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Predicting a topological quantum phase transition from dynamics via multisite entanglement
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An exactly solvable Kitaev model in a two-dimensional square lattice exhibits a topological quantum phase
transition which is different from the symmetry-breaking transition at zero temperature. When the ground state
of a nonlinearly perturbed Kitaev model with different strengths of perturbation taken as the initial state is
quenched to a pure Kitaev model, we demonstrate that various features of the dynamical state, such as the
Loschmidt echo and time-averaged multipartite entanglement, can determine whether the initial state belongs to
the topological phase or not. Moreover, the derivatives of the dynamical quantifiers can faithfully identify the
topological quantum phase transition, which is present at equilibrium. When the individual qubits of the lattice
interact with the local thermal bath repeatedly, we observe that block entanglement in dissipative dynamics can,
nevertheless, distinguish the equilibrium phases from which the system starts evolution.
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I. INTRODUCTION

Phase transitions, which occur when a system parameter
crosses a critical value in a condensed-matter system, are
characterized by a sharp change in behavior. While the con-
ventional phase transitions are due to the onset of thermal
fluctuation after a critical temperature, there can be a quantum
phase transition (QPT) solely driven by the quantum fluctua-
tions that occur by tuning the system parameter [1]. Moreover,
it was shown in recent years that in the quench dynamics,
quantum critical points can be linked to the nonanalytic be-
havior of physical quantities with time, which is also referred
to as the dynamical quantum phase transition (DQPT) [2–8].
Both in static and dynamical scenarios, it has been pointed out
that multipartite entanglement measures [9] can be used as a
marker of QPTs and DQPTs present in quantum spin models
[10–14]. Due to advancements on the experimental front, such
spin models can nowadays be realized and manipulated in
a controlled way using trapped ions [15,16], cold atoms in
optical lattices [12], and superconducting qubits [17].

On the other hand, it was shown that systems with topo-
logically ordered states possess several unique characteristics
like robustness under local perturbation, which is, in general,
absent in other phases of a many-body system [18,19]. More-
over, such states cannot be characterized by any local order
parameter, and hence, QPTs from topologically ordered states
cannot be understood by conventional theories based on the
divergence in local order parameters. Therefore, a novel ap-
proach is required to investigate the underlying characteristics
of the ground state in these systems, especially the QPT from
a topological phase to another phase, known as the topological
quantum phase transition (TQPT), which has also been exten-
sively studied using both analytical and numerical techniques
[20–22]. In this context, the Kitaev toric code is an example
of a topologically ordered state that undergoes a second-
order quantum phase transition [23–25]. The ground states
of the modified Kitaev models also change phase from the

topologically ordered phase to a nontopological one, thereby
exhibiting a TQPT [21,26,27].

Further, topologically ordered states are of particular inter-
est in quantum information processing tasks [23,28], which
include quantum communication, quantum computation, and
quantum error correcting codes since they are resilient to local
perturbation [22,29–36]. More specifically, the toric code can
be used as quantum memory to store quantum information due
to its robustness against local and thermal errors [23]. Several
information-theoretic quantities, such as block entanglement
entropy [22,37,38], multipartite entanglement [39], quantum
discord [34], and the Fisher information [35] of the ground
state in the Kitaev code, and quantities derived from them
have been shown to be useful to detect the TQPT. Note,
however, that the bipartite reduced states possess vanishing
entanglement, thereby making them incapable of detecting a
TQPT. A very recent work [40] demonstrated that the TQPT
may be distinguished using localizable entanglement obtained
from the dynamical state of the Kitaev code in the presence of
a parallel magnetic field which is influenced by Markovian
and non-Markovian dephasing noise. Topological quantum
criticalities were studied under nonequilibrium conditions
[41–43], and it was shown that under Floquet or periodic
driving, dynamical states can also predict [44–47] equilibrium
critical points [48], including topologically ordered critical
points. [49,50].

In our work, we examine the nonlinearly perturbed Kitaev
code, which was demonstrated to undergo a topological quan-
tum phase transition with the adjustment of the perturbation
strength at zero temperature [20,26,51–54]. Here, we address
the question of whether the characteristics of the evolved
state are capable of indicating the occurrence of a topological
quantum phase transition in equilibrium, which we refer to as
a topological dynamical quantum phase transition (TDQPT).
In this respect, it is important to stress that there are quantum
spin models, such as the quantum XY model with uniform
and alternating magnetic fields, in which the dynamical states
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cannot faithfully recognize phase transitions that occurred at
equilibrium [14]. However, using this perturbed Kitaev model,
the equilibrium transitions can be successfully predicted from
the dynamics. Specifically, the initial state is taken to be the
nonlinearly perturbed Kitaev model with different strengths of
perturbation, and the system is then quenched to an original
Kitaev model. We illustrate that the rate function originated
from Loschmidt echo (LE), a conventional measure for detect-
ing DQPT, shows nonanalyticity in time when the quenching
is performed across the quantum topological critical point.
However, any such nonanalyticity is not observed when both
the initial and evolved states belong to the same phase.

