0 as Egap [67], which can be obtained
with numerical calculations. Moreover, cat-state qubits are
defined as

|C±〉n = 1√
N±

(|α〉n ± |−α〉n), (4)

where N± = 2[1 ± exp(−2|α|2)] are normalization coef-
ficients. The subspace composed of {|C±〉n} is called
the cat-state subspace. When Egap � |gnα| is satisfied,
the transition probability from {|±α〉1| ± α〉2 · · · |±α〉N }
to other eigenstates is very small [67,71,72]. Thus, we
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project the Hamiltonian H1(t ) onto the cat-state subspace
and obtain

Hc
1 (t ) = Hc

c + Hc
q (t ),

Hc
c =

[
N∑

n=1

gnα(|�+〉n〈�+| − |�−〉n〈�−|)
]

⊗(|φ+〉q〈φ+| − |φ−〉q〈φ−|),

Hc
q = �(t )

N∑
n=1

(|�+〉n〈�+| + |�−〉n〈�−|)

⊗|g〉q〈φ+| + H.c., (5)

where

|�±〉n = 1√
2

(|C+〉n ± |C−〉n). (6)

To make the parity measurement more explicit, we intro-
duce the parity operator of cat-state qubits as

P =
N⊗

n=1

{∑
ι=±

ι|�ι〉n〈�ι|
}

⊗ Iq, (7)

where Iq is the unit operator of the qutrit. The even- and odd-
parity states |ϕeven〉 and |ϕodd〉 are the eigenstates of the parity
operator P with eigenvalues 1 and −1, respectively. In other
words, we have

P|ϕeven〉 = |ϕeven〉, P|ϕodd〉 = −|ϕodd〉. (8)

In addition, we define the operator

G ( j)
1,N =

Nj∑
J=1

∣∣
(J )
j

〉
1,N

〈



(J )
j

∣∣, (9)

where ∣∣
(J )
j

〉
1,N = T j (J )|
s〉,

|
s〉 = |�+, . . . , �+︸ ︷︷ ︸
N− j

, �−, . . . , �−︸ ︷︷ ︸
j

〉1,...,N , (10)

|
s〉 is the standard permutation state, Nj = C j
N is the sum

of all possible permutations, and T j (J ) denotes the operator
which turns the standard state |
s〉 into the Jth permutation
state. Assuming that gn = g and α are real, the Hamiltonian in
Eq. (5) reduces to

Hc
1(t ) = Hc

c + Hc
q(t ),

Hc
c =

N∑
j=0

(N − 2 j)gαG ( j)
1,N ⊗ (|φ+〉q〈φ+| − |φ−〉q〈φ−|),

Hc
q(t ) =

N∑
j=0

�(t )G ( j)
1,N ⊗ |g〉q〈φ+| + H.c. (11)

Rotating Hc
1(t ) with a unitary operator Rc(t ) = exp(−iHc

ct )
and setting

�(t ) =
[N/2]∑
m=0

�m(t ) exp(iωmt ), ωm = (N − 4m)ω̃, (12)

the Hamiltonian of the system becomes

Hc
r (t ) = R†

c (t )Hc
1(t )Rc(t ) − iR†

c (t )Ṙc(t )

=
[N/2]∑
m=0

�m(t ) exp [i(N − 4m)ω̃t − i(N − 2 j)gαt]

×
N∑

j=0

G ( j)
1,N ⊗ |g〉q〈φ+| + H.c., (13)

where ω̃ is a time-independent parameter and [N/2] is the
integer floor function.

In order to realize a parity-selective qutrit transition, ω̃ =
gα and |ω̃| � |�m(t )| are selected. Omitting the terms with
high-frequency oscillations, the effective Hamiltonian of the
system is derived as

He(t ) =
[N/2]∑
m=0

�m(t )G (2m)
1,N ⊗ |g〉q〈φ+| + H.c. (14)

Assuming that the initial state of the qutrit is |g〉q, under the
control of the Hamiltonian He(t ), it is possible to drive the
qutrit from the ground level |g〉q to the dressed state |φ+〉q

when the cat-state qubits are in the even-parity states by
designing proper Rabi frequency �m(t ). However, when the
cat-state qubits are in the odd-parity states, the qutrit cannot
be excited to the dressed state |φ+〉q and thus remains in its
ground level |g〉q. Therefore, we can determine the parity of
N cat-state qubits by detecting the final population of the state
|g〉q after a proper operation with operation time T .

The operation mentioned above can be realized by a flat
π pulse, i.e., �m(t ) = π/2T . However, if there is a sys-
tematic error in the coupling strength, i.e., g → g(1 + δ), a
frequency mismatch will appear in the effective Hamiltonian,
and the accuracy of the parity measurement may be greatly
reduced. Hence, in order to enhance the robustness of the
parity measurement against the systematic errors of the cou-
pling strengths, an appropriate method is needed. Here, we
exploit invariant-based reverse engineering and optimal con-
trol to find a proper evolution path and select proper control
parameters, which will be described in the next section.

