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Embedding memory-efficient stochastic simulators as quantum trajectories
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By exploiting the complexity intrinsic to quantum dynamics, quantum technologies promise a host of
computational advantages. One such advantage lies in the field of stochastic modeling, where it has been
shown that quantum stochastic simulators can operate with a lower memory overhead than their best classical
counterparts. This advantage is particularly pronounced for continuous-time stochastic processes; however, the
corresponding quantum stochastic simulators heretofore prescribed operate only on a quasi-continuous-time
basis and suffer an ever-increasing circuit complexity with increasing temporal resolution. Here, by establishing
a correspondence with quantum trajectories (a method for modeling open quantum systems), we show how truly
continuous-time quantum stochastic simulators can be embedded in such open quantum systems, bridging this
gap and obviating previous constraints. We further show how such an embedding can be made for discrete-time
stochastic processes, which manifest as jump-only trajectories, and discuss how viewing the correspondence in
the reverse direction provides a means of studying structural complexity in quantum systems themselves.
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I. INTRODUCTION

One of the hallmarks of quantum systems is that they
appear complex to our classical intuitions. Indeed, the simula-
tion of many-body quantum systems with classical computers
is a challenge that grows exponentially with each additional
particle. This led to one of the first proposed applications of
quantum computers, simulation of quantum systems, leverag-
ing their intrinsically quantum nature to escape this cursed
scaling of complexity [1].

We can extract further utility from this innate complexity
by employing quantum technologies to perform other com-
plex computations [2,3]. A growing body of research has
explored the application of quantum technologies in the sim-
ulation of (classical) stochastic dynamics, finding that such
quantum stochastic simulators can operate with a lower mem-
ory cost and smaller thermodynamical footprint than possible
with any classical simulator [4–8]. These quantum advantages
have been proven theoretically to exhibit favorable scaling
[9–11], especially when simulating continuous-time stochas-
tic processes [12–16]. Thus far however, explicit proposals for
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the construction of such models are based on discrete-time
quantum evolutions, approaching only a quasicontinuous evo-
lution in the limit of performing infinitesimal quantum gates in
rapid succession. This presents a significant practical barrier
to the demonstration of the scalability of the quantum memory
advantage.

Here we remove this barrier with a proposal for a truly
continuous-time quantum stochastic simulator. Our proposal
consists of embedding continuous-time quantum simulators
within the evolution of a naturally continuous-time open
quantum system. By mapping the infinitesimal Kraus op-
erators of the quasicontinuous quantum simulators into an
appropriate Hamiltonian and set of dissipators for the open
system, we are able to specify a continuous-time simulator,
with the state of the system acting as the memory and the
outputs obtained by monitoring the dissipation channels. In
other words, the statistics of the trajectories of the open sys-
tem evolution correspond to the statistics of the simulated
process.

We begin with a recapitulation of the relevant background
on stochastic processes, (quantum) models of their evolution,
and the open system trajectory formalism in Sec. II. We then
establish the mapping by which continuous-time quantum
simulators can be embedded within open quantum system
trajectories in Sec. III, followed by an analogous mapping for
discrete-time simulators in Sec. IV. We briefly outline how
this embedding may also provide an interesting lens through
which the complexity of quantum systems and processes can
be characterized in Sec. V. We summarize and discuss our
results in Sec. VI.
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II. FRAMEWORK

A. Stochastic processes and models

A continuous-time discrete-event stochastic process [17]
consists of a probabilistic series of observable events xn ∈ X ,
where the subscript n denotes the event number. The time
between the (n − 1)th and nth events is denoted by tn ∈ R+
(which is itself also typically a stochastic variable); for short-
hand we define xn := (xn, tn), and xl:m := xlxl+1, . . . , xm−1

represents a string of consecutive events. The dynamics of
such processes are typically governed by an underlying hidden
system, and the observed events are described by a collective
distribution P(. . . , X n−1, X n, X n+1, . . .); we use uppercase
and lowercase to distinguish random variables from their
corresponding variates. Here we consider stationary, i.e., time-
invariant, stochastic processes such that n ∈ Z and P(X 0:L ) =
P(X m:m+L ) ∀ m, L ∈ Z.

We can divide the process into a past and future, de-
scribing the events that have occurred thus far and those
yet to occur, respectively. More specifically, the past ←−x :=
limL→∞ x−L:0(∅, t←−

0
), where without loss of generality we

have taken x0 to be the next event to occur, t←−
0

is the time since
the last event, and ∅ represents that the zeroth event is yet to
occur. Similarly, the future −→x := limL→∞(x0, t−→

0
)x1:L, where

t−→
0

is the time until the next event such that t0 = t←−
0

+ t−→
0

.
A causal model of a stochastic process [18] uses infor-

mation about the past of the process to produce a series of
future events commensurate with the statistics of the process.
An (exact) model is able to simulate these statistics perfectly
such that given any past ←−x , the model produces futures

−→
X

with the same probabilities as the process’s conditional distri-
bution P(

−→
X |←−x ). To do this, the model encodes the relevant

information from the past into a memory; this is achieved
with an encoding function f :

←−
X → M, where ρm ∈ M are

the states of the memory. The model also needs a means of
evolution that produces the outputs and updates the memory,
i.e., a dynamic � : M → M,∅ ∪ X acting continuously. A
key metric of performance for the model is the amount of
memory it requires: Two such metrics are the statistical and
topological memories [19], defined as

D f := log2[rank(ρ)], Cf := −Tr[ρ log2(ρ)], (1)

respectively, capturing the (logarithm of) dimensions required
by the memory and the amount of information it must store.
Here ρ := ∑

m P(m)ρm is the steady state of the memory, with
P(m) := ∑

←−x : f (←−x )=ρm
P(←−x ).