We demonstrate that the genuine multipartite entanglement
measure, quantified by the generalized geometric measure
(GGM) [55] and block entanglement of the dynamical state,
can successfully determine the TQPT present in the ground
state, even though entanglement has not yet been established
as a quantifier for identifying DQPT (cf. [14]). In particular,
both the time-averaged GGM and block logarithmic negativity
[56,57] of the evolved state change from concave to convex
with the variation of the strength in the nonlinear perturbation
at the phase transition point, resulting in nonanalytic behavior
in their derivatives. Further, we observe that if both the initial
and final Hamiltonians belong to the topologically ordered
phases, the evolved state possesses a substantial amount of
average multipartite entanglement. Going beyond the unitary
dynamics, our studies also reveal that when the entire system
is affected by the local environment, the time-averaged block
entanglement decays, although the behavior of entanglement
can still predict the topological critical point.

The organization of this paper is as follows. In Sec. II, we
introduce the nonlinearly perturbed Kitaev code as well as
topological criticalities in static scenarios and also describe
the evolution due to sudden quench. The physical quantities
that we apply to detect the quantum phase transition in dy-
namics are discussed in Sec. III. In Sec. IV, we present the
patterns of the Loschmidt echo and the multipartite entangle-
ment of the evolved states and illustrate that their dynamical
behavior can detect the TQPT at equilibrium. When the local
noise affects all the sites in the lattice, the entanglement of
the dynamical state is still capable of identifying quantum
criticality, as shown in Sec. V. We summarize in Sec. VI.

II. TORIC CODE WITH NONLINEAR PERTURBATION

Let us first introduce the Hamiltonian that we will use to
demonstrate the topological dynamical quantum phase tran-
sition. Specifically, we identify the parameters which may be
used to observe the dynamical quantum phase transition.

A. Nonlinearly perturbed Kitaev code

For the present work, we consider a deformed Kitaev
toric code with a nonlinear perturbation on a two-dimensional
(2D) square lattice consisting of vertices and plaquettes with
spin-1/2 particles located on each edge of a lattice cell. The
Hamiltonian in this case reads [26,39]

ĤNLTC(β ) = −
∑

v

Âv −
∑

p

B̂p +
∑

v

e−β
∑

i∈v σ̂ z
i , (1)

FIG. 1. Schematic diagram representing the Kitaev toric code
with the periodic boundary condition (which is shown by dotted
lines at the boundary). The star and plaquette operators, Av and Bp,
are marked in green and pink, respectively. Moreover, the clouds
represent the local noise that acts on each qubit or some of the qubits
of the entire system.

where β > 0, with β = 0 representing the original Kitaev
model, and σ̂ k (k = x, y, z) is the Pauli matrix. It was shown
that the above model exhibits a second-order topological
quantum phase transition [26] as the system parameter β

is tuned across the critical value, βcritical = 1
2 ln(

√
2 + 1) =

0.4407 (see Appendix A for details). Here, Âv and B̂p rep-
resent the star and plaquette operators, respectively, which
are defined as the tensor products of Pauli operators σ̂ x

i and
σ̂ z

i acting on an individual spin- 1
2 particle, Âv = ∏

i∈v σ̂ x
i and

B̂p = ∏
i∈p σ̂ z

i (see Fig. 1), with N/2 being the total number
of vertices. As the name suggests, the star operator acts on
four qubits situated around a vertex of the lattice, while the
action of the plaquette operator is again on four qubits on
the bond around a plaquette of the 2D lattice. Similarly, the
perturbative exponential term in Eq. (1) simultaneously acts
on the four qubits belonging to a particular star. Therefore,
the toric code Hamiltonian [Eq. (1)] is composed of four-body
nonlocal operators.

From the definition, all stars and plaquette operators com-
mute with each other. Furthermore, Âν are generators of an
Abelian group whose elements can be represented by a loop
configuration. All possible trivial loops can be generated by
the combination of Âν on each star. An Abelian group [58]
comprising of all possible loops helps in identifying the un-
derlying structure of the ground state; i.e., the element of

the group is a{r1,r2,...,rN/2} = Âr1
1 · Âr2

2 · · · Â
r N

2 −1

N
2 −1

, where ri takes

a value of 1 or 0 depending on the corresponding star operator
being active on a site i or not. The underlying lattice becomes
a torus as the periodic boundary conditions are imposed on
both the horizontal and vertical edges of the lattice. The torus
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structure increases the number of ground states to four linearly
independent states which satisfy the toric code. In particular,
the centers of two nontrivial loops match the centers of the
tube and the torus, respectively.

Since Eq. (1) reduces to the analytically solvable Kitaev
toric code with some energy shifts for β = 0, the ground-state
(GS) properties are already known [25] in this limit. One of
the ground states in the four-dimensional GS manifold can be
expressed as [26]

|GS〉 =
∏
v

(1 + Âv )|0〉
⊗

N . (2)

Here, N is the total number of spins, and |0〉
⊗

N represents a
fully magnetized state with all spins pointing up. Therefore,
one can immediately identify Eq. (2) as the ground state of
Eq. (1) in the limit β → 0.

In the other extreme limit, i.e., β → ∞, the ground state
of Eq. (1) becomes fully magnetized, which suggests that the
system exhibits a topological quantum phase transition from
a topological phase to a magnetized phase as β is varied from
β = 0 to β → ∞.