III. CONTROL-FIELD DESIGN

Supposing that {�m(t )} are set so they are equal, i.e.,
�m(t ) = �(t ), the evolution governed by the effective Hamil-
tonian He(t ) in Eq. (14) can be studied in M = 2N−1 two-level
orthogonal subspaces possessing SU(2) dynamical structures
with the same control fields �(t ). The basis vectors of each
two-level subspace can be written as |ξ1〉 = |
(J )

(2m)〉1,N
⊗ |g〉q

and |ξ2〉 = |
(J )
(2m)〉1,N

⊗ |φ+〉q, and the Pauli operators for the
subspace are defined as

σx = |ξ1〉〈ξ2| + |ξ2〉〈ξ1|,
σy = −i|ξ2〉〈ξ1| + i|ξ1〉〈ξ2|,
σz = |ξ2〉〈ξ2| − |ξ1〉〈ξ1|, (15)

which satisfy the commutation relations

[σx, σy] = 2iσz, [σy, σz] = 2iσx, [σz, σx] = 2iσy. (16)
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The effective Hamiltonian in the two-level subspace reads

HJ
(2m)(t ) = �(t )

∣∣
(J )
(2m)

〉
1,N

〈



(J )
(2m)

∣∣ ⊗ |g〉q〈φ+| + H.c.

= �x(t )σx + �y(t )σy + 0 × σz, (17)

with �x(t ) = Re[�(t )] and �y(t ) = Im[�(t )].
To study the evolution in the two-level subspace by

invariant-based reverse engineering, we should first find a
dynamical invariant I (t ) fulfilling [77,78]

i
∂

∂t
I (t ) − [

HJ
(2m)(t ), I (t )

] = 0. (18)

Since the Hamiltonian in Eq. (17) has a SU(2) dynamical
structure [79–82], the dynamical invariant is found to be

I (t ) = sin θ cos β σx + sin θ sin β σy + cos θ σz, (19)

where θ and β are two time-dependent parameters.
By reverse solving Eq. (18), the expressions for �x(t ) and

�y(t ) are

�x(t ) = (β̇ tan θ sin β − θ̇ cos β )/2,

�y(t ) = (β̇ tan θ cos β + θ̇ sin β )/2. (20)

The eigenvectors of the dynamical invariant I (t ) are

|ζ+(t )〉 = eiβ/2 cos θ
2 |ξ1〉 + ie−iβ/2 sin θ

2 |ξ2〉,
|ζ−(t )〉 = ieiβ/2 sin θ

2 |ξ1〉 + e−iβ/2 cos θ
2 |ξ2〉, (21)

with the eigenvalues ±1. Using the eigenvectors |ζ±(t )〉,
two orthogonal solutions |ψ±(t )〉 of the Schrödinger equa-
tion i|ψ̇ (t )〉 = He(t )|ψ (t )〉 are derived as follows:

|ψ±(t )〉 = eiμ±(t )|ζ±(t )〉, (22)

where μ±(t ) are the Lewis-Riesenfeld phases [77,83], given
by

μ±(t ) = 〈ζ±(t )|
[

i
∂

∂t
− HJ

(2m)(t )

]
|ζ±(t )〉

= ∓
∫ t

0

β̇(t ′)
2 cos[θ (t ′)]

dt ′. (23)

Here, we select the evolution paths |ψ+(t )〉 to realize the evo-
lution |ψ+(0)〉 = |ξ1〉 → |ψ+(T )〉 = eiχ (T )/2|ξ2〉. Then, the
corresponding boundary conditions can be specified as

θ (0) = β(0) = β(T ) = 0, θ (T ) = π. (24)

So far, we have obtained expressions for the classical fields
{�m(t )} by using reverse engineering. However, to enhance
the robustness against the systematic errors in the coupling
strengths {gn}, we need to further design the control parame-
ters θ and β using optimal control.

Considering the systematic errors of the coupling strengths
with systematic-error rate δ, i.e., g → g(1 + δ), the effective
Hamiltonian in Eq. (13) becomes Hs(t ) = He(t ) + δHc

c. The
projection of the Hamiltonian Hs(t ) in the two-level subspace
spanned by {|ξ1〉, |ξ2〉} is written as

H̃ (m)
s (t ) = HJ

(2m)(t ) + H̃ (m)
ς ,

H̃ (m)
ς = (N − 4m)δgα|ξ2〉〈ξ2|

= 1
2 (N − 4m)δgα(σz − I ) = ς (σz − I ), (25)

where I = |ξ1〉〈ξ1| + |ξ2〉〈ξ2| and ς = 1
2 (N − 4m)δgα.

By using the time-dependent perturbation theory, we
get [75,84]

|ψς (T )〉 = |ψ (T )〉 − i
∫ T

0
dtU0(T, t )H̃ (m)

ς |ψ (t )〉 + O(ς2),

where U0(T, t ) = ∑
l=± |ψl (T )〉〈ψl (t )| is the unperturbed

time evolution operator, O(ς2) are terms with order equal to or
greater than ς2, and |ψς (t )〉 (|ψ (t )〉) is the state of the system
with (without) systematic errors.