The provably memory minimal classical model (according
to both measures) can be systematically found using the tools
of computational mechanics [18–20], a branch of complexity
science. The causal states of a process are defined according
to an equivalence relation ∼ε clustering together pasts if and
only if they have identical future statistics, i.e., ←−x ∼ε

←−x ′ ⇔
P(

−→
X |←−x ) = P(

−→
X |←−x ′). The causal state encoding function fε

then maps pasts to the same (classical) memory state if and
only if they belong to the same causal state. The statistics
of the process then define the transition dynamic between
these states, and the corresponding model is referred to as
the ε-machine of the process. For typical continuous-time pro-
cesses, these measures (labeled Dμ and Cμ) are both infinite in

the truly continuous limit [12,17,21], requiring coarse-grained
discrete-time approximations for finite memory realizations
[22,23].

Under weak assumptions on the process [17], the causal
states can be labeled by a pair (g, t ), where g ∈ G is referred
to as a mode and t is the time since the last event. Given a
model in state (g, t ), in the next infinitesimal interval dt the
model will evolve to (g, t + dt ) if no event occurs or proceed
to (g′, 0) if an event does take place, where the new mode g′ is
a deterministic function of the previous mode g and event x. To
each mode g we can assign a series of distributions T x

g′gφ
x
g′g(t )

describing the probability that a model resides for a dwell time
t in mode g, i.e., the interevent duration, before event x occurs
and a transition to mode g′ occurs. This can be represented
by a hidden semi-Markov model (HSMM) [17] and further
unraveled as a (continuous- or discrete-state) hidden Markov
model (HMM) [24], as depicted in Fig. 1.

B. Quantum stochastic simulators

While ε-machines are minimal among classical models,
quantum models can do better [4,13]. Such quantum models
use an encoding function fq that maps pasts to quantum,
i.e., nonmutually orthogonal, memory states [14]. The current
state-of-the-art constructions [6,15] follow fε in clustering
pasts according to the causal states, but now with quantum
memory states {|ςgt 〉δt } in their place, with the subscript δt
indicating the implicit dependence on the coarse graining into
finite-size time steps. The quantum memory states are defined
implicitly according to a quasicontinuous evolution operator
Uδt ,

Uδt |ςgt 〉δt |0〉 =
√

�g(t + δt )

�g(t )
|ςgt+δt 〉δt |0〉

+
∑
xg′

√√√√∫ t+δt
t T x

g′gφ
x
g′g(t ′)dt ′

�g(t )
|ςg′0〉δt |x〉, (2)

where the (modal) survival probability �g(t ) :=∑
xg′

∫ ∞
t T x

g′gφ
x
g′g(t ′)dt ′ represents the probability that the

system will remain in mode g for at least time t . The first
system contains the memory, while the second is an ancilla
that probes the memory to produce the event statistics; 0
is used as a proxy for no event ∅. Each application of Uδt

represents one time step of evolution, with a fresh ancilla
introduced for each such time step. See Fig. 2 for a schematic
quantum circuit depicting this evolution.

The corresponding memory measures Dq and Cq, taken
in the limit δt → 0, satisfy Dq � Dμ and Cq � Cμ, with the
inequalities strict whenever the quantum memory states are
linearly dependent or have nonzero overlap, respectively [6].
Typically, one finds that Cq is finite (in contrast to the classical
divergence), while strict advantages of Dq are known only
for specific families of processes [11,14,16,25], though re-
cent work has developed methods for drastically reducing the
memory dimension required of near-exact quantum models to
simulate continuous-time stochastic processes [15].
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FIG. 1. (a) Hidden semi-Markov model representation of transitions in a stochastic process. The notation x : T x
g2g1

φx
g2g1

(t ) denotes the
probability that a process that is currently in mode g1 immediately after an event will next display event x after a time t and transition into
mode g2 is given by T x

g2g1
φx

g2g1
(t ). (b) Hidden Markov model representation of the same transition, where the time since the last event is tracked

by a continuum of states represented by the red arrowed line.

C. Quantum trajectory formalism

While an idealized closed quantum system evolves accord-
ing to unitary operators driven by a Hermitian Hamiltonian,
in reality this picture typically breaks down. Open quantum
systems are coupled to and exchange information with their
environment. Under the approximation that the environment
is left largely unchanged by its coupling to the system, the
evolution of the system can be described by repeated applica-
tion of a quantum channel, or in the continuous-time limit, a
Lindbladian Markovian quantum master equation [26]

dρ

dt
= −i[H, ρ] − 1

2

∑
j

γ j (c
†
j c jρ + ρc†

j c j − 2c jρc†
j ), (3)

where ρ is the state of the system, H is its natural closed
system Hamiltonian, γ j are the strengths (i.e., rates) of a
series of dissipative channels, and c j are the associated action
(jump) on the state following said dissipation. In addition,
[A, B] := AB − BA represents the standard commutator and
we have set h̄ = 1 for convenience. Often, as we do here, the
dissipation operators are rescaled and normalized according to
their rates to give the jump operators Jj := √

γ jc j . Moreover,
an effective Hamiltonian can be prescribed, describing the
(non-Hermitian) evolution of the system in the event that
no dissipation occurs, Heff := H − (i/2)

∑
j J†

j J j , with the
norm of the state corresponding to the probability that no

FIG. 2. Quantum circuit representation of a quasicontinuous
quantum simulator, showing two time steps of evolution. At each
time step, the current memory state |ςgt 〉 (blue wire) undergoes a
joint interaction Uδt (orange box) together with an ancilla (red wire)
initially in blank state |0〉 to produce an updated memory state and
an output ancilla (green wire) that produces the output for that time
step following measurement in the computational basis. The memory
state is then fed forward into the evolution for the next time step,
together with a fresh blank ancilla.

such dissipation would have occurred within the evolution
time.

