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Steering inequality for pairs of states restricted by a particle-number superselection rule
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We consider violations of a Clauser-Horne-Shimony-Holt-type steering inequality for quantum states of
systems of indistinguishable particles restricted by a particle-number superselection rule. We check for violations
in noninteracting Bose-Einstein condensate states, NOON states, and relative phase eigenstates, by using two
copies of the states for bypassing the superselection rule. The superselection rule prevents the states from
maximally violating the steering inequality, but the steering inequality violations are higher than Bell inequality
violations for the same states. This in particular implies, in certain cases, that visibilities of the steering inequality
violations are higher than the same for Bell inequality violations, for admixtures with white noise. We also found
that an increase in the number of particles in the noninteracting condensate states results in a decrease of the
violation amount of the steering inequality.
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I. INTRODUCTION

Entanglement is a fundamental resource of quantum infor-
mation processing [1]. Entanglement is typically considered
between separated systems or different degrees of freedom
of the same physical system, for which the tensor-product
structure is well defined. For the case of indistinguishable par-
ticles, it is therefore natural to consider entanglement between
different modes.

Violation of Bell inequalities forms an important method
for detecting entanglement present in quantum states of shared
systems [2]. The Bell Clauser-Horne-Shimony-Holt (CHSH)
inequality [3] for two distinguishable systems, each having
the option to choose between two dichotomic measurement
settings, A1, A2 and B1, B2, respectively for the two parties, is
given by |B| � 2, where

B = 〈A1 ⊗ B1〉 + 〈A1 ⊗ B2〉 + 〈A2 ⊗ B1〉 − 〈A2 ⊗ B2〉. (1)

The maximum violation of this inequality that can be reached
by any quantum state is 2

√
2 [4].

Quantum steering, introduced by Schrödinger [5], is a
concept that lies in between those of entanglement and Bell
inequality violation [6]. If two observers share an entan-
gled state, then unsteerability implies that there will exist a
“local hidden state” model of the state. Steerability can be
tested through the violation of steering inequalities (see, e.g.,
Refs. [7–13]). The violation of steering inequalities, like that
of Bell inequalities, indicates the presence of entanglement in
the shared state involved.

Recently, Cavalcanti, Foster, Fuwa, and Wiseman [14]
have proposed a CHSH-type inequality to check for steerabil-
ity in the two-party, two-setting (per party), and two-outcome
(per measurement setting) scenario. Using the same notations
as for the Bell inequality, the steering inequality is given by
S � 2, where

S =
√

〈(A1 + A2) ⊗ B1〉2 + 〈(A1 + A2) ⊗ B2〉2

+
√

〈(A1 − A2) ⊗ B1〉2 + 〈(A1 − A2) ⊗ B2〉2. (2)

In quantum mechanics, the optimal violation of this steering
inequality is again 2

√
2.

Superselection rules are a set of axioms in quantum
mechanics which restricts effective superposition rules like
quantum superposition of states of elementary particles with
different electric charge [15]. In this paper, we are concerned
with the superselection rule which forbids quantum superpo-
sition of states with different numbers of the total number of
particles [16,17]. A straightforward testing of Bell’s inequality
may not be possible for systems of indistinguishable particles
since rotations away from fixed particle-number bases may
not be allowed due to the restriction imposed by a superselec-
tion rule on indistinguishable systems [18–24]. Interestingly,
Heaney, Lee, and Jaksch [25] derived a method for testing
Bell inequalities for states of indistinguishable particles even
within the superselection-rule restrictions, using which the
above obstacles can be removed. In order to overcome the
superselection rule, they use two copies of the system for
performing rotated measurements. Another method that has
been proposed to overcome the difficulty posed by the su-
perselection rule uses interaction with a local reservoir and
a subsequent local postselection [26–28]. As mentioned in
Ref. [25], this group of experiments and proposals require
postselection, and thereby, while very useful for entanglement
detection, are not so for the more rigid requirements of Bell
and steering inequalities. See also Refs. [29–32]. See Ref. [33]
and references therein for a discussion on loopholes in steer-
ing inequality violations.

Our goal in this paper is to consider the violation of the
steering inequality on quantum systems of indistinguishable
particles that are restricted by particle-number superselection
rules. We check for violations in noninteracting Bose-Einstein
condensate states, “NOON” states, and relative phase eigen-
states. We find that compared to the Bell-CHSH inequality
violation, the steering inequality violation reaches a higher
visibility for admixture with white noise, in certain cases.
Just like for the Bell inequality, a maximum violation for the
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steering inequality is however still less than what is possible
without the superselection rule.