The exact ground state of the system can be analytically
obtained [26] as

|GS(β )〉 = 1√
Z (β )

∑
a∈G

expβ
∑

i σ̂
z
i (a) a|0〉, (3)

where a ∈ G refers to the loop operators from the Abelian
group G, Z (β ) = ∑

a∈G exp
β

2

∑
i σ̂

z
i (a), and σ̂ z

i (a) = ∓1, de-
pending on whether the spin i has an intersection with the loop
operator a or not. The static properties of ĤNLTC(β ) can help
us to fix the initial state and the quenching Hamiltonian.

Before we start the investigation, let us make a note of
the recent efforts to study the features like entanglement of
these kinds of Hamiltonians in laboratories. Instead of re-
alizing the Hamiltonian and measuring its properties, it is
more common to prepare the topologically ordered ground
state of the toric code using quantum circuits with different
numbers of qubits. Specifically, a quantum circuit comprising
31 superconducting qubits on a Sycamore quantum processor
is used to prepare the toric-code ground state [59]. More
precisely, it is implemented by simultaneous application of
suitable combinations of the Hadamard gate on one of the
four qubits in a plaquette following a CNOT gate on the other
qubits. Other implementations of these types of ground states
include trapped Rydberg atoms [60–62] and polarized photons
[63]. In the small-β limit, such setups with a magnetic field
having strength β in the z direction have the potential to
investigate the properties of the ground and dynamical states
of the Hamiltonian HNLTC.

B. Quench across the critical point

A sudden change in parameters under evolution, more pop-
ularly known as quantum quench or sudden quench, turns
out to be an important tool for studying the nonequilibrium
properties of the system under consideration. It has been es-
tablished that the ground state of the toric code is resilient
to local perturbations. We consider a study in which the
system is no longer at equilibrium and actively undergoes
evolution [64].

To achieve the goal of mimicking equilibrium physics,
especially the TQPT from the dynamical state, the initial state
is chosen to be the ground state of HNLTC(β0); i.e., at t = 0,
|GS〉 is taken as the initial state for dynamics. After the sudden
quench in which β0 is abruptly changed to β1, the system
evolves according to the Hamiltonian HNLTC(β1).

To identify TQPT through evolution, we ensure that β0 and
β1 are taken from either the same phase or different phases
[4,5]. The evolved state takes the form

|ψ (β0, β1, t )〉 = U (β1, t )|ψ0(β0)〉 = e−iHNLTC(β1 )t |ψ0(β0)〉,
(4)

where |ψ0(β0)〉 is the ground state of the Hamiltonian
HNLTC(β0). For our investigation, the initial state is chosen
with β0 �= 0, while the postquenched Hamiltonian is always
considered to be the original Kitaev code, i.e., β1 = 0. In
particular, the time-evolution (unitary) operator U (t ) is given
by

U (β1 = 0, t ) = U (t ) = e−iHtorict

≡ ei
∑

v Âvt = �l∈v cos(t )I16 + i sin(t )Âl , (5)

where I16 refers to the identity matrix in the 16-dimensional
complex Hilbert space. Note that the time-evolution operator
corresponding to the plaquette operator (B̂p) does not play a
role because the σ̂ z operator acting on the initial state only
contributes to the phase of the state and hence only the star
operator (Âv ) contributes in Eq. (5). It is important to note
that the above unitary operator possesses nonlocal interaction
[35,64], thereby having the capability to produce entangle-
ment. Specifically, the toric code is a four-body operator, as
mentioned above, with coefficients depending on time.

III. MEASURES USED FOR DETECTING
CRITICALITIES IN EVOLUTION

Let us briefly discuss the quantifiers that we use to detect
the TQPT in dynamics, which we call the topological dynam-
ical quantum phase transition.

Loschmidt echo and rate function. First, we employ the
conventional DQPT detector, the Loschmidt echo [4,5], which
is computed to distinguish the equilibrium phases from the
dynamical state. It is defined as L(t ) = |〈ψt |ψ0〉|2, where
|ψ0〉 and |ψt 〉 = U (t )|ψ0〉 are the initial and evolved states,
respectively. The evolved state after the action of U (t ) reads

|ψt 〉 ≡ |ψ (β1 = 0, β0, t )〉 = U (t )|GS(β0)〉
=

∏
l∈v

cos(t )I16 + i sin(t )Âl

×
(

1√
Z (β )

∑
a∈G

expβ
∑

i σ̂
z
i (a) a|0〉

)

= 1√
Z (β )

∑
{a1,a2}∈G
r={0.. N

2 }

cos(t )
N
2 −r[i sin(t )]r

× expβ
∑

i σ̂
z
i (a1a2 ) a1a2|0〉, (6)

where a1a2 also belongs to G due to the closure property of
the Abelian group. This ensures that the evolved state retains
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a structure similar to that of the ground state, making the cal-
culation of L(t ) and the corresponding rate function, defined
below, possible.