Nevertheless, solving the quantum master equation is often
computationally taxing, especially since it requires one to
propagate the full density matrix of the system. A power-
ful alternative approach is the quantum trajectory formalism
[27–30], also referred to as the Monte Carlo wave-function
method [31] or the quantum jump formalism [32]. The
premise of this approach is to record all jumps and condition-
ally update our description of the state accordingly. Supposing
that we do indeed have such a record of all jumps and when
they occur (a trajectory), then given an initial pure state
of the system, our description of the system remains pure at
all times.

Note that the decomposition of a given quantum master
equation into a set of dissipative channels is not unique. In-
deed, given a set of jump operators {Jj}, the same evolution
can be obtained from a master equation with jump operators
{J ′

j} resulting from a unitary reshuffling of the labels of the
original jump operators, i.e., J ′

k = ∑
j uk jJj for some unitary

matrix u. Thus, the unraveling of a quantum master equa-
tion into a set of trajectories is not unique and depends on
the choice of jump operators. In practical terms, this corre-
sponds to the choice in how the dissipation is monitored, i.e.,
measured.

There are two stages to the evolution of a system on a
particular trajectory. Between jump events the system evolves
according to the effective Hamiltonian, i.e.,

|ψ (t )〉 = Ueff (t − t ′)|ψ (t ′)〉, (4)

where Ueff (t ) := exp(iHefft ). Note that due to the non-
Hermiticity of Heff , Ueff is nonunitary and hence does not
preserve normalization of the state; thus, one must appro-
priately rescale the state normalization at the end of the
evolution. The second stage is the effect of the jumps. Upon
jump j, (the conditional description of) the state undergoes
the instantaneous transformation

|ψ (t )〉 → Jj |ψ (t )〉. (5)

This also does not preserve the normalization of the state
and so also requires an appropriate rescaling. Such rescal-
ings notwithstanding, the norms of the non-normalized states
carry physical significance. For evolution under the effective
Hamiltonian, the norm describes the probability of the system
surviving for that length of time without undergoing a decay
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event. Meanwhile, the norm of the postjump state describes
the instantaneous probability per unit time of the specified
jump event occurring. Given a set of jump operators {J} and
a natural Hamiltonian H , the trajectory uniquely specifies a
conditional evolution of the system. A weighted average over
all possible trajectories will recover the stochastic ensemble
evolution of the density matrix as described by the master
equation.

Compared to master equations, simulation of a quan-
tum trajectory is comparatively more efficient. By sampling
over many such trajectories, one can estimate properties of
the open system, such as expectation values and correla-
tions. A standard approach to this sampling is as follows.
Beginning with an initial state |ψ (0)〉, generate a ran-
dom number r ∈ [0, 1] and determine the time t such that
〈ψ (0)|U †

eff (t )Ueff (t )|ψ (0)〉 = r; this specifies that a jump
event occurs at time t . To determine which jump oc-
curs, randomly choose one of the j weighted according
to 〈ψ (t )|J†

j J j |ψ (t )〉. Repeat the above steps starting from
the (rescaled to unit norm) postjump state Jj |ψ (t )〉, un-
til the maximum time of the simulation is reached. This
generates a trajectory with the appropriate weighting. By
generating many such trajectories, the sampling can be
performed.

III. EMBEDDING CONTINUOUS-TIME QUANTUM
STOCHASTIC SIMULATORS

The circuit-based picture of quantum stochastic simula-
tors described in Sec. II B allows us to consistently define
memory states |ςgt 〉 for all g ∈ G, t ∈ R+, i.e., for all possible
continuum causal states. However, the evolution is implic-
itly only quasicontinuous, discretized into time steps of size
δt . While this can in principle be refined arbitrarily, a fresh
probe ancilla is required at each time step, as well as an
ever-increasing number of gates. Specifically, to simulate the
statistics up to some fixed time, the number of ancillas and
the number of calls to Uδt must scale at least as fast as in-
versely proportional to the size of the time steps, no matter
how efficiently Uδt itself can be implemented. This is because
we are required to sequentially produce the output statistics
that correspond to measurement of the ancillas; thus, while
there are powerful techniques for reducing the complexity
of circuit-based simulation of Lindbladian dynamics [33,34],
as they do not produce the same observable behavior on
their ancillary systems, we cannot make use of them here.
We are effectively studying the dual of the problem here,
in that our objective is to determine how to implement an
open system that gives rise to the desired statistics we wish to
simulate, rather than simulation of any particular open system
in itself.

We will now overcome this issue by embedding the model
into the dynamics of an open quantum system such that the
statistics of the process are mapped to quantum trajectories.
Indeed, the jump events of a quantum trajectory are them-
selves a continuous-time stochastic process. Here we show
how the jump operators {Jj} and effective Hamiltonian Heff

(and thus natural Hamiltonian H) can be designed such that
this process corresponds to that which we desire to simulate.
Further, the state of the open system at any point in the

trajectory is identical (up to unitary symmetry) to the anal-
ogous memory state of the quantum model specified (2).
Viewing the state of the open system as a memory,1 the system
thus forms a quantum stochastic simulator of the process with
the same memory costs (1) as the quantum model (2), but with
a truly continuous-time evolution.