The rest of the paper is organized as follows. In Sec. II, we
discuss the motivation for using two copies of the system state.
In Sec. III, we set the notations corresponding to the steering
inequality, and propose to use it for two copies of bimodal
states. In Sec. IV, we test this inequality for noninteracting
Bose-Einstein-condensate states and compare their violations
with Bell inequality violations for the same states. In Secs. V
and VI, we consider the same test for NOON states and
relative phase eigenstates respectively. In Secs. VII and VIII,
we briefly mention the implications of the findings for white
noise in the environment, and the generalization of the results
to the case of massless bosons like photons. Finally, in Sec. IX
we conclude our findings.

II. MOTIVATION FOR USING TWO COPIES
OF THE SYSTEM STATE

In Ref. [25], it has been demonstrated that if a single copy
of a massive particle is used, measurement in particle-number
basis may not distinguish separable states from entangled
ones, where entanglement and separability are considered
among different modes. This can be seen by considering a
single copy of the two-mode system in the state,

ρAB = p|ψ+
1 〉〈ψ+

1 |AB + (1 − p)|ψ−
1 〉〈ψ−

1 |AB, (3)

where |ψ±
1 〉 = 1√

2
(|10〉 ± |01〉). The probability p (0 � p �

1) can be used to vary the entanglement content of ρAB.
In particular, it can be seen that for p = 0 and 1, ρAB is
maximally entangled, but for p = 1/2, it is a separable state.
Particle-number measurement is the only valid local mea-
surement due to the restriction imposed by the superselection
rule. The two-party correlation function of the corresponding
observables is then independent of p. However, this problem
of discriminating entangled states from separable ones can be
solved by using two copies of the system state: σ = ρAB ⊗
ρCD. Here, modes A and C belong to the first party and B
and D belong to the second. If each party makes two-mode
local measurements such that Aφ = |φ+〉〈φ + | − |φ−〉〈φ − |
with |φ+〉 = α|10〉 + βeiφ |01〉 and |φ−〉 = βeiφ |10〉 − α|01〉
is the measuring observable of the first party and Bθ =
|θ+〉〈θ + | − |θ−〉〈θ − | with |θ+〉 = α|10〉 + βeiθ |01〉 and
|φ−〉 = βeiθ |10〉 − α|01〉 is the measuring observable of the
second party, then the two-party correlation function for the
shared state σ = ρAB ⊗ ρCD and measuring observables Aφ

and Bθ is obtained as

〈Ai ⊗ Bj〉 = 8(p − 1/2)α2β2 cos(φi − θ j ). (4)

Since the joint correlation function in Eq. (4) is p dependent,
we can say that if two copies of the system state are used,
it is—in principle—possible to distinguish separable and en-
tangled states. We will be analyzing a CHSH-type steering
inequality, and therefore, the use of two copies of the system
state will again be important as in the case of the CHSH-type
Bell inequality.

III. STEERING INEQUALITY

Let us consider two systems, which are each split into two
spatially nonoverlapping modes. Suppose that N1 and N2 are
particle numbers of the first and second systems respectively,
and let the composite system state be σ N1+N2 = ρ

N1
ab ⊗ ρ

N2
AB.

Here a and A are two modes of the two systems, controlled by
say, Alice, and b and B are the two further modes of the two
systems, supervised by say, Bob. Let us now assume that Alice
performs a joint measurement on her two modes by using the
operator,

A(φ j ) =
N1+N2∑
NA=0

NA∑
nc=0

ε(nc, mC )(|nc, mC〉〈nc, mC |)cC, (5)

where mC = NA − nc and ε(nc, mC ) is a weighting coefficient.
Similarly as Alice, Bob makes a joint measurement on his two
modes, b and B, which are denoted by B(θk ). Here j, k = 1, 2
denotes the two measurement settings each of Alice and Bob.
Measurements by Alice and Bob on their respective modes
only allow one to perform local particle-number measure-
ments. However, in order to perform general measurements,
the spatial modes of both systems are separately allowed to
pass through separate beam splitters. For Alice, the beam-
splitter transformation is given by