It has been observed that in the case of a quantum trans-
verse Ising chain, the evolved state becomes completely
orthogonal to the initial state if the quench is performed
to a phase other than the initial one [5]. To detect the
existence of such zeros, the logarithm of L(t ), known as
the Loschmidt rate, given by �(t ) = limN→∞ −1

N ln[L(t )] =
limN→∞ −2

N ln |〈ψt |ψ0〉|, is used. The nonanalytic behavior of
the rate function with time is argued to be analogous to the
behavior of the free energy in the classical phase transition [4]
if we replace i × t in the evolution operator with the inverse
temperature in the partition function.

Specifically, it was shown that uniformly spaced kinks
appear in the time evolution of the rate function for the trans-
verse Ising spin model when the initial Hamiltonian and the
quenched Hamiltonian belong to different phases, while such
kinks are absent if they are chosen from the same phase. No-
tice, however, that many exceptions to this detection process
are also reported [14,65–69]. However, as we will illustrate in
the next section, both L(t ) and �(t ) are capable of identifying
the TQPT from the dynamics.

Entanglement measures. Let us define two entanglement
measures, namely, the genuine multipartite entanglement
measure, which is computed by exploiting the geometric
structure of states [10,55,70–74], and block entanglement,
which is computed by dividing the entire system into two
equal blocks.

Genuine multipartite entanglement. A pure state is gen-
uinely multipartite entangled if it is not separable in any
bipartition (after dividing the entire system into two blocks).
Moreover, we know that all separable states form a closed
and convex set. It gives rise to the possibility of measuring
the entanglement of a given state by calculating the distance
between the set of separable states and the given state. By
denoting the set of nongenuinely multipartite entangled states
as �G, the GGM is defined as G(|ψ〉) = 1 − max|φ〉∈�G |〈φ |
ψ〉|2, such that it measures the distance of a given state from
the closest biseparable state |φ〉.

By using Schmidt decomposition of a pure state, the GGM
reduces to a simple form as [55]

G(|ψ〉) = 1 − max

{
λmax

i1 :rest , λ
max1
i1i2 :rest , . . . , λ

max
i1i2···iM :rest |

i1, i2, . . . , iM ∈
{

1, 2, . . . ,
N

2

}
; ik �= il ; k, l

∈ {1, 2, . . . , M}
}
, (7)

where λmax
i1i2···iM is the largest eigenvalue of the reduced density

matrix ρi1i2···iM corresponding to a bipartition M : rest. Also,
in our case, N is always even since an odd number of spins
cannot sit on a torus. Although it may seem that we have
to calculate all possible bipartitions, which requires comput-

ing the maximum eigenvalues of
∑ N

2
i=1

(N
i

) = 1
2 [2n + (N

N
2

) − 2]
matrices, we will prove that this is not the case in the next
section.

Block entanglement. In addition to the GGM, we also study
the block entanglement of the time-evolved multipartite state
in which entanglement is computed after dividing the partition
of the entire system into two halves, i.e., in the bipartition
N
2 : N

2 . The entanglement is quantified via logarithmic nega-
tivity (LN) [56], which is based on the partial transposition
criteria [75,76]. For an arbitrary state ρAB, LN can be defined
as [56] ELN(ρAB) = log2 ||ρTA

AB||, where || · || represents the
trace norm and ρ

TA
AB denotes the partial transposition of ρAB

with respect to party A. In the case of pure states, |ψ〉 =∑
α cα|Aα〉|Bα〉, the negativity N (ρ) = ||ρTA

AB ||−1
2 reduces to

N (ρ) = 1
2 [(

∑
α cα )2 − 1] using Schmidt decomposition [56].

By considering the dynamical state |ψt 〉 with N parties, we
calculate the logarithmic negativity in the bipartition N/2 :
N/2, which we denote ELN(|ψt 〉 N

2 : N
2

).

IV. DETECTION OF TOPOLOGICAL CRITICALITIES
VIA ENTANGLEMENT

To uncover the topological quantum phase transition from
the dynamics of the system, we adopt three quantities as
defined in the preceding section. We start with the commonly
used quantifier for the DQPT, the Loschmidt echo, and the
rate function.

Behavior of the Loschmidt echo and kink in the rate func-
tion. The initial state is the ground state of the Hamiltonian
ĤNLTC(β0) with the values of β0 chosen from both β0 <

βcritical and β0 > βcritical. As mentioned before, the unitary op-
erator involves the Kitaev Hamiltonian, i.e., ĤNLTC(β1 = 0).
Hence, when β0 > βcritical, the initial state is the ground state
of the system with a paramagnetic phase, thereby belonging
to a different phase than the quenching Hamiltonian, while
for β0 < βcritical, both the post- and prequenched Hamiltonians
belong to the same topologically ordered phase.

We observe that when β0 > βcritical, the corresponding
Loschmidt echo reaches zero for certain values of t which
are equally spaced in t like in the transverse Ising model,
as depicted in Fig. 2(a). On the other hand, for β0 < βcritical,
since the quenched Hamiltonian and the ground state lie in the
same phase, L(t ) never vanishes. Therefore, the Loschmidt
echo, involving both the initial and dynamical states, clearly
recognizes the topological quantum phase transition occurred
at zero temperature. As argued before, such behavior becomes
more evident when one considers the rate function �(t ).
Specifically, �(t ) demonstrates a kink exactly at those times
when L(t ) vanishes with β0 < βcritical [see Fig. 2(b)]. This
signifies that both quantities are capable of predicting the
TQPT from the dynamical state.