The fidelity of the evolution |ξ1〉 → |ξ2〉 along paths
|ψ+(t )〉 can be approximately calculated as

F ≈ 1 −
∣∣∣∣ 1

T

∫ T

0
〈ψ−(t )|H̃ς |ψ+(t )〉dt

∣∣∣∣
2

= 1 − ς2

∣∣∣∣ 1

T

∫ T

0
eiχ (t ) sin θdt

∣∣∣∣
2

, (26)

with χ (t ) = 2μ+(t ). According to Refs. [75,76], the
systematic-error sensitivity can be calculated as

Q = −1

2

∂2F

∂ς2
|ς=0=

∣∣∣∣ 1

T

∫ T

0
eiχ (t ) sin θdt

∣∣∣∣
2

. (27)

To nullify the systematic-error sensitivity, we assume
χ (t ) = −(2θ + 2λ sin 2θ ) with an undetermined coeffi-
cient λ [76,85,86]. Using the relation χ (t ) = 2μ+(t ),
we derive

χ̇ (t ) = −[2θ̇ (1 + 2λ cos 2θ )] = −β̇/ cos θ

⇒ β̇(t ) = 2θ̇ cos θ (1 + 2λ cos 2θ ). (28)

According to the boundary conditions in Eq. (24), the expres-
sion for β is given by

β(t ) = 2(1 + 2λ) sin θ − 8λ

3
sin3 θ. (29)

Substituting β(t ) in Eq. (29) into Eq. (20), the specific expres-
sions for the control fields can be obtained as

�x(t ) = θ̇

2
[2(1 + 2λ cos 2θ ) sin β sin θ − cos β],

�y(t ) = θ̇

2
[2(1 + 2λ cos 2θ ) cos β sin θ + sin β]. (30)

In addition, based on the boundary conditions in Eq. (24), the
parameter θ (t ) can be selected as

θ (t ) = π sin2(πt/2T ). (31)

After numerical calculations, a solution λ = −0.2058 for
Q 
 0 is found, and the wave shapes of �x(t ) and �y(t ) can
be obtained and are shown in Fig. 2.

IV. NUMERICAL SIMULATIONS

In this section, let us estimate the performance of the pro-
tocol via numerical simulations. In the numerical simulations,
we take the even- and odd-parity states of the N cat-state
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FIG. 2. The control fields �x (t ) and �y(t ) versus t/T .

qubits

|ϕeven〉 = 2(1−N )/2
[N/2]∑
m=0

N2m∑
J=1

∣∣
(J )
j

〉
1,N ,

|ϕodd〉 = 2(1−N )/2
[N/2]∑
m=0

N2m+1∑
J=1

∣∣
(J )
j

〉
1,N (32)

as examples. In addition, the initial state of the superconduct-
ing qutrit is prepared in the ground level |g〉q.

A. Verification of the protocol for different numbers
of cat-state qubits

In Sec. III, the control fields were designed using the two-
level effective Hamiltonian in Eq. (17). In order to examine
the validity of the protocol, we study the evolution of the
system under the control of the full Hamiltonian H (t ) defined
below Eq. (2) in Sec. II. When the system is controlled by the
full Hamiltonian, the evolution is governed by the equation

ρ̇(t ) = −i[H (t ), ρ(t )], (33)

where ρ(t ) is the density operator of the total system. We
choose the Kerr-nonlinearity parameter K = 2π × 12.5 MHz,
the amplitude α = 2 of the coherent state, the operation time
T = 5 µs, and the coupling strength gn = g = 5 MHz to per-
form numerical simulations. With the selected parameters, we
have Egap = 1038.1 MHz. Thus, the condition Egap � |gnα|
is well satisfied, and the cavity mode Cn is restricted in the
cat-state subspace. The population of the states |g〉q and |φ+〉q

at time t are defined as

Pg(t ) = Tr[ρ(t )|g〉q〈g|], Pφ (t ) = Tr[ρ(t )|φ+〉q〈φ+|].
The number of cat-state qubits is selected to be N = 2, 3, 4

to verify the validity of the protocol. When the cavity states
are in the even- or odd-parity states, the corresponding initial
states of the whole system are, respectively,

|φo〉 = |ϕeven〉 ⊗ |g〉q, |φe〉 = |ϕeven〉 ⊗ |g〉q. (34)

For different initial states |φo〉 and |φe〉, the populations Pg(t )
and Pφ (t ) versus t are plotted in Figs. 3(a), 3(b), and 3(c) for
N = 2, N = 3, and N = 4, respectively. The values of {Pg(T ),
Pφ (T )} for N = 2, 3, 4 are listed in Table I. From Fig. 3 and
Table I, we find {Pg(T ), Pφ (T )} ≈ {0, 1} [{Pg(T ), Pφ (T )} ≈
{1, 0}] for the case of even (odd) parity. This means that the

0 1 2 3 4 5
0

0.5

1

0 1 2 3 4 5
0

0.5

1

0 1 2 3 4 5
0

0.5

1

FIG. 3. The populations Pg(t ) and Pφ (t ) versus t for the (a)
N = 2, (b) N = 3, and (c) N = 4 cases.

final state of the auxiliary qutrit is |g〉q (|φ+〉q) for the odd-
(even-) parity case. Thus, the parity-selective qutrit transition
is successfully realized. We can distinguish the parity of the
cat-state qubits by measuring the final state of the qutrit.