ĉ = αâ + β exp(−iφ j )Â, Ĉ = βâ − α exp(−iφ j )Â, (6)

where â and Â are annihilation operators corresponding to the
two input modes of Alice’s beam splitter, and ĉ and Ĉ are
annihilation operators for the two output modes of the same.
A similar transformation is true on Bob’s side:

d̂ = αb̂ + β exp(−iθk )B̂, D̂ = βb̂ − α exp(−iθk )B̂. (7)

Here b̂ and B̂ are annihilation operators for the two input
modes of Bob’s beam splitter and d̂ and D̂ are annihilation
operators for the two output modes of the same. It is noted that
each party measures in a particle-number basis. The output
of the measurement depends on the local angles, φ j and θk ,
of Alice’s and Bob’s beam-splitter settings respectively. The
measurement vector |nc, mC〉 associated with the observable
A(φ j ) for the particle numbers nc and mC in the output modes
c and C is given by

|nc, mC〉cC = (αâ† + βe−iφ j Â†)nc

√
nc!

(βâ − αe−iφ j
Â)mC

√
mC!

|0, 0〉aA,

(8)

where |0, 0〉aA is the vacuum state corresponding to the modes
a and A. We now set the weighting coefficient ε(nc, mc) of
A(φ j ) as [25]

ε(nc, mC ) = (−1)mC+ (mC +nc )(mC +nc+1)
2 . (9)

Since in the composite system, there are N1 + N2 particles, the
number of outcomes of the measurements is

O = [
1
2 (N1 + N2) + 1

]
(N1 + N2 + 1). (10)

The Bell-CHSH inequality proposed in Ref. [25] for pairs of
states restricted with the particle-number superselection rule
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is given by

|Bp| ≡ |〈A(φ1) ⊗ B(θ1)〉 + 〈A(φ1) ⊗ B(θ2)〉
+ 〈A(φ2) ⊗ B(θ1)〉 − 〈A(φ2) ⊗ B(θ2)〉| � 2, (11)

where the correlation between the observables is defined as

〈A(φ j ) ⊗ B(θk )〉 =
∑

nc+mC+nd +mD=N1+N2

ε(nc, mC ) ×

× ε(nd , mD)P(A(φ j ) ⊗ B(θk )), (12)

with P(A(φ j ) ⊗ B(θk )) denoting the joint probability of out-
comes of measurement of the local observables A(φ j ) and
B(θk ). Similar to how this Bell inequality was formed us-
ing local observables A(φ j ) and B(θk ), we can write the
CHSH-type steering inequality in Eq. (2) using the same
local observables. Each observable on Alice’s or Bob’s side
is bounded: ‖ A(φ j ) ‖� 1, ‖ B(θk ) ‖� 1. Therefore, the steer-
ing inequality which bypasses the superselection rule can be
formulated as

Sp ≡ {〈[A(φ1) + A(φ2)] ⊗ B(θ1)〉2

+〈[A(φ1) + A(φ2)] ⊗ B(θ2)〉2)1/2

+ (〈[A(φ1) − A(φ2)] ⊗ B(θ1)〉2

+〈[A(φ1) − A(φ2)] ⊗ B(θ2)〉2}1/2 � 2. (13)

In the three succeeding sections, we apply this steer-
ing inequality to the cases of noninteracting Bose-Einstein
condensate states, the NOON states, and relative phase eigen-
states, known to be useful in precision measurements. In order
to compare the violation of the steering inequality with that of
the Bell inequality for the states, we first recapitulate in each
case the known results for the Bell inequality in (11).

IV. NONINTERACTING BOSE-EINSTEIN
CONDENSATE STATES

In order to test the steering inequality for noninteracting
Bose-Einstein condensate states, we have considered two dif-
ferent cases.

A. Case i: Both systems share the same number
of particles, i.e., N1 = N2 = N

Consider the zero-temperature noninteracting Bose-
Einstein condensate state with a fixed particle number,
symmetrically distributed between two modes:

|ψN 〉 = 1
√

2
N

N∑
n=0

√
N!√

n!(N − n)!
|n, N − n〉. (14)

If the number of particles of each system is unity (N = 1),
then |ψN 〉 reduces to |ψ1〉 = 1√

2
(|10〉 + |01〉), and the com-

posite system is in the state

|ψ ′
1〉 = 1

2 (|10〉 + |01〉) ⊗ (|10〉 + |01〉). (15)

Since the composite system has a total of two particles (N1 +
N2 = 2N = 2), the number of measurement outcomes is 6
[see Eq. (10)]. In this case, the beam splitter is balanced,
i.e., α = β = 1/

√
2, and the six measurement basis vectors

TABLE I. The information contained here was given in Ref. [25].
When we make a measurement on the modes c and C on Alice’s side,
in the particle-number basis, an effective measurement is carried out
on Alice’s side in the modes a and A. For the case when N = 1,
this effective measurement basis is given in the middle column. The
corresponding ε(nc, mC ) is given in the last column.