A. Detection of the topological critical point using time-averaged
multipartite entanglement

Beyond the typical indicator of the DQPT, let us demon-
strate that entanglement measures, especially multipartite
entanglement measures of the evolved state, carry the sig-
nature of the TQPT (see [14] for different spin models). It
has already been established that both bipartite entanglement
and multipartite entanglement of the ground state are capa-
ble of detecting the quantum phase transition in the spin

022436-4



PREDICTING A TOPOLOGICAL QUANTUM PHASE … PHYSICAL REVIEW A 109, 022436 (2024)

FIG. 2. (a) Loschmidt echo (ordinate) of the nonlinearly perturbed Kitaev model vs time t (abscissa) for different choices of parameters for
the ground state as initial states β0. The sudden quench is performed with the Hamiltonian having β1 = 0. The initial and final Hamiltonians are
in different phases when β0 > βcritical = 0.4407, while they are in the same phase for β0 < βcritical = 0.4407. (b) Rate function �(t ) (vertical
axis) with respect to time (horizontal axis). The system size is chosen to be 18. All the axes are dimensionless.

Hamiltonian, including the topological phase transition con-
sidered in this paper (for global entanglement, see Ref. [39]).

To study the behavior of genuine multipartite entan-
glement of the evolved state (see Fig. 3), we compute
the time-averaged GGM, denoted by 〈G〉t , when the state
evolves under the quench ĤNLTC(β1 = 0) from the ground
state of ĤNLTC(β0 �= 0) as the initial state. Before present-
ing the trends of 〈G〉t , we first prove the following theorem,

which makes the computation of the GGM simple for this
model.

Theorem 1. Eigenvalues from a single-party density matrix
of the evolved state only contribute to the maximum involved
in the GGM.

Proof. To find the eigenvalues in bipartitions, we are re-
quired to trace out some of the parties, say, M. First, notice
that the ground state is a superposition of all possible closed

FIG. 3. (a) Time-averaged GGM 〈G〉t (ordinate) of the evolved state of ĤNLTC against β0 (abscissa) for different sizes of N . Inset: Behavior
of the GGM with t for β0 = 0.2 and β1 = 0; the blue line represents the time-averaged GGM 〈G〉t . (b) The first derivative of 〈G〉t (y axis) with
respect to β0 (x axis). A peak in d〈G〉t

dβ0
is observed at β0 close to the TQPT. This indicates that 〈G〉t changes from concave to convex at the

transition point. The value of β0 reaches the exact value of the TQPT as N increases. All the axes are dimensionless.

022436-5



LAKKARAJU, HALDAR, AND SEN(DE) PHYSICAL REVIEW A 109, 022436 (2024)

loops on the torus. Let us consider the density matrix corre-
sponding to the ground state, given by �

ρ̂(β ) = 1

Z (β )

∑
a,a′∈G

e
β

2 (σ̂ z
i (a)+σ̂ z

i (a′ ))a|0 · · · 0〉〈0 · · · 0|a′. (8)

The corresponding reduced density matrix of
{i1, i2, i3, . . . , iM} parties is obtained by tracing out M
parties as

ρ̂i1i2,i3,...,iM = 1

Z (β )

∑
{δk=0,1}

∑
a,a′

e
β

2

∑
i[σ̂

z
i (a)+σ̂ z

i (a′ )]

×〈δ1δ2 · · · δN−M |a|0 · · · 0〉〈0 · · · 0

× |a′|δ1δ2 · · · δN−M〉. (9)

As shown in Refs. [26,39], one can prove by contradiction
that this state cannot have nondiagonal terms. As described
previously, all loops are represented as elements of an Abelian
group generated by Aν . In the ground state, each ai|0〉⊗N

corresponds to the system configuration of N spins in the
i-loop configuration. For example, no two closed loops can
have one different spin, and hence, it is not possible to have

(〈δ1, δ2, . . . , δx, . . . , δN |)(a1|0〉⊗N )

× (N⊗〈0|a2)(|δ1, δ2, . . . , δ
′
x, . . . , δN 〉) �= 0 (10)

when x �= x′. A similar argument can be made for any reduced
density matrices for the ground state, which is the initial state
during evolution.

Since the evolution operator involves the Kitaev model,
the evolved state can be written in the same basis as the
ground state, and the corresponding local density matrices are
again diagonal by the same logic as the local density matrices
for the ground state. The evolved state is written as |ψt 〉 =∑

g∈G Ci(t )g|0〉
⊗

N . This can be easily seen by noticing that
only the star operators act on the state, while the plaquette
operators simply generate a global phase.