B. Optimization of the protocol by selecting the proper coupling
strength and operation time

Generally speaking, the influence of decoherence increases
when the operation time T increases. Hence, a shorter oper-
ation time is better to reduce the influence of decoherence.
However, according to Eqs. (30) and (31), a shorter operation
time T means that a stronger control field �m(t ) is needed.
If the amplitude of the control field �m(t ) is relatively large
and the coupling strength g remains unchanged, the condition
|ω̃| � |�m(t )| (ω̃ = gα) cannot be not well satisfied. The
desired evolution of the system will be destroyed. In fact,

TABLE I. The values of {Pg(T ), Pφ (T )} for N = 2, 3, 4.

N

2 3 4

Pg(T ) (even) 9.2541 × 10−4 5.2936 × 10−4 5.2900 × 10−4

Pφ (T ) (even) 0.9991 0.9993 0.9938
Pg(T ) (odd) 1.0000 1.0000 1.0000
Pφ (T ) (odd) 0.0000 8.8175 × 10−6 8.7974 × 10−6
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FIG. 4. The distinguishability D(T ) versus the coupling strength
g and the operation time T .

the satisfaction of the condition |ω̃| � |�m(t )| becomes better
with an increasing value of g, but the condition Egap � |gnα|
may be broken with the increase of the coupling strength g.
Because the value of the Kerr-nonlinear coefficient K is finite
in experiments, it is better to keep the Kerr-nonlinear coef-
ficient K unchanged for the sake of experimental feasibility.
Hence, we should strike a balance between the values of g
and T .

To estimate the performance of the protocol, we define the
distinguishability of the even- and odd-parity states as

D(t ) = ∣∣Pe
g (t ) − Po

g (t )
∣∣. (35)

The populations of the ground level |g〉q in the even- (odd-)
parity cases are given by

Pe
g (t ) = Tr[ρe(t )|g〉q〈g|], Po

g (t ) = Tr[ρo(t )|g〉q〈g|], (36)

respectively, where ρe(t ) [ρo(t )] is the density operator of the
system at time t with the initial state |φe〉 (|φo〉). When the
value of D(T ) is closer to 1, the parity of the cat-state qubits
can be better distinguished by measuring the population of the
ground state of the qutrit.

Considering the case of N = 3, the distinguishability D(T )
versus the coupling strength g and the operation time T is
plotted in Fig. 4, where the value of distinguishability D(T )
is greater than 0.99 when the coupling strength g � 10 MHz
and the operation time T � 0.7 µs. We can select g = 10 MHz
and T = 1 µs for an acceptable distinguishability of 0.9967.
In the following numerical simulations, we take N = 3 as
an example and fix g = 10 MHz and T = 1 µs to estimate
the performance of the protocol in the presence of different
disturbing factors.

We also studied the performance of the protocol by consid-
ering cat-state qubits with different coherent-state amplitudes
α. The distinguishability D(T ) versus the amplitude α (α ∈
[0.5, 3]) is shown in Fig. 5(a). As shown by Fig. 5(a), the
distinguishability D(T ) is greater than 0.99 and tends to be
stable for α � 1.67. This means the protocol can be well per-
formed over a wide range of amplitude α. The performance of
the protocol is nearly perfect when α is large enough because
a larger amplitude α can satisfy the condition Egap � |gnα|
better because Egap 
 4Kα2 [67], which greatly reduces the
probability of leakage from the cat-state subspace to other
eigenstates. This agrees with the theoretical analysis in Sec. II.
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FIG. 5. (a) The distinguishability D(T ) and the populations
Po

g (T ) and Pe
g (T ) of the auxiliary qutrit in the odd- and even-parity

cases versus the amplitude α of the coherent state. (b) The successful
probabilities Po

s (T ) and Pe
s (T ) versus the total measurement number

M of the repeated measurements.

We consider the fact that a large α can affect the cat-state
qubits mainly through bit-flip errors, while the phase-flip er-
rors are exponentially suppressed [67] (see Sec. IV G). The
large-amplitude cat-state qubits may be promising candidates
for quantum information processing [59]. Therefore, the pro-
tocol may be helpful for quantum information processing
based on large-amplitude cat-state qubits.