Effective measurement basis
|nm〉c,C for Alice’s modes a and A ε(nc, mC )

|00〉 |00〉 1
|10〉 1√

2
[|10〉 + exp(−iφ1)|01〉] −1

|01〉 1√
2
[|10〉 − exp(−iφ1)|01〉] 1

|11〉 1√
2
[|20〉 − exp(−2iφ1)|02〉] 1

|20〉 1
2 [|20〉 + √

2 exp(−iφ1)|11〉 + exp(−2iφ1)|02〉] −1
|02〉 1

2 [|20〉 − √
2 exp(−iφ1)|11〉 + exp(−2iφ1)|02〉] −1

of A(φ1) acting on modes a and A with weighting coefficients
ε(nc, mC ) on Alice’s side are given in Table I.

The six measurement basis vectors on the modes b and
B of Bob’s side can be similarly obtained. Now, using these
basis vectors of the measurement settings of Alice and Bob for
the system state |ψ ′

1〉, and the correlation function 〈A(φ j ) ⊗
B(θk )〉 = sin2( φ j−θk

2 ), the steering inequality expression is
given by

SBEC
p,1 = 1

2
({[cos(θ1 − φ1) + cos(θ1 − φ2) − 2]2

+ [cos(θ2 − φ1) + cos(θ2 − φ2) − 2]2}1/2

+
√

2

[
sin2

(
φ1 − φ2

2

)
[2 − cos(2θ1 − φ1 − φ2)

− cos(2θ2 − φ1 − φ2)]

]1/2)
. (16)

The maximum value of SBEC
p,1 is ≈2.79, and is reached at

φ1 = 0, φ2 = π/2, θ1 ≈ 3.93, and θ2 ≈ 2.90. The quantum-
mechanical expression for Bell-CHSH expression from (11)
for the same quantum state and the same operators is given by

BBEC
p,1 = 1

2 [− cos(θ1 − φ1) − cos(θ1 − φ2)

− cos(θ2 − φ1) + cos(θ2 − φ2) + 2]. (17)

The maximum value of |BBEC
p,1 | is ≈2.41, and is reached at

φ1 = 0, φ2 = π/2, θ1 ≈ 3.93, and θ2 ≈ 2.36, as obtained in
Ref. [25]. We therefore have reached the following two obser-
vations for the state under consideration.

(1) Constraints of the particle-number superselection rule
on measurement space prevent the maximum violation from
reaching 2

√
2 for both Bell as well as steering inequality.

(2) Optimal violation of steering inequality is higher than
that for the Bell inequality, and therefore the steering in-
equality violation will have greater visibility than the Bell
inequality violation for admixture with white noise, at least
in cases where the observables involved are traceless.

Admixing with white noise for a state |ψ〉 is defined as
the creation of the state p|ψ〉〈ψ | + (1 − p)ρw, where (1 −
p) ∈ [0, 1] is the admixing probability (of the white noise)
and ρw is the completely depolarized state of the relevant
dimension. We refer the reader to Ref. [39] for a discussion
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FIG. 1. Comparing steering inequality violation with Bell in-
equality violation. The quantities SBEC

p,1 and |BBEC
p,1 | are plotted with

respect to the measurement parameter, θ2, at φ1 = 0, φ2 = π/2, θ1 =
3.93. The state involved is given by two copies of the state given
in Eq. (14), for N = 1. The horizontal axis is in radians, while the
vertical one is dimensionless.

on this point. For usage of this noise model, one may refer,
e.g., to Refs. [40–42]. The claim made in item 2 above about
visibility holds if Ai ⊗ Bj for i, j = 1, 2 and (A1 ± A2) ⊗ Bk

for k = 1, 2 are traceless. This is true, e.g., for the case when
either N1 or N2 is unity.