Moreover, we note that the M-party reduced state has
eigenvalues e1, . . . , e2M , written in decreasing order. It can
easily be found that the (M − 1)-party reduced state has 2M−1

eigenvalues of the form ei + ei+1 (i = 1, 2, . . . , 2M − 1). This
clearly shows that the maximum eigenvalue of the (M − 1)-
party state is bigger than that obtained from the M-party
state. Hence, the single-site reduced density matrix has the
maximum eigenvalue which contributes to the computation of
the GGM for the evolved state. �

Let us now elaborate on the way we compute the time-
averaged GGM. Following the quench as described before,
we calculate the GGM at every time step and then perform
averaging over time, indicated as

〈G〉t =
∑t f

t=ti G(|ψ (β0, β1, t )〉)

L
, (11)

where ti( f ) is the initial (final) time and L = t f −ti
δt , with δt

being the step size. For illustration in Fig. 3, we choose ti
and t f to be 0 and 10, respectively, while the step size is
taken to be 0.01. Since G(|ψ (β0, β1, t )〉) includes sine and
cosine functions of time, it is an oscillatory function of time
[see the inset in Fig. 3(a)], and therefore, the choice of t f

does not affect the behavior of 〈G〉t as long as t f includes
complete oscillations of G(|ψ (β0, β1, t )〉). This implies that
the observables corresponding to the entire time-evolved state,
which is the case for the GGM, in general, display oscillatory
behavior, while the observables which involve only subsys-
tems described by a mixed state may oscillate or may saturate
to a value corresponding to the thermal state of the subsystem.
The main observations can be summarized as follows.

(1) For a very low β  βcritical, the time-averaged GGM is
very high, almost close to its maximum value. In other words,
the initial state should be prepared as the ground state of the
Hamiltonian with a very low β  βcritical to produce a highly
genuine multipartite entangled state during dynamics. Thus,
for a small β, both the initial and postquenched Hamiltonians
are in the topological phase. Such behavior can be termed
topological robustness, which persists in the presence of a
weak perturbation β0.

(2) With the increase of the perturbation β0, 〈G〉t decreases
as shown in Fig. 3(a). When the initial and postquenched
Hamiltonians belong to different phases, i.e., when the ini-
tial and quenching Hamiltonians are in the paramagnetic and
topological phases, respectively, the time-averaged GGM con-
tent is lower than the scenario with both the initial and final
Hamiltonians being in the same phase.

(3) At the topological phase transition point β = βcritical,
the curvature of 〈G〉t with β changes from concave to convex.
Therefore, the derivative of the time-averaged GGM with
respect to β0, i.e., d〈G〉t

dβ0
, is maximum at β = βcritical [see

Fig. 3(b)]. However, for certain small system sizes, this is
not the case, and the double derivative of 〈G〉t is maximum
at βcritical.

The above observations strongly indicate that genuine
multipartite entanglement of the dynamical state can effi-
ciently signal the topological phase transition at equilibrium.
Moreover, high-multipartite-entanglement content shows the
beneficial role of the topologically ordered phase in the
deformed Kitaev model and its importance in quantum infor-
mation processing tasks.

Block entanglement. Let us now examine whether other
multipartite entanglement measures are also able to reveal the
TQPT from the dynamics. Towards that aim, we compute the
time-averaged value of LN in the N/2 : N/2 bipartition; i.e.,
we replace G by ELN in the definition of 〈G〉t in Eq. (11). For
all system sizes, the curvature of 〈ELN〉t ≡ 〈ELN(|ψt 〉N/2:N/2)〉t

also changes from convex to concave with the variation of β0.
The point of inflection indicates the topological phase transi-
tion at zero temperature which is prominent in the behavior of
d〈ELN〉t

dβ0
, as shown in Fig. 4(b).

Remark 1. The block entanglement of the ground state in
the N

2 : N
2 bipartition does not change curvature with β, and

hence, no divergence is observed in its derivative with respect
to β (see Fig. 5). Interestingly, however, the time-averaged
entanglement can predict the TQPT, as shown in Fig. 4.

V. EFFECT OF LOCAL REPETITIVE INTERACTION
ON THE TORIC CODE

Until now, we have studied the unitary dynamics, which
means that the system is isolated and does not interact with
the environment. We have shown that entanglement as well
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(a) (b)

FIG. 4. (a) Behavior of the time-averaged block logarithmic negativity 〈ELN〉t (ordinate) with respect to β0 (abscissa) in the modified Kitaev
model for various system sizes N . LN is computed by dividing the N-party state into two equal blocks. (b) d〈ELN〉t

dβ0
(y axis) vs β0 (x axis). The

peak at β0 signals the topological quantum phase transition occurred at zero temperature. All the axes are dimensionless.

as the Loschmidt echo from the evolved state can faithfully
signal the topological quantum phase transition present at zero
temperature.

Let us now ask whether the above measures of entan-
glement can identify the topological critical point from the
dynamics of the system even when the system is in contact
with a bath. It is quite reasonable to expect decoherence to
erase the information about the equilibrium phase transition
from the evolved state. Below, we will show that this is not
the case, at least for the local repetitive interaction between
the system and the bath.