As the small-amplitude cat-state qubits can also be used
in quantum information processing [68], we also study the
performance of the protocol in cases where the amplitudes
of the cat-state qubits are relatively small. We can see from
Fig. 5(a) that the distinguishability D(T ) remains higher
than 0.942 when α � 1.1. This means that the protocol still
produces relatively high distinguishability when the average
photon number of the cat-state qubit is near 1. However, when
α � 1, the distinguishability D(T ) tends to decrease more
shapely. This may be detrimental to the implementation of
the protocol. When α � 0.85, the distinguishability D(T ) is
still higher than 0.516. Thus, in the case of α � 0.85, the
successful probability of the protocol can still be enhanced by
repeated measurements. As the parity of the cat-state qubits
remains unchanged after the whole process, to repeat the
measurement, one should just reinitialize the auxiliary qutrit
to its lowest level |g〉q. We assume that the final measurement
result is decided by which of the two parities is reported more
times in M (M = 1, 3, 5, . . . ) repeated measurements. Conse-
quently, for odd- and even-parity states, the final successful
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probabilities are, respectively, given by

Po
s (T ) =

M∑
j=(M+1)/2

Cj
M

[
Po

g (T )
]j [

1 − Po
g (T )

]M−j
,

Pe
s (T ) =

M∑
j=(M+1)/2

Cj
M

[
1 − Pe

g (T )
]j [

Pe
g (T )

]M−j
. (37)

Here, Po
g (T ) and Pe

g (T ) are the populations of the lowest level
|g〉q of the auxiliary qubit at time T in the odd- and even-
parity cases. Taking α = 0.85 as an example, in the odd- and
even-parity cases, we obtain Po

g (T ) = 0.5443 and Pe
g (T ) =

0.0281, respectively. The successful probabilities Po
s (T ) and

Pe
s (T ) versus the total measurement number M of the re-

peated measurements are shown in Fig. 5(b). As shown by
the red solid and blue dashed curves, the successful proba-
bilities Po

s (T ) and Pe
s (T ) both increase with the increase of

the total measurement number M. The successful probability
Pe

s (T ) is near unity, while the successful probability Po
s (T )

can be higher than 0.8 when M � 91. For α = 0.9, we have
Po

g (T ) = 0.6081 and Pe
g (T ) = 0.0247. The successful proba-

bilities Po
s (T ) and Pe

s (T ) versus the total measurement number
M are shown by the green dotted and purple dashed-dotted
curves. We can see that the successful probability Po

s (T )
can be enhanced to 0.9 with only M = 35. Hence, multiple
measurements can improve the successful probability for dis-
tinguishing the two parities in the case of small α. In this
paper we still focus on the performance of the protocol at one
measurement. Therefore, in the following discussion, as an
example to further estimate the performance of the protocol,
we consider a moderate value of the amplitude, α = 2.

C. Effects of systematic errors on the protocol

We now estimate the performance of the protocol under
the influence of systematic errors and compare the results
with those for the protocol using a flat π pulse. First, let us
consider the systematic errors of the coupling strength g. In
this case, the coupling strength g becomes g(1 + δ) with the
systematic-error rate δ. The distinguishability D(T ) versus
the systematic-error rate δ is plotted in Fig. 6(a). For both
protocols using the time-dependent pulses designed in Sec. III
and the flat π pulse, the distinguishability D(T ) decreases
as |δ| increases for the systematic-error rate δ ∈ [−0.1, 0.1].
Especially, for the flat π -pulse case, the value of D(T ) falls
below 90% for |δ| � 0.008. The value of D(T ) is equal to or
greater than 98% only when δ ∈ [−0.004, 0.004]. However,
for the time-dependent pulse case, the value of D(T ) is al-
ways greater than 90% when δ ∈ [−0.1, 0.1], and the value of
D(T ) is equal to or greater than 98% for δ ∈ [−0.096, 0.076].
From the above data, we can see that the distinguishability
is very sensitive to the systematic errors of the coupling
strengths when using the flat π pulse but robust against the
systematic errors of the coupling strengths when utilizing the
time-dependent pulse.

Now we investigate the systematic errors of the classical
fields. In fact, if the classical fields have systematic errors, the
Rabi frequency will become �m(t ) → (1 + δ̄)�m(t ), where
δ̄ is the error rate. In order to study the performance of the
protocol in the presence of systematic errors in the control
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FIG. 6. (a) The distinguishability D(T ) versus the systematic-
error rate δ for the flat π pulse and the time-dependent pulse. (b) The
distinguishability D(T ) versus the systematic-error rate δ̄ for the flat
π pulse and the time-dependent pulse.

fields, in Fig. 6(b), we plot the distinguishability D(T ) versus
the systematic-error rate δ̄ ∈ [−0.2, 0.2] for both protocols
with the flat π pulse and the time-dependent pulse �m(t )
designed in Sec. III. As shown in Fig. 6(b), the distinguisha-
bility D(T ) decreases as |δ̄| increases. The value of D(T )
is only about 89% when δ̄ reaches −0.2 using the flat π

pulse. For the time-dependent pulse, the values of D(T ) are
always equal to or greater than 97.5% when δ̄ ∈ [−0.2, 0.2].
This demonstrates that the protocol with the time-dependent
pulse is also insensitive to the systematic errors of the control
fields.