In Fig. 1, we have plotted SBEC
p,1 and |BBEC

p,1 | at φ1 = 0, φ2 =
π/2, θ1 = 3.93 with respect to θ2. From the figure, we can see
that there are two maxima of steering inequality violation in
the region θ2 ∈ [0, 2π ) compared to a single maximum for
violation of Bell inequality. This can potentially be useful
in an actual implementation to check for violations of the
steering inequality.

Next, let us consider two particles in each system,
i.e., N1 = N2 = N = 2. Then, |ψN 〉 reduces to |ψ2〉 =
1
2 (|02〉 + √

2|11〉 + |20〉), and the composite state of the two
systems is

|ψ ′
2〉 =

(
1
2 (|02〉 +

√
2|11〉 + |20〉)

)⊗2
. (18)

The number of measurement outcomes is now 15 [compare
with Eq. (10)]. The 15 measurement basis vectors correspond
to 15 effective outcomes of the modes a and A of Alice with
weighting coefficient ε, as given in Table II.

Similarly, the 15 effective measurement basis vectors on
the modes b and B on Bob’s side can be obtained. Now,
using these measurement settings of Alice and Bob for the
composite system state |ψ ′

2〉, the quantum expression of the
steering inequality is given by

SBEC
p,2 =

{[
sin4

(
φ1 − θ1

2

)
− sin4

(
φ2 − θ1

2

)]2

+
[

sin4

(
φ1 − θ2

2

)
− sin4

(
φ2 − θ2

2

)]2
}1/2

+
{[

sin4

(
φ1 − θ1

2

)
+ sin4

(
φ2 − θ1

2

)]2

+
[

sin4

(
φ1 − θ2

2

)
+ sin4

(
φ2 − θ2

2

)]2
}1/2

.

(19)

The maximum value of SBEC
p,2 is ≈2.78 at φ1 = 0, φ2 ≈

1.07, θ1 ≈ 3.93, and θ2 ≈ 3.00. For the same state and the
same measurement settings, the Bell operator [see (11)] has

TABLE II. The considerations are the same as in Table I, except that we have N1 = N2 = 2 here.

|nm〉c,C Effective measurement basis for Alice’s modes a and A ε(nc, mC )

|00〉 |00〉 1

|10〉 1√
2
[|10〉 + exp(−iφ1)|01〉] −1

|01〉 1√
2
[|10〉 − exp(−iφ1)|01〉] 1

|11〉 1√
2
[|20〉 − exp(−2iφ1)|02〉] 1

|20〉 1
2 [|20〉 + √

2 exp(−iφ1)|11〉 + exp(−2iφ1)|02〉] −1

|02〉 1
2 [|20〉 − √

2 exp(−iφ1)|11〉 + exp(−2iφ1)|02〉] −1

|12〉 1
4 [|30〉 − √

2 exp(−iφ1)|21〉 − √
2 exp(−2iφ1)|12〉 + exp(−3iφ1)|03〉] 1

|21〉 1
4 [|30〉 + √

2 exp(−iφ1)|21〉 − √
2 exp(−2iφ1)|12〉 − exp(−3iφ1)|03〉] −1

|03〉 1
4
√

3
[|30〉 − 3 exp(−iφ1)|21〉 + 3 exp(−2iφ1)|12〉 − exp(−3iφ1)|03〉] −1

|30〉 1
4
√

3
[|30〉 + 3 exp(−iφ1)|21〉 + 3 exp(−2iφ1)|12〉 + exp(−3iφ1)|03〉] 1

|22〉 1
8 [|40〉 − 2 exp(−2iφ1)|22〉 + exp(−4iφ1)|04〉] 1

|40〉 1
8
√

6
[|40〉 + 4 exp(−iφ1)|31〉 + 6 exp(−2iφ1)|22〉 + 4 exp(−3iφ1)|13〉 + exp(−4iφ1)|04〉] 1

|04〉 1
8
√

6
[|40〉 − 4 exp(−iφ1)|31〉 + 6 exp(−2iφ1)|22〉 − 4 exp(−3iφ1)|13〉 + exp(−4iφ1)|04〉] 1

|13〉 1
4
√

6
[|40〉 − 2 exp(−iφ1)|31〉 + 2 exp(−3iφ1)|13〉 − exp(−4iφ1)|04〉] −1

|31〉 1
4
√

6
[|40〉 + 2 exp(−iφ1)|31〉 − 2 exp(−3iφ1)|13〉 − exp(−4iφ1)|04〉] −1
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FIG. 2. The considerations are the same as in Fig. 1, except that
N1 = N2 = 2 here. Also, the Bell inequality curve is plotted for θ1 =
3.68, while the steering inequality one is plotted for θ1 = 3.93. φ1 =
0, φ2 = 1.07 for both the curves.