Before presenting the results, let us first describe the
decoherence model considered here. We assume that the in-
teraction between the system S and the environment E is
repetitive in nature. The environment can be modeled by a

FIG. 5. The first derivative of block entanglement, d
dβ

ELN ≡
d

dβ
ELN(|GS〉) N

2 : N
2

), of the ground state (vertical axis) as a function
of β (horizontal axis). Note that, interestingly, it does not show a
clear peak at β close to the critical point as shown in the case of the
dynamical state in Fig. 4. Both axes are dimensionless.

thermal bath containing photons whose spin degree of free-
dom can be represented as spin-1/2 particles [77,78]. The
individual spin present in the environment interacts with a
spin in the system for a short period of time δt , and then a
new spin from the environment interacts with the spin of the
system for the next δt time period and so on. The nature of
this kind of interaction is repetitive, hence the name. Further,
it ensures Markovianity since the state of the system and the
environment decouple at every δt time interval i.e., ρSE =
ρS ⊗ ρE , where ρS gets modified at each δt time period as
ρS = TrE [U (δt )ρS ⊗ ρEU †(δt )], with U (δt ) being the unitary
evolution acting on both the system and environment. Here,
ρE is taken to be the thermal state of a single qubit which al-
ways remains the same at every time step. To facilitate such an
interaction, the corresponding Hamiltonian between the spin
and the environment is given by HSE = HS ⊗ IE + IS ⊗ HE +
Hint , where Hint = √

k/δt (σ̂ x
S ⊗ σ̂ x

E + σ̂
y
S ⊗ σ̂

y
E ). In our case,

HS = HNLTC as described in Eq. (1), and HE = Bσ̂ z
i , where B

is the strength of the local magnetic field acting on the bath.
The parameter k corresponds to the strength of the interaction
between the bath and the system. The evolution of the system
is governed by the Gorini-Kossakowski-Sudarshan-Lindblad
master equation [79–81], which is written under the Born-
Markov approximation as

dρS

dt
= − i

h̄
[HNLTC, ρS] + D(ρS ), (12)

where D is the dissipative part dictated by the choice of the
environment. The dissipative term in the Markovian limit with
the assumption of weak coupling (i.e., we assume that interac-
tion strength is much weaker than the local terms) reduces to

D(ρS ) = 2k

h̄2

N∑
i=1

1∑
l=0

pl
[
2ηl+1

i ρSη
l
i − {

ηl
iη

l+1
i , ρS

}]
, (13)

where pl = Z−1
E exp[ (−1)l B

TE
]; ZE = tr[exp( −HE

TE
)], with

the temperature of the bath Hamiltonian being TE ; and
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(a) (b)

FIG. 6. Topological dynamical quantum phase transition under decoherence. The individual qubits of the entire system are in contact with
a local thermal bath with temperature B/TE = 10. (a) Plot of the time-averaged LN in a repetitive noisy environment 〈E dis

LN〉t (ordinate) while
varying β0 (abscissa) of a perturbed Kitaev toric code for different N . (b) The first derivative of 〈E dis

LN〉t (vertical axis) again shows a clear peak
at β0 ∼ βc (horizontal axis), close to the critical point. It indicates that, even in the presence of decoherence, the system carries information
about the phase in the initial Hamiltonian. Both axes are dimensionless.

ηα
i = [σ̂ x

i + i(−1)ασ̂
y
i ]/2, with the subscript i denoting the

spins which interact with the environment. Notice that the
evolution contains the Schrödinger part involving HNLTC and
the dissipative term D as described above. Although the
Lindblad operators act locally, the evolution is nonlocal due
to the four-body operators present in the Hamiltonian [see
Eq. (1)], thereby leading to nontrivial evolution. Furthermore,
in the presence of local noise, the entanglement decreases
with the increase of noise, and hence, there are possibilities
that noise can erase the information of the TQPT encoded in
the unitary dynamics of entanglement. We will illustrate that
this is not the case even though entanglement decays.

The initial state is again chosen to be the ground state of
HNLTC with different β0 �= 0. By solving the above master
equation, we obtain ρ(t ) at a given time, which is used to
compute the time-averaged LN by partitioning the entire sys-
tem into equal blocks. Notice that due to the dissipative term,
the evolved state is no longer a pure state, but a noisy density
matrix, and hence, the computation of the GGM via Schmidt
coefficients is not possible (see [73,74]), although LN in the
bipartition can be obtained.

For a fixed system size N and fixed temperature of the
bath (for Fig. 6, B/TE = 10), we observe that 〈Edis

LN〉t decreases
substantially since all the qubits in the perturbed Kitaev toric
code interact with the thermal bath repeatedly. However, the
overall behavior of the time-averaged entanglement remains
the same, which can be seen by comparing Figs. 6 and 4. In
particular, we find that when the initial state is prepared in the
topologically ordered phase, the dynamical state even in the
presence of a noisy environment can create high entanglement
compared to the initial state prepared in the paramagnetic
phase.

Moreover, depending on the choice of the phase of the ini-
tial state, the curvature of 〈Edis

LN(ρ)〉t ≡ 〈Edis
LN(ρ N

2 : N
2

)〉t changes

to convex at the TQPT point from concave and therefore
d〈Edis

LN〉t

dt shows an increase at the quantum critical point, which
is in good agreement with the exact topological phase transi-
tion point.