Now we compare the influence of the systematic errors
of the coupling strengths with that of the classical fields. As
shown by the blue dashed (red solid) line in the insets of
Figs. 6(a) and 6(b), the distinguishability D(T ) in the inset
of Fig. 6(a) decreases more sharply than the distinguishability
D(T ) in the inset of Fig. 6(b) when the error rates increase.
This is because the systematic errors of the coupling strengths
will cause a frequency mismatch in the effective Hamiltonian,
which destroys the parity-selective qutrit transition. Espe-
cially in the case of the flat π pulse, the distinguishability
D(T ) is very sensitive to the systematic errors of the coupling
strengths. Therefore, the systematic errors of the coupling
strengths have greater influence than the systematic errors of
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the classical fields. This is why we should design and select
proper evolution paths and control parameters using reverse
engineering and optimal control to enhance the robustness
against the systematic errors of the coupling strengths.

D. Effects of the inhomogeneity of coupling strengths
on the protocol

In a real implementation of the protocol, all the cou-
pling strengths {gn} cannot be completely equal. To evaluate
the performance of the protocol under the influence of
the inhomogeneity of the coupling strengths, we choose
N = 3 as an example. The coupling strengths of the three
cavities of the auxiliary qutrit are set as g1 = g(1 + δ1),
g2 = g(1 + δ2), and g3 = g, where δ1 and δ2 are the devi-
ation rates. We numerically simulate the distinguishability
D(T ) versus the deviation rates δ1 and δ2. As shown in
Fig. 7(a), when the deviation rates are δ1 ∈ [−0.1, 0.1] and
δ2 ∈ [−0.1, 0.1], the values of D(T ) decrease as the values
of |δ1| and |δ2| increase. However, the values of D(T ) are
always greater than or equal to 98.14%. This indicates that the
protocol is insensitive to the inhomogeneity of the coupling
strengths.

E. Effects of intercavity cross talk on the protocol

In the experimental implementation, cross talk between the
cavities is inevitable [87], which will affect the evolution of
the system. When the cavity number N is equal to 3, the
intercavity cross talk is described as

Hcr = g12a†
1a2 + g23a†

2a3 + g13a†
1a3 + H.c., (38)

where g12, g23, and g13 are the cross-talk coupling strengths.
When the cross talk is taken into account, the Hamiltonian
of the system is Hr (t ) = H (t ) + Hcr, and the evolution of the
system can be described by the equation

ρ̇(t ) = −i[Hr (t ), ρ(t )]. (39)

The cross-talk coupling strengths g12 ∈ [0, 0.1g], g23 ∈
[0, 0.1g], and g13 = 0 are selected to test the performance of
the protocol. We plot the distinguishability D(T ) versus cou-
pling strengths g12 and g23 in Fig. 7(b). As shown in Fig. 7(b),
the distinguishability D(T ) decreases with the increase of the
cross-talk coupling strengths. However, for g12 ∈ [0, 0.1g] and
g23 ∈ [0, 0.1g], the values of D(T ) are always greater than
99.6%. This means that the effect of cavity cross talk on the
protocol can be ignored. In fact, the states of the cavities are
restricted in the cat-state subspace due to strong Kerr nonlin-
earity, which makes the protocol insensitive to the cavity cross
talk. Moreover, because the intercavity cross talk Hcr and the
parity operator of the cavities P in Eq. (7) are commutated,
the intercavity cross talk Hcr does not change the parity of
the cavities. That is why the effect of cavity cross talk can be
ignored.

F. Effects of anharmonicity on the protocol

During the realization of the protocol, the couplings be-
tween the qutrit and the cavities and the classical fields applied
to the qutrit will cause unwanted transitions. When the transi-
tion frequencies of the unwanted transitions and the transition
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FIG. 7. (a) The distinguishability D(T ) versus the deviation rate
δ′. (b) The distinguishability D(T ) versus the cross-talk coupling
strengths g′ (in units of g). (c) The distinguishability D(T ) versus
the detuning �.

frequencies of the wanted transitions are close, the unwanted
transitions may have a large influence on the protocol. For ex-
ample, because the values of ω f e and ωeg are relatively close,
(1) the unwanted coupling between the transition |g〉q ↔ |e〉q

and the cavity mode Cn with the detuning �n = |ω f e − ωeg|
and (2) the unwanted driving | f 〉q ↔ |e〉q with the detun-
ing �′ = |ω f e − ωeg| should be considered. The unwanted
coupling between the transition |g〉q ↔ | f 〉q and the cavity
mode Cn can be ignored because the transition frequencies
satisfy ω f g � ω f e. Taking unwanted transitions 1 and 2 into
account, the Hamiltonian of the system is Hr (t ) = H (t ) +
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Hd (t ), where the Hamiltonian Hd (t ) is described by

Hd (t ) =
(

N∑
n=1

gnanei�nt

)
⊗ |e〉q〈g|

+�(t )ei�′t ⊗ |e〉q〈 f | + H.c. (40)

To evaluate the effect of unwanted transitions on the protocol,
we numerically simulate the distinguishability D(T ) versus
the detuning �n =�′ =�. As shown in Fig. 7(c), the value
of D(T ) increases when the value of � increases. When
�∈ [100, 4000] MHz [88], it is worth noting that the distin-
guishability D(T )�90% for detuning �∈ [650, 4000] MHz.
This suggests that the protocol works well when the supercon-
ducting qutrit has strong anharmonicity. Therefore, to ensure
the effectiveness of the protocol, we should preferably choose
a superconducting qutrit with strong anharmonicity. For ex-
ample, a flux qutrit or charge qutrit, whose anharmonicity can
reach the order of gigahertz [88–91], is suitable to implement
the protocol.