To make this mapping, we must first assign the quan-
tum memory states and evolution of the quasicontinu-
ous model. The overlaps of the quantum memory states
can be obtained from Eq. (2), using that 〈ςgt |ςg′t ′ 〉δt =
〈ςgt |〈0|U †

δtUδt |ςg′t ′ 〉δt |0〉. These can then be assigned in terms
of an arbitrary basis using a reverse Gram-Schmidt procedure.
The columns of Uδt prescribed by the model definition can
then be expressed in this basis and the remainder of the
columns can be assigned arbitrarily, provided all columns
are mutually orthogonal. See e.g., Refs. [6,15,35] for further
details.

From this unitary operator, we are able to designate a set of
Kraus operators corresponding to each of the possible events
Kx

δt := (I ⊗ 〈x|)Uδt (I ⊗ |0〉), capturing the effective evolution
of the memory conditioned on event x occurring (I is the
identity matrix, here acting on the memory subsystem). Sim-
ilarly, we can designate K0

δt := (I ⊗ 〈0|)Uδt (I ⊗ |0〉) for the
nonevent evolution.

For the majority of the time steps, the system will not ex-
hibit an event and will instead undergo the nonevent evolution.
Indeed, it can be seen that |ςgt+δt 〉 ∝ K0

δt |ςgt 〉 and |ςgnδt 〉 ∝
(K0

δt )
n|ςg0〉. This parallels the action of the non-Hermitian

evolution under Heff in a quantum trajectory, accounting for
the gradual shift in belief of the memory or system state
conditioned on the lack of events occurring. Conversely, the
Kraus operators Kx

δt corresponding to the events occur with
much lower probability on each time step and give rise to
much sharper transitions in the system state, abruptly placing
the memory in the start state of a new mode. This resembles
the action of the jump operators in a quantum trajectory. Note,
however, that we require a specific choice of jump operators
to obtain the desired model and thus lose the freedom in how
we unravel the associated master equation, that is, we must
monitor the dissipation from the open memory system in a
particular manner to manifest the target statistics.

Let us cast the nonevent evolution in terms of an evo-
lution under a non-Hermitian Hamiltonian HNH

δt , i.e., K0
δt =

exp(−iHNH
δt δt ). For a consistent trajectory, we require that

the non-Hermitian Hamiltonian is consistent for all time-step
sizes δt , whereupon we can replace it by Heff . This is possible
if the infinitesimal evolution can be generated at all times
for all modes; by expanding exp(−iHeffδt ) ≈ I − iHeffδt for
small δt , we thence require I − 〈ςgt |ςgt+δt 〉 ∝ δt ∀ g, t . In
Appendix A we show that this is satisfied when all modal dis-
tributions φx

g′g(t ) are everywhere finite and almost-everywhere
continuous; these are natural conditions to expect of a phys-
ically reasonable continuous-time stochastic process. Then
we are able to associate the non-Hermitian evolution of the

1Indeed, the Markovian nature of the master equation unraveled by
a quantum trajectory guarantees that any memory in the dynamics
must be contained within the system.
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FIG. 3. (a) HSMM representation of the example two-channel decay process described in the text. The process has two modes that assign
different weights to each channel, heralded by the symbol emitted in the previous decay. (b) Bloch sphere representation of the quantum
memory states, with the thick colored arrows depicting the continuous space of quantum memory states and the thinner black arrows the
transitions upon decay events. The plot is shown for p = 0.25 and γ1 �= γ2; the specific values of the decay rates are otherwise arbitrary as they
do not impact the state space, only the rate at which it is traversed.

trajectory with

Heff = lim
δt→0

ln K0
δt

−iδt
≈ lim

δt→0

I − K0
δt

iδt
. (6)

It is then comparatively straightforward to deduce the
relationship between the Kraus operators corresponding to
events and the jump operators of the associated trajectory:
For sufficiently small time steps δt the Kraus operators are
the rate-normalized jump operators, scaled by

√
δt . This

can be seen by first noting that the probability of symbol
x being emitted in the next interval δt given current mode
g and time since the last event t is given by Pδt (x|g, t ) :=∑

g′
∫ t+δt

t T x
g′gφ

x
g′g(t ′)dt ′/�g(t ). Then, using that only one term

in the sum is nonzero (since the subsequent mode is a de-
terministic function of g and x), we have that Pδt (x|g, t ) =
〈ςgt |Kx

δt
†Kx

δt |ςgt 〉. Comparing this to the probabilities associ-
ated with the jump operators of a trajectory, namely, that
the probability of jump x occurring in the next infinitesimal
interval dt given current state |ψ〉 is 〈ψ |J†

x Jx|ψ〉dt , it follows
that

Jx = lim
δt→0

Kx
δt√
δt

. (7)

It can readily be seen that this limit exists and is well
defined under the conditions placed on the φx

g′g(t ) for the
non-Hermitian evolution to also be well defined, namely, that
they are everywhere finite and almost-everywhere continuous.

As an example, let us consider the following process. A
system undergoes a series of decays from a pair of decay
channels, with associated rates γ1 and γ2, respectively. Each
decay is heralded by an event signifying which channel the
decay came from. The choice of channel is probabilistically
assigned, and hidden, such that a causal model must track a
belief in the likelihood of which channel was chosen, based
on the time since the last event. This choice of channel also
varies based on the last event such that if the last decay
was from channel 1, the weightings are p for channel 1
and p̄ := 1 − p for channel 2, and reversed if the last decay

was from channel 2. Thus, there is an alphabet X = {1, 2}
and two modes G = {g1, g2}. The HSMM representation of
the process is given in Fig. 3(a), with T x

gx′ gx′′
taking value

p if x = x′ = x′′, p̄ if x = x′ �= x′′, and zero otherwise, and
φx

gx′ gx′′
(t ) = γx exp(−γxt ). This can be seen as a generalization

of the dual Poisson process, previously used to demonstrate
extreme dimensional memory advantages of quantum models
[14].