the quantum mechanical average value of

BBEC
p,2 = sin4

(
φ1 − θ1

2

)
+ sin4

(
φ2 − θ1

2

)

+ sin4

(
φ1 − θ2

2

)
− sin4

(
φ2 − θ2

2

)
. (20)

The maximum value of |BBEC
p,2 | is ≈2.36 and is reached

at φ1 = 0, φ2 ≈ 1.07, θ1 ≈ 3.68, and θ2 ≈ 2.60. Comparing
with the N1 = N2 = 1 case, we find that the quantum vi-
olation has decreased with increasing particle number for
both the steering as well as the Bell inequality. However,
this decrease in violation for the steering inequality is lower
than that for the Bell inequality. In Fig. 2 we have plotted
SBEC

p,2 and |BBEC
p,2 | at φ1 = 0, φ2 = 1.07, with respect to θ2.

We have chosen θ1 = 3.93 for the former, while θ1 = 3.68
for the latter. We see in Fig. 2 that similar to the case when
N1 = N2 = 1, there are two maxima of the steering inequality
violation in the θ2-parameter space, while there is a single
maximum for the Bell inequality violation in the same space.
From the above study, we can say that for the cases studied,
as the number of particles in each system increases equally,
the maximum violations of both Bell and steering inequalities
of CHSH type decrease. However, the decrease in violation
of CHSH-type steering inequality is less than that of the Bell-
CHSH inequality. Hence, for N > 2, there can be a situation
in which there is a violation of steering inequality but no
violation of Bell inequality, for the types considered. As the
number of particles in each system increases, the number of
measurement basis elements of the observable also increases,
which makes the correlation between their observables com-
plicated, and we were able to study up to only two particles in
each system.

B. Case ii: Both systems share different numbers
of particles, i.e., N1 �= N2

The steering inequality is now to be checked for the state
|ψN1〉 ⊗ |ψN2〉. In the case when N1 = 1 and N2 = 2, the

composite state is

|ψ1,2〉 = 1

2
√

2
(|10〉 + |01〉) ⊗ (|02〉 +

√
2|11〉 + |20〉).

(21)

The number of measurement outcomes is now 10 [compare
with Eq. (10)]. These can be read off from the first ten rows
in Table II. If the beam splitter is balanced, i.e., if α = β =
1/

√
2, all correlation functions of the steering inequality van-

ish. Next, we found that for any unequal number of particles in
each system (N1 �= N2), and balanced beam splitters, the cor-
relation functions of the steering inequality vanish. However,
for unbalanced beam splitters, the correlation functions are
not vanishing, but still no violation of the steering inequality
is obtained for the cases considered.

V. NOON STATES

Consider the two-mode state,

|{N, m}〉 = 1√
2

(|N − m, m〉 + |m, N − m〉), (22)

and for definiteness, suppose that N = 2 and m = 0. Suppose
also that the composite state of Alice and Bob is now

|ψ ′
3〉 = |{2, 0}〉⊗2 =

(
1√
2

(|2, 0〉 + |0, 2〉)

)⊗2

. (23)

For this state, the correlation function between the Alice and
Bob observables is given by 〈A(φ j ) ⊗ B(θk )〉 = cos2(φ j −
θk ). It can be seen that by scaling φ j → φ j

2 and θk → θk
2 − π

2
in cos2(φ j − θk ), we obtain the same correlation function
between observables of Alice and Bob as obtained for non-
interacting Bose-Einstein condensate states with two particles
in the composite system. Hence, in the case of the NOON state
represented by |ψ ′

3〉, the same amount of maximum quantum
violation of both steering and Bell inequalities can be obtained
as for the case of the noninteracting Bose-Einstein condensate
state with a single particle in each system.

VI. RELATIVE PHASE EIGENSTATE

Let us now consider the relative phase eigenstate for a two-
mode system [34,35], given by

∣∣∣∣N

2
, θp

〉
= 1√

N + 1

l=N/2∑
l=−N/2

exp(ilθp)
(â†)N/2−l

√
(N/2 − l )!

× (b̂†)N/2+l

√
(N/2 + l )!

|0, 0〉.