G. Effects of decoherence on the protocol

Since the system cannot be completely separated from the
environment, decoherence of the system will occur. Thus, the
influence of environment-induced decoherence should also
be taken into account. The main decoherent factors in the
protocol are the dephasing from levels |e〉q and | f 〉q; the qutrit
energy relaxation for relaxation paths | f 〉q → |e〉q, | f 〉q →
|g〉q, and |e〉q → |g〉q; and the single-photon loss of each cav-
ity. The evolution of the system in the presence of decoherence
can be described by the Lindblad master equation [59,92],

ρ̇(t ) = −i[H (t ), ρ(t )] +
∑

k=e, f

γkkL[σkk] + γ f gL[σ−
f g]

+ γ f eL[σ−
f e] + γegL[σ−

eg] +
N∑

n=1

κnL[an], (41)

where σkk = |k〉q〈k|, σ−
f g = |g〉q〈 f |, σ−

f e = |e〉q〈 f |, σ−
eg =

|g〉q〈e|, and L[O] = Oρ(t )O† − O†Oρ(t )/2 − ρ(t )O†O/2,
with O = σkk, σ

−
f g, σ

−
f e, σ

−
eg, an. Here, γkk is the dephasing

rate, γ f g (γ f e, γeg) is the qutrit spontaneous emission rate, and
κn is the single-photon loss rate of the cavity. For simplicity,
we set γkk = �, γ f g = γ f e = γeg = γ , and κn = κ in follow-
ing numerical simulations.

We numerically simulate the distinguishability D(T ) ver-
sus the dephasing rates (the single-photon loss rates of three
cavities) and the spontaneous emission rates in Fig. 8(a)
[Fig. 9(a)]. We define the projection operator of the cat-state
subspace as

Pcat =
N∑

n=1

|�+〉n〈�+| + |�−〉n〈�−|. (42)

The probability of leakage from the cat-state subspace PL

versus the dephasing rates (the single-photon loss rates of
three cavities) and the spontaneous emission rates is shown
in Figs. 8(b) and 8(c) [Figs. 9(b) and 9(c)] for different initial
states |φe〉 and |φo〉. Here, we have PL = 1 − Tr[ρe(o)(T )Pcat].

0.94
0.050

0.96

0.05

0.98

0.1

1

0.1
0.94

0.95

0.96

0.97

0.98

0.99

0
0

0

(
)

(a)

0 05
Γ (MHz) (MHz)

(b)

Γ (MHz) (MHz)

0
0.1

0.5

0.1

b)
×10

-6

0.05

1

0.05
0 0

2

4

6

8

10

×10
-7

(c)

Γ (MHz) (MHz)

1
0.1

0.1

1.05

)
×10

-4

0.05

1.1

0.05
0 0

1

1.02

1.04

1.06

1.08

×10
-4

FIG. 8. (a) The distinguishability D(T ) versus the dephasing
rates � ∈ [0, 0.1] MHz and the spontaneous emission rates γ ∈
[0, 0.1] MHz. (b) The probability of leakage from the cat-state
subspace PL versus the dephasing rates � ∈ [0, 0.1] MHz and the
spontaneous emission rates γ ∈ [0, 0.1] MHz for the initial state
|φe〉. (c) The probability of leakage from the cat-state subspace PL

versus the dephasing rates � ∈ [0, 0.1] MHz and the spontaneous
emission rates γ ∈ [0, 0.1] MHz for the initial state |φo〉. In all plots,
κ = 0 is set.

Figure 8(a) shows that the protocol can achieve the dis-
tinguishability D(T ) � 93.6% for � ∈ [0, 0.1] MHz and γ ∈
[0, 0.1] MHz (κ = 0). Figure 9(a) shows that the proto-
col can achieve the distinguishability D(T ) � 95.2% for
γ ∈ [0, 0.1] MHz and κ ∈ [0, 0.01] MHz (� = 0) [89,93–
95]. From Figs. 8(a) and 9(a), we can see that the spon-
taneous emission is the main factor affecting the protocol.
However, the protocol can still produce distinguishability
[D(T )�95.2%] in the presence of the spontaneous emission.
Thus, the protocol is somewhat robust to decoherence.
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FIG. 9. (a) The distinguishability D(T ) versus the single-photon
loss rates κ ∈ [0, 0.01] MHz and the spontaneous emission rates
γ ∈ [0, 0.1] MHz. (b) The probability of leakage from the cat-state
subspace PL versus the single-photon loss rates κ ∈ [0, 0.01] MHz
and the spontaneous emission rates γ ∈ [0, 0.1] MHz for the initial
state |φe〉. (c) The probability of leakage from the cat-state subspace
PL versus the single-photon loss rates κ ∈ [0, 0.01] MHz and the
spontaneous emission rates γ ∈ [0, 0.1] MHz for the initial state
|φo〉. In all plots, � = 0 is set.