In Appendix B we show how this process can be exactly
modeled causally by a quantum system with a single-qubit
memory for all values of γ1, γ2, and p. Meanwhile, we also
show that the minimal exact classical causal model requires
an infinite memory dimension. We further give expressions for
the Kraus operators of our quantum model. Correspondingly,
we obtain that the associated trajectory is described by

Heff =
(

− iγ1

2 0

0 − iγ2

2

)
, J1 =

(√
γ1 p 0√
γ1 p̄ 0

)
,

J2 =
(

0
√

γ2 p̄

0
√

γ2 p

)
. (8)

We illustrate this in Fig. 3(b) for a representative set of param-
eters, showing the possible paths of the trajectory through the
memory state space.

IV. EMBEDDING DISCRETE-TIME QUANTUM
STOCHASTIC SIMULATORS

A discrete-time discrete-event stochastic process
with alphabet X is specified by the distribution
P(. . . , Xn−1, Xn, Xn+1, . . .). This describes symbol-only
dynamics, where an event occurs at each interval, in which
case X is the set of possible events. Similarly, it also describes
coarse grainings of the continuous-time processes detailed
above, where the time variable is discretized into finite time
steps of �t . In the latter case, X is the union of the set of
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possible events and a null event ∅, which denotes intervals
when no event occurred.

As with continuous-time processes, the causal states are
defined through an equivalence relation on the set of pasts, i.e.,
←−x ∼ε

←−x ′ ⇔ P(
−→
X |←−x ) = P(

−→
X |←−x ′), where the past now

consists only of the value of
←−
X at each past interval. These

can again be used to specify an encoding fε that prescribes
the provably memory minimal classical model (ε-machine)
of the process. However, as this now encodes into a discrete
state space, these models are now representable by hidden
Markov models. We can similarly construct quantum models
of such processes with subclassical memory costs, using the
prescription

U |σs〉|0〉 =
∑
x,s′

√
T x

s′se
iϕxs |σs′ 〉|x〉, (9)

where {|σs〉} are the quantum memory states, the second sub-
space is measured to give the measurement outcome, {ϕxs} are
an arbitrary set of phases,2 T x

s′s is the probability that the event
x occurs given we started in state s, and the updated state s′ is
a deterministic function of s and x.

By taking the interval between events to be a stochastic
variable, a discrete-time stochastic process can be instantiated
within a continuous-time stochastic process, with the events of
the latter process corresponding to the events (or null events)
of the original discrete-time process, that is, each event in
the continuous-time process corresponds to one interval in the
discrete-time process. Moreover, when the stochastic variable
governing the time interval between events is memoryless,
i.e., it takes the form of an exponential decay, this does not
require any additional memory to model beyond that of the
original discrete-time process.

Let this decay rate be γ such that the probability of
the next event occurring within time t from the present is
1 − exp(−γ t ). Then we can represent the quasicontinuous
evolution in the form of Eq. (2):

Uδt |σs〉|0〉 = e−γ δt/2|σs〉|0〉

+
∑
xs′

√
(1 − e−γ δt )T x

s′se
iϕxs |σs′ 〉|x〉. (10)

Essentially, this evolution preserves the memory state if no
event, i.e., end of time step, occurs and writes the event sym-
bol to the ancilla and updates the memory accordingly if it
does. It can readily be verified that the memory states here
have the same overlaps as, and hence are equivalent to, those
prescribed in the discrete evolution (9) for any δt . Note that
the value of γ is irrelevant, other than controlling the rate at
which events occur.

Thus, we can now apply our embedding from the preced-
ing section. Notably, we can see that K0 = exp(−γ δt/2)I,
where I is the identity matrix on the memory space, and
thus Heff = (−iγ /2)I. This corresponds to a trivial evolu-
tion between jumps, where the system does not change state

2Note that the choice of phases does impact the memory costs
(1). Primarily, they have been used to engineer linear dependences
between memory states in order to reduce Dq [6].

when events do not occur. Correspondingly, the embeddings
of discrete-time stochastic processes correspond to jump-only
trajectories. This is again consistent with the dynamics of
the discrete-time evolution of quantum simulators of such
processes, where the memory undergoes transitions between a
discrete set of memory states on each event. The jump opera-
tors also follow from the discrete-time evolution, by taking the
Kraus operators from Eq. (9) and rescaling by

√
γ . Note that

this is equivalent to applying Eq. (7) to the Kraus operators
prescribed by Eq. (10).