VI. SUMMARY

In many-body systems, local order parameters are com-
monly employed to characterize quantum phases. The topo-
logical order of the system, which is resilient to local
disruption, is an exception. It is known that the nonlinearly
perturbed Kitaev toric code undergoes a quantum phase tran-
sition from the topological phase to a paramagnetic one as
the nonlinear perturbation parameter is tuned beyond a critical
value. The best feature of this model is that the ground state
can be found analytically, and it also exhibits topological
order which is robust against local perturbation. On the other
hand, there is a constant effort to detect the QPT occurring at
zero temperature by investigating the evolved state via sudden
quench in distinct phases across the quantum critical point—
this phenomenon is known as the dynamical quantum phase
transition.

In this context, we studied the quench dynamics of the
nonlinearly perturbed Kitaev toric code and searched for the
signatures of topological quantum phase transitions in the
dynamics which we refer to as the topological dynamical
quantum phase transition. We chose the initial state for differ-
ent values of the perturbation from both sides of the quantum
critical point and quenched the system with the original Kitaev
code. In addition to the conventional markers of a quantum
critical point in the dynamical state, such as the Loschmidt
echo and the rate function, we used various entanglement
quantifiers, namely, time-averaged genuine multipartite en-
tanglement quantified via the generalized geometric measure,
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and block entanglement to detect the TDQPT. We found that
under closed unitary dynamics, all the identifiers can distin-
guish whether the initial state is in the topological phase or the
paramagnetic phase, thereby signaling the topological QPT
via dynamics. Further, we observed that if both the initial
and final states belong to the topologically ordered phase,
the average multipartite entanglement generated is compar-
atively higher than in the scenario in which they are chosen
from different phases. Moreover, we reported that the block
entanglement in the dynamical state can still identify the
topological critical point when all individual qubits of the
model interact with a thermal bath repeatedly. The results
demonstrate that the topological quantum phase transition is
prominent enough to be revealed in the dynamics with or
without a noisy environment.
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APPENDIX: MAP TO THE 2D ISING MODEL AND THE
TOPOLOGICAL QUANTUM CRITICAL POINT

Let us briefly outline the derivation of the topological
quantum phase transition point at zero temperature for the
perturbed Kitaev toric-code Hamiltonian [26,39]. To do so,
we provide a concise overview of the quantum formalism
for the partition function of the 2D Ising model. The model
involves classical spins (τ = ±1) residing on the vertices of
a 2D square lattice, where the classical Ising Hamiltonian is
given by

H = −
∑
〈i, j〉

τiτ j,

where 〈i, j〉 denotes the interactions between nearest-neighbor
spins.

The partition function, which plays a pivotal role in deter-
mining the thermodynamic properties of the model, is given
by

Z =
∑
τ∈�

eβ
∑

〈i, j〉 τiτ j ,

where β = 1
kBT , with kB being the Boltzmann constant and T

being the equilibrium temperature. Here, � represents the set

of all possible spin configurations. Interestingly, the partition
function can be reformulated using a quantum formalism by
introducing quantum spins Se on the edges of each square grid
of the lattice, in which each quantum spin Se is represented by
the product of the vertex spins τi at the end points of the edge,
i.e., 〈Se|σ̂ z|Se〉 = τiτ j . This means that if the quantum spin
is |1〉, one of the spins on either of the vertices in the Ising
lattice must be −1 and the other one is +1. To represent the
loops of the toric code, the following map has to be realized.
Every loop in the toric code is generated via the star operator
Aν , i.e., one element a in the Abelian group G acting on the
vacuum |0〉⊗N , with N being the total number of sites. In terms
of the Ising spins, if one spin on a vertex is −1 and the rest
of the spins surrounding that spin take a value of +1, the
corresponding edge spins of the toric code form a loop. Thus,
for every a ∈ G, two Ising spin configurations exist such that

∑
i

σ̂ z
i (a) = 〈0⊗N |a

(
N∑

i=1

σ̂ z
i

)
a|0⊗N 〉 ≡ 1

2

∑
〈i, j〉

τiτ j . (A1)

Among several observables corresponding to the toric code
that can be calculated in terms of the partition function of the
2D Ising model, the local magnetization can be written as

m(β ) = 1

N

∑
i

〈GS(β )|σ̂ z
i |GS(β )〉

= 1

Z
∑
a∈G

exp

(
β

∑
i

σ̂ z
i (a)

)[
1

N

∑
i

σ̂ z
i (a)

]

= 1

Z
∑
τ∈T

exp

⎛
⎝β

∑
〈i, j〉

τiτ j

⎞
⎠

⎡
⎣ 1

N

∑
〈i, j〉

τiτ j

⎤
⎦

= 1

N
EnergyIsing(β ). (A2)

We know that the 2D classical Ising model undergoes a
first-order phase transition with the variation of the inverse
temperature β. This can be seen from the fact that the first
derivative of the energy of the model represents specific

heat, which has nonanalytic behavior around βc = ln(
√

2+1)
2 =

0.44068 [83]. This also shows that the magnetization of the
toric code changes curvature around the β = βc point, indi-
cating a quantum phase transition point. By investigating the
magnetic properties with β � βc, we observe that it always
remains in the paramagnetic phase, thereby confirming that
there is no further quantum phase transition with β. Moreover,
the transition is topological in nature, which can be confirmed
by studying the topological entropy [26].
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