In Figs. 8(b) and 8(c) [Figs. 9(b) and 9(c)], we can see that
the probability of leakage PL is always less than 1.2 × 10−6

and 1.1 × 10−4 (3.3 × 10−7 and 1.005 × 10−4) for initial
states |φe〉 and |φo〉. This indicates that the cavity states barely
leak to other states and almost stay in the cat-state subspace
throughout the evolution process. This is because the single-
photon loss of the cavities is equivalent to a bit flip σ x

n within
the cat-state subspace under a strong two-photon squeezing
drive [59,63,67]. Specifically, the Lindblad operator L[an]
in the eigenstate subspace of the Hamiltonian H0 is written

as

L[an] 
 α2L[
√

tanh α2|C+〉n〈C−| +
√

coth α2|C−〉n〈C+|]

+L
[√

N+
Ne+

|C+〉n〈�e
+| +

√
N−
Ne−

|C−〉n〈�e
−|

]

+α2L
[√

Ne−
Ne+

|�e
−〉n〈�e

+| +
√

Ne+
Ne−

|�e
+〉n〈�e

−|
]
, (43)

where |�e
±〉n = Ne

±[Dn(α) ∓ Dn(−α)]|1〉n, Dn(±α) are the
displacement operators of the cavity mode Cn, Ne

± are the nor-
malization coefficients, |�e

±〉n are the first excited eigenstates
of the Hamiltonian H0, and |1〉n is the single-photo state of
the cavity mode Cn. Here, the higher excited eigenstates of
the Hamiltonian H0 are omitted because they are almost not
populated in the case of Egap � |gnα| [59,63,67]. According
to the terms in the second line in Eq. (43), the single-photon
loss can transfer the first excited eigenstates |�e

±〉n to the
ground eigenstates |C±〉n. If the cavity mode Cn is initially
in the cat-state subspace, it will still remain in this cat-state
subspace in the presence of single-photon loss. Therefore, we
can neglect the terms in the last two lines in Eq. (43) and
obtain (|α| � 1)

L[an] 
 α2√
1 − e−4α2

L
[
σ x

n + ie−2α2
σ y

n

]
, (44)

where σ x
n = |C+〉n〈C−| + |C−〉n〈C+| and σ

y
n = i(|C−〉n〈C+| −

|C+〉n〈C−|). According to Eqs. (43) and (44) and |α| � 1, we
can see that the single-photon loss of the cavities primarily
leads to a bit-flip error σ x

n , which is accompanied by an ex-
ponentially small phase-flip error σ

y
n . Therefore, the evolution

of the cavity states will be confined in the cat-state subspace
even if the system has single-photon loss.

V. CONCLUSION

In conclusion, we proposed a one-step protocol for parity
measurement of N cat-state qubits. The physical model
consists of N Kerr-nonlinear cavities and a superconducting
qutrit. Due to the strong Kerr nonlinearity, each cavity mode
evolves in a subspace spanned by the odd and even cat
states, thus forming a cat-state qubit. The N Kerr-nonlinear
cavities are resonantly coupled to the transition between
the two higher-energy levels of the qutrit. Meanwhile,
two classical fields were applied to drive the transition
between the two lower-energy levels and that between the
highest-energy level and the ground level of the qutrit.
Modulating the classical fields with proper frequencies, we
obtain an effective Hamiltonian for the parity-selective qutrit
transition. According to the derived effective Hamiltonian,
the qutrit can be excited to a dressed state of the two
higher-energy levels after certain operations when N cat-state
qubits are in even-parity states. However, when the cat-state
qubits are in odd-parity states, the qutrit cannot be excited,
thus remaining in the ground level. As a result, the parity of
the cat-state qubits can be determined by measuring the final
population of the ground level of the qutrit.
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Because the systematic errors of the coupling strengths
cause frequency mismatch in the effective Hamiltonian, it will
decrease the accuracy of the parity measurement. In order
to enhance the robustness against the systematic errors of
the coupling strengths, the reverse engineering and optimal
control are used to design control fields. Using the designed
control fields, the parity measurement can be implemented
with robustness against the systematic errors of the coupling
strengths. In addition, we estimate the performance of the
protocol in the presence of several disturbing factors via nu-
merical simulations. The numerical results indicate that the
protocol is also insensitive to the systematic errors of the
classical fields, the inhomogeneity of the coupling strengths,
the intercavity cross talk, the unwanted transitions, and

decoherence. Therefore, the protocol may provide useful per-
spectives for the parity measurement of many cat-state qubits.
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