We illustrate this with an example three-state Markov
chain. There are three events {x, y, z} and three corresponding
states {σx, σy, σz}. They obey the transition structure Tw′w = 0
if w = w′ and 1/2 otherwise, w,w′ ∈ {x, y, z}. In other words,
the system never repeats the same event on two consecutive
time steps and instead exhibits one of the other two events
with equal probability. It has previously been shown that such
a process can be modeled with a quantum simulator with only
a single qubit of memory [6], using the following evolution to
define the memory states:

U |σx〉|0〉 = 1√
2

(|σy〉|y〉 + |σz〉|z〉),

U |σy〉|0〉 = 1√
2

(|σx〉|x〉 + |σz〉|z〉),

U |σz〉|0〉 = 1√
2

(|σx〉|x〉 − |σy〉|y〉), (11)

where it can be seen that |σz〉 = |σy〉 − |σx〉. Without loss
of generality, we can assign |σx〉 = |0〉 and subsequently
|σy〉 = (1/2)(|0〉 + √

3|1〉), from which it follows that |σz〉 =
1
2 (−|0〉 + √

3|1〉). From this we obtain

Heff =
(

− iγ
2 0

0 − iγ
2

)
, Jx = √

γ

(
0

√
2√
3

0 0

)
,

Jy =
√

γ

2
√

2

(
1 − 1√

3√
3 −1

)
, Jz =

√
γ

2
√

2

(
−1 − 1√

3√
3 1

)
.

(12)

As with the previous example, we plot the corresponding
trajectories in Fig. 4, where it can be seen that it consists solely
of jumps between the three memory states.

V. CLASSIFYING STRUCTURAL COMPLEXITY IN OPEN
QUANTUM SYSTEMS

This embedding of quantum stochastic models as quantum
trajectories presents a further enticing opportunity when
viewed from the opposite perspective: Can we find the
model corresponding to observable behavior of an open
quantum system? This would provide a means to apply the
full framework of computational mechanics to quantum
processes, allowing for the study of the structure of such
processes, and the intrinsic computation [36] realized by their
dynamics.

However, the contraposition of low-dimensional quan-
tum systems being able to replicate the behavior of many
complex classical stochastic processes is, simply put, that
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FIG. 4. (a) HMM representation of the example three-state
Markov chain described in the text. (b) Bloch sphere representation
of the quantum memory states, showing the location of the three
memory states, with black arrows depicting the transitions manifest
by the pure jump dynamics of the system.

even low-dimensional quantum systems often give rise to
statistics that classically appear highly complex [14]. Indeed,
a pure state of a D-dimensional quantum system is described
by 2(D − 1) continuous real parameters. With an appropriate
adaptive monitoring scheme, it is possible to pin the system
to remain with a finite number of states, though determining
the smallest such physically realizable ensemble remains an
interesting open question [37,38]. In general however, the
trajectory of an open quantum system may take it through all
possible states in its state space.

Each of these states will in general give rise to different
observable future statistics and thus each possible assignment
of the 2(D − 1) parameters would correspond to a different
causal state. This makes it a far from trivial task to construct
classical models (such as the ε-machine) of the observable
behavior of open quantum systems. A promising way to tackle
this is to use a suite of recently developed tools for analyzing
structural complexity in classical processes with an uncount-
ably infinite number of causal states [39]. This is beyond the
scope of the present work.

Nevertheless, we can make some headway under certain
assumptions on the dynamics of the system. In particular, let
us assume that the jump operators are erasing, in the sense
that each jump operator maps all states into the same state,
that is, Jx = ∑

j ax
j |ψx〉〈 j| for some {ax

j} and |ψx〉 for all x.
Then we need only one continuous parameter (in addition to
the discrete parameter corresponding to the last jump label) to
describe the state of the system at all times. More specifically,
if the last jump to occur was Jx and a time t has elapsed
since then, then the (non-normalized) system state is given by
exp(−iHefft )|ψx〉.

The observable behavior then takes the form of a
semi-Markov process, where the symbolic component of the
dynamics can be expressed as a Markov chain, but the times
between events are stochastic variables that depend on the last
event. This is a special case of the HSMMs introduced above,
where the modes correspond to the most recent event. Let
us define |ψx(t )〉 := exp(−iHefft )|ψx〉. The modal survival
probabilities then take the form �x(t ) = 〈ψx(t )|ψx(t )〉. From
the infinitesimal evolution, we can also deduce the probability
that event x′ occurs in the interval [t, t + δt ) given the
last event x is 〈ψx(t )|J†

x′Jx′ |ψx(t )〉δt . Putting this together,

we have

P(x′, t |x) = 〈ψx|eiH†
eff t J†

x′Jx′e−iHeff t |ψx〉,

Tx′x =
∫ ∞

0
P(x′, t |x)dt,

φx′x(t ) = P(x′, t |x)/Tx′x. (13)

With this description, the standard tools of computational
mechanics can be applied to investigate the structure of the
process. We leave such a dissection of physically relevant
quantum processes for future work.

More generally, for jumps that are not erasing, the state
of the system will typically depend on the entire history of
jumps and jump times, i.e., ←−x . We can define this associated
state as an encoded memory state fq(←−x ), and the distributions
must now be conditioned upon fq(←−x ) rather than the previ-
ous symbol x alone. Such a distribution meaningfully exists
for all accessible fq(←−x ) and will generically be distinct for
fq(←−x ) �= fq(←−x ′); the causal states are then associated with
the equivalence of the iterated form of these distributions,
i.e., P(

−→
X | fq(

←−
X )). As remarked above however, this will in

general yield an infinite number of causal states.
Note, however, that the standard method for simulating

quantum trajectories is implicitly based on the construction
of such distributions [30]. Recall that given a postjump state
|ψ〉, the time of the next jump is determined by the time at
which 〈ψ |eiH†

eff t e−iHeff t |ψ〉 < r for some randomly generated
r ∈ [0, 1]. This quantity corresponds to the survival prob-
ability �|ψ〉(t ) of the initial state |ψ〉 under the effective
non-Hermitian Hamiltonian Heff , which equivalently corre-
sponds to 1 − ∑

x

∫ t
0 P(x, t ′||ψ〉)dt ′. The specific jump is then

determined by sampling from the distribution P(x|t, |ψ〉) =
P(x, t ||ψ〉)/

∑
x P(x, t ||ψ〉). Yet unlike our need to construct

all possible such distributions to meaningfully apply the
framework of computational mechanics, the simulation of
quantum trajectories is much less demanding. Such simulation
requires only that we consider the distributions associated
with the postjump states visited on the trajectory, and even
then, the monotonicity of �|ψ〉(t ) can be used to circumvent
the need to construct the full distribution to determine the
point at which it coincides with r.