It is a pure entangled state of N bosons, where θp =
p[2π/(N + 1)] with p = −N/2,−N/2 + 1, . . . ,+N/2 is the
relative phase [36]. The relative phase eigenstate is an ex-
ample of a spin-squeezed state [35], and is consistent with
the superselection rule. When N = 2, the relative phase state
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given in Eq. (24) reduces to

|1, θp〉 = 1√
3

l=1∑
l=−1

exp(ilθp)
(â†)1−l

√
(1 − l )!

(b̂†)1+l

√
(1 + l )!

|0, 0〉

= 1√
6

[exp(−iθp)|0, 2〉 + exp(iθp)|2, 0〉]. (24)

Since the number of bosons in each system is 2, the number
of measurement outcomes is 15 [see Eq. (10)]. Using the 15
measurement basis outcomes corresponding to the 15 out-
comes given in Table II, for modes a and A of Alice, and a
similar 15 measurement basis outcomes of the modes b and
B of Bob, for two copies of the relative phase eigenstate,
viz. for |1, θp〉⊗2, the correlation between the Alice and Bob
observables is obtained as 〈A(φ j ) ⊗ B(θk )〉 = cos2(φ j − θk ).
Note that the correlation obtained between the Alice and Bob
observables for the relative phase eigenstate is phase inde-
pendent, as also obtained for the NOON state. Hence, when
N = 2, the quantum value of the CHSH type of steering and
Bell inequality expressions for the relative phase eigenstate is
equal to that for the NOON state.

Another phase-dependent state, introduced in
Refs. [37,38], is given by

|ω, χ〉 = 1√
N!

[cos ω exp(−iχ/2)â†

+ sin ω exp(iχ/2)b̂†]N |0, 0〉. (25)

When N = 1, |ω, χ〉 reduces to

|ω, χ〉′ = cos ω exp(−iχ/2)|1, 0〉 + sin ω exp(iχ/2)|0, 1〉.
(26)

At ω = π/4 and χ = 0, the composite system state |ω, χ〉′
reduces to the noninteracting Bose-Einstein condensate state
|ψ ′

1〉 given in Eq. (15).
When N = 1, the number of bosons in the composite

system state |ω, χ〉′⊗2 is 2 and the number of measurement
outcomes is 6. Now, using measurement basis corresponding
to the six outcomes of Alice given in Table I, and similarly
of Bob, for |ω, χ〉′⊗2 in Eq. (26), the quantum-mechanical
expressions corresponding to the CHSH-type steering and
Bell inequality expressions are given by

Sps
p,1 = 2

[
({sin4 ω + cos4 ω

− sin2 ω cos2 ω[cos(θ1 − φ1) + cos(θ1 − φ2)]
}2

+{sin4 ω + cos4 ω

− sin2 ω cos2 ω[cos(θ2 − φ1) + cos(θ2 − φ2)]}2)1/2

+ 2
√

2 sin2 ω cos2 ω

∣∣∣∣sin

(
φ1 − φ2

2

)∣∣∣∣
× [cos(2θ1 + φ1 − φ2) − 1 + cos(2θ2 − φ1 − φ2)]1/2

]
(27)

and

Bps
p,1 = 2{sin4 ω + cos4 ω − sin2 ω cos2 ω

× [cos(θ1 − φ1) + cos(θ1 − φ2) + cos(θ2 − φ1)

− cos(θ2 − φ2)]} (28)

respectively. Note that at ω = π/4, the state in Eq. (26) is
maximally entangled, and the maximum quantum value of
Sps

p,1 is approximately 2.78, obtained at ω = π/4 for φ1 =
0, φ2 ≈ 1.07, θ1 ≈ 3.93, and θ2 ≈ 3.00. The Bell inequality
is maximally violated at ω = π/4. The maximum quantum
value of Bps

p,1 is ≈2.36 and is reached at ω = π/4, φ1 =
0, φ2 ≈ 1.07, θ1 ≈ 3.68, and θ2 ≈ 2.60. For the values of ω

other than π/4, entanglement of the phase state decreases.
For example, at ω = π/3, a maximum quantum value of
Sps

p,1 ≈ 2.70 is obtained for approximately φ1 = π/12, φ2 =
0, θ1 = 2.36, and θ2 = 3.24, and of Bps

p,1 is ≈ 2.2, obtained
approximately at φ1 = 0, φ2 = π/2, θ1 = π , and θ2 = 2.06.