VI. DISCUSSION

In this work we have established a means by which
memory-efficient quantum simulators of stochastic processes
can be embedded within the natural evolution of monitored
open quantum systems. The monitored dissipation of the sys-
tem corresponds to the observed events in the process and
so each quantum trajectory charting a particular monitored
evolution of the system corresponds to a realization of the
stochastic process by the embedded quantum model. This
resolves a gap between the continuous-time nature of the pro-
cesses modeled and the quasicontinuous nature of the model
evolution itself.

While seemingly innocuous, the resolution of this gap
has important ramifications. Foremost, it removes the need
for a (semi)arbitrary time-step size in the model with the
added benefit of removing the need for an external control
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to implement the evolution at each time step. Crucially, this
makes the model autonomous and not reliant on an external
timekeeping device to synchronize time-step sizes to. There
are also potential practical considerations of benefit. Imple-
menting a quasicontinuous model requires an ever-growing
number of gates as the time-step size decreases (with ever-
increasing precision required of each step), also leading to an
ever-increasing degree of susceptibility to noise in the imple-
mentation. By embedding directly as a continuous evolution
of a quantum system we circumvent this, and instead our
sources of error come down to how well we can instantiate the
appropriate natural Hamiltonian and jump operators. These do
not scale with the precision of our model, and indeed, together
with the timescale on which we can resolve jumps, they can
be seen to implicitly define the meaningful precision that can
be achieved. Interestingly, this moves counter to the norm in
scientific computing; rather than converting a problem into a
digital computation to solve it, we are instead embedding a
digital computation within the natural evolution of a system.
This is, in essence, a form of analog quantum simulation for
classical stochastic dynamics.

There are a number of natural extensions. The embedding
itself can be extended into the regime of input-output pro-
cesses, where the behavior of the system can be influenced
by stimuli from its environment [40]. This will enable the
realization of quantum models of adaptive agents in true
continuous time. Moreover, such an embedding for the input-
output domain may prove fruitful in probing the structure
of general quantum stochastic processes with intervention
[41] in continuous time. We have also begun laying down
the framework for using the embedding to apply tools from
complexity science to understand structure in open quantum
systems. Indeed, the application of such tools to many-body

quantum states has already yielded interesting early results,
such as the correspondence of sharp peaks in certain measures
of complexity with quantum phase transitions [42]. Apply-
ing these ideas to the dynamics of quantum systems may
provide fascinating insights into the structure of nonequi-
librium quantum steady states [43], measurement-induced
phase transitions [44], and quantum chaos [45]. Finally, by
demonstrating that our quantum models of continuous-time
stochastic processes can indeed be realized in an autonomous,
continuous-time manner, we have affirmed that they do indeed
provide a viable means of implementing autonomous quantum
clocks [46]. This connection may yield profitable means of
applying results from quantum stochastic simulation to gain
a deeper understanding of quantum clocks (and vice versa),
including the fundamental resources needed to track time.
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APPENDIX A: CONVERGENCE OF MEMORY STATE OVERLAPS

Recall that the memory states of the quantum models are implicitly defined by the evolution Eq. (2). Correspondingly, using
that U †

δtUδt = I, we have that the state overlaps are given by

〈ςgt |ςg′t ′ 〉δt =
√

�g(t + δt )�g′ (t + δt )

�g(t )�g′ (t ′)
〈ςgt+δt |ςg′t ′+δt 〉δt +

∑
x

∑
g′′g′′′

√√√√T x
g′′gT x

g′′′g′
∫ t+δt

t

∫ t ′+δt
t φx

g′′g(t ′′)φx
g′′′g′ (t ′′)dt ′′dt ′′′

�g(t )�g′ (t ′)
〈ςg′′0|ςg′′′0〉δt .

(A1)

Recall that the mode into which the system transitions is a deterministic function of the current mode and event. Let us denote
this by the function λ(g, x). Then we have that

〈ςgt |ςgt+δt 〉δt =
√

�g(t + 2δt )

�g(t )
〈ςgt+δt |ςgt+2δt 〉δt +

∑
x

T x
λ(g,x)g

√√√√∫ t+δt
t

∫ t+2δt
t+δt φx

λ(g,x)g(t ′)φx
λ(g,x)g(t ′′)dt ′dt ′′

�g(t )�g(t + δt )
. (A2)

By repeatedly iterating through the first term on the right-hand side, we then obtain

〈ςgt |ςgt+δt 〉δt =
∑

x

T x
λ(g,x)g

∞∑
n=0

√√√√∫ t+(n+1)δt
t+nδt

∫ t+(n+2)δt
t+(n+1)δt φx

λ(g,x)g(t ′)φx
λ(g,x)g(t ′′)dt ′dt ′′

�g(t )�g(t + δt )
. (A3)

Let us now consider the case where the φx
g′g(t ) are all everywhere continuous, i.e., that for all ε > 0 there exists a δt (ε)

such that |t − t ′| < δt implies |φx
g′g(t ) − φx

g′g(t ′)| < ε for all t, t ′. It follows that there then exists a δt (ε) such that |t − t ′| < δt

implies | ∫ t+�t
t φx

g′g(τ )dτ − ∫ t ′+�t
t ′ φx

g′g(τ )dτ | < ε�t . Since ε can be made arbitrarily small, it then follows that the correction
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to Eq. (A3) by replacing
√∫ t+(n+1)δt

t+nδt

∫ t+(n+2)δt
t+(n+1)δt φx

λ(g,x)g(t ′)φx
λ(g,x)g(t ′′)dt ′dt ′′ with

∫ t+(n+1)δt
t+nδt φx

λ(g,x)g(t ′)dt ′ can be made arbitrarily
small.

Relaxing such that the φx
g′g(t ) are almost everywhere continuous, and everywhere finite, the corrections to the above are

of finite magnitude and have zero measure. Recalling that �g(t ) := ∑
xg′ T x

g′g

∫ ∞
t φx

g′g(t ′)dt ′, we have that for sufficiently small
δt , �g(t ) − �g(t + δt ) ∝ δt . Putting this all together, we obtain that at sufficiently small δt , 1 − 〈ςgt |ςgt+δt 〉δt ∝ δt , i.e., the
infinitesimal evolution leads to an infinitesimal change in the memory state.

APPENDIX B: DETAILS OF THE CONTINUOUS-TIME
EXAMPLE

Recall that in our example we have two Poissonian decay
channels with rates γ1 and γ2, leading to the emission of sym-
bols 1 and 2, respectively. After decay event x the system will
transition into mode gx, where channel x is chosen with prob-
ability p and the other channel with probability p̄ = 1 − p,
that is, T x

gx′ gx′′
equals p if x = x′ = x′′, p̄ if x = x′ �= x′′, and

zero otherwise. The dwell time distributions take the form
φx

gx′ gx′′
= γx exp(−γxt ).

A viable choice of memory states for a causal model is
to assign each pair (g, t ) to a distinct memory state [17].
The steady-state probability of these memory states is given
by P(g, t ) = μπg�g(t ), where πg is the probability that the
system is in mode g immediately after emission (which can
be calculated from the fixed point of

∑
x T x

g′g) and μ−1 :=∑
gg′x πg

∫ ∞
0 tT x

g′gφ
x
g′g(t )dt [13].

However, this is not minimal, as the conditional
distribution describing what the next event is, as well
as when it will occur, coincides (with an offset) for
the two modes. Consider the conditional distribu-
tions, given by P(x,

−→
t |g1,

←−
t ) ∝ pγ1 exp[−γ1(

←−
t +−→

t )] + p̄γ2 exp[−γ2(
←−
t + −→

t )] and P(x,
−→
t |g2,

←−
t ) ∝

p̄γ1 exp[−γ1(
←−
t + −→

t )] + pγ2 exp[−γ2(
←−
t +−→

t )]. We can
see that over time, each distribution becomes increasing
weighted in favor of the channel with the slower decay rate.
Without loss of generality let this be channel 2, such that
γ1 > γ2. Then we can see that the two distributions coincide
with an offset τ such that exp[(γ1 − γ2)τ ] = p2/p̄2 for p > p̄
or exp[(γ1 − γ2)τ ] = p̄2/p2 for p < p̄. The causal states
then correspond to the merging of the memory states (g, t )
according to this offset equivalence, e.g., for p > p̄ and
γ1 > γ2, (g1, t + τ ) ∼ε (g2, t ). Nevertheless, the continuous
nature of the causal states ensures that there is an infinite
number of such states, and hence the memory cost of the
ε-machine diverges.

Interestingly, the procedure by which we construct our
quantum models takes care of this merging of states

automatically [13]. To construct the quantum model we define
the following pair of generator states |ϕx〉 that satisfy [15]:

Uδt |ϕx〉|0〉 = e−γxδt/2|ϕx〉|0〉 +
√

1 − e−γxδt |σx0〉δt |x〉. (B1)

From 〈ϕx|ϕx′ 〉 = 〈ϕx|U †
δtUδt |ϕx′ 〉 it then follows that 〈ϕx|ϕx′ 〉 =

δxx′ , and thus we can without loss of generality assign |ϕ1〉 =
|0〉 and |ϕ2〉 = |1〉.

It can then be seen from direct substitution that for this ex-
ample process the quasicontinuous evolution operator Eq. (2)
is satisfied by setting

|σ1t 〉δt =
√

pe−γ1δt/2|0〉 + √
p̄e−γ2δt/2|1〉√

�1(t )
,

|σ2t 〉δt =
√

p̄e−γ1δt/2|0〉 + √
pe−γ2δt/2|1〉√

�2(t )
. (B2)

It can be verified that these states coincide with the appro-
priate offset as described above, and hence quantum memory
states belonging to the same causal state are identical. This
merging can also be seen in Fig. 3(b). These quantum memory
states can then be used to determine Uδt and consequently the
associated Kraus operators.

We obtain that

K0
δt =

(
e−γ1δt/2 0

0 e−γ2δt/2

)
, (B3)

and hence from Eq. (6) deduce that

Heff =
(−i γ1

2 0

0 −i γ2

2

)
. (B4)

We can also readily obtain the associated jump operators. We
have that Jx = √

γx|σx0〉〈0| and hence

J1 = √
γ1

(√
p√
p̄

)(
1 0

) =
(√

γ1 p 0√
γ1 p̄ 0

)
. (B5)

Similarly,

J2 = √
γ2

(√
p̄√
p

)(
0 1

) =
(

0
√

γ1 p̄

0
√

γ1 p

)
. (B6)
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