VII. WHITE NOISE VS VIOLATION OF BELL
AND STEERING INEQUALITIES

The higher amounts of violations obtained for steering in-
equalities, in comparison to that for Bell inequalities, indicates
that at least in the case of white noise (see, e.g., Refs. [40–42])
from environmental effects, the steering inequality violation
will be easier to obtain experimentally. A state 
AB is said to
be affected by white noise if it is transformed as


AB −→ 

γ

AB ≡ γ 
AB + (1 − γ )IAB/d, (29)

where the mixing probability of white noise, 1 − γ , lies in
[0,1], and IAB is the identity operator on the Hilbert space
on which 
AB is defined, and d is the dimension of that joint
Hilbert space. See, e.g., Refs. [39–42] for discussions on this
noise model. Suppose that state 
AB violates a Bell inequality
|B| � 2 [see Eq. (1)] such that

|B
| = 2 + B, (30)

with B ∈ (2, 2
√

2 − 2]. Then, corresponding to the white-
noise-affected state 


γ

AB, we have

|B
γ | = γ (2 + B), (31)

provided the observables used for the Bell experiment are
traceless. Therefore, |B
γ | is still greater than 2, if

γ > 2/(2 + B). (32)

The situation is similar for the steering inequality in Eq. (2),
and in particular, we again have

S
γ = γ S
. (33)

Therefore, in either case, a higher violation in the noise-
less case implies that the noisy state will still violate for a
higher noise strength, with the noise strength being quantified
by 1 − γ .

VIII. MASSLESS BOSONS

Our results can also be generalized to massless bosons like
photons, regardless of the fact that they obey the local particle-
number superselection rule.
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The particle-number superselection rule in case of massive
bosons applies at the global level. The state of a two-mode
bosonic system of N bosons is represented by

|�N 〉 =
N∑

n=0

C(N, n)|n〉A|N − n〉B, (34)

where n bosons are associated with mode A and N − n
with mode B, and the global particle-number superselec-
tion rule is active in that the same number of bosons (N)
is present in each term of the superposition. However, the
situation is different in the case of (massless) photons. For
example, the Bell states, |�+〉 = 1√

2
(|0〉A|1〉B + |1〉A|0〉B) and

|�−〉 = 1√
2
(|0〉A|1〉B − |1〉A|0〉B) for N = 1 [and C(N, n) =

1√
2
], can be states of a massive bosonic system obeying

the global particle-number superselection rule, but the other
two Bell states, |�+〉 = 1√

2
(|0〉A|0〉B + |1〉A|1〉B) and |�−〉 =

1√
2
(|0〉A|0〉B − |1〉A|1〉B), follow the local particle-number su-

perselection rule instead of global. This local particle-number
superselection rule is applicable for (massless) photons.
Photons are associated with the local particle-number supers-
election rule in the sense that observers cannot prepare states
which involve a superposition of different photon numbers
[43,44].

Loophole-free tests of steering inequalities with mode-
entangled states of photons have been demonstrated in
Refs. [45,46]. In the case of the setup used in this paper, the
entangled state shared between untrusted Alice and trusted
Bob can be generated by sending two lots of N photons
through a balanced beam splitter such that one output is
in possession of Alice and the other of Bob. Similarly, as
mentioned in Ref. [25], the output ports of Alice and Bob

can again be passed through another beam splitter of suitable
reflectivity. The photon number of each party belongs to the
final output port of the second beam splitter. In order to get the
joint correlations in steering inequality, Alice does the local
measurement on her part, and Bob performs local measure-
ments on his part without trusting the measurement performed
by Alice.

IX. CONCLUSIONS

In summary, we have checked for violation of a steering
inequality for quantum states of systems of indistinguishable
particles that are restricted by a particle-number superse-
lection rule. In order to bypass the superselection rule, we
have formulated a steering inequality, where measurements
on two copies of the system state are considered, a strategy
that had previously been applied for Bell inequality violation.
We found that the restriction of the superselection rule on
the measurement space prevents the violation of the steering
inequality from reaching its maximal quantum value. The
violation was checked for noninteracting Bose-Einstein con-
densate states, for which we also found that as the particle
number increases, the violation of the steering inequality de-
creases. We also checked for violations in NOON states and
relative phase eigenstates. For all considered states, steering
inequality violations are higher than Bell inequality viola-
tions, implying that the former will have a higher visibility
against the admixture of white noise, in certain situations.
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