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Multipartite entanglement from consecutive scatterings
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We study how the successive scattering of spin-1/2 particles with a central spin-1/2 target particle can
generate entanglement between the helicity degrees of freedom of all scattered particles, effectively producing
a multipartite entangled state. We show that the bipartite entanglement between each pair of scattered particles,
as quantified by the concurrence, is largest for reflected particles and decreases with the number of scatterings.
We study the entanglement generation as a function of the scattered particles momenta, angular distribution, and
mass ratios, and show that there is always a combination of optimal helicities and momentum, which generate
the largest amount of bipartite entanglement.
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I. INTRODUCTION

The development rate of quantum technologies is inher-
ently dependent on the ability to generate and manipulate
entanglement in quantum states. Despite the many decades
necessary to manifest entanglement in the laboratory, it is now
considered a physical resource able to be, among other things,
manipulated [1–4] and distributed [5–7]. The vast majority
of quantum information applications, such as dense coding,
quantum teleportation, quantum key distribution [8], error
correcting codes [9], or quantum computation [10,11] are in
fact, in one way or another, a particular way to exploit the
properties of quantum entanglement.

To generate entanglement, one needs to make at least two
systems interact in such a way that their quantum degrees
of interest are not measured after the interaction. The most
natural setup in which this occurs is during particle colli-
sions. In fact, any quantum mechanical interaction is most
fundamentally described by quantum field theory (QFT), so
it is expected that the generation of entanglement is rooted
in the interactions of elementary particles, scatterings being
the most common ones. Research on the role of entanglement
generation has gained particular traction in recent years in
several fields of high-energy physics, such as neutrino oscilla-
tions [12–16], quantum electrodynamics (QED) [17–19], and
quantum chromodynamics [20]. However, particle scatterings
have gained a particular emphasis due to their conceptual
simplicity and richness. The typical physical setup consists in
considering the helicity quantum degrees of freedom of two
initially separated particles, which become entangled after the
collision. Using Feynman diagrams, it is straightforward to in-
vestigate all manners of entanglement generation for different
types of interaction, a topic that has attracted some attention
in recent years [21–27]. Connections between entanglement
minimization and the emergence of QCD symmetries have
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also recently been suggested [28–32]. The generation of en-
tanglement specifically through particle scatterings has been
studied in QED in Ref. [17], where maximal entanglement
between helicity degrees of freedom was shown not only to be
present in most possible scatterings but also possibly related
to gauge symmetry of QED. A more in-depth treatment of
entanglement generation in QED scatterings was also per-
formed in Ref. [18]. In a context of more than two particles, it
was shown recently [19] that the cross-sectional information
between two-particle collisions can be encoded in a third
spectator particle, as long as it is initially entangled with
one of the scattered particles. Overall, two-particle scattering
scenarios have been reasonably explored but scatterings of
multiple particles have not been addressed to date.

Particle scatterings typically happen in a small time win-
dow, which makes it very unlikely that more than two particles
actually collide at the same time in such a way that multiple
particles need to be considered in a single Feynman diagram.
Nevertheless, multiple consecutive two-particle scatterings
can occur before any of the final states are collapsed. This
leads to a picture where particles in entangled states coming
from past scatterings can collide with new separable particles,
resulting in increasingly larger multiparticle entangled states.

In this work, we explore this simple scenario and analyze
its usefulness as a method to create multipartite entangled
states. In particular, we consider a spin-1/2 target particle
initially at rest and subject it to consecutive collisions with
lighter projectile particles coming from an external source.
Although we do not develop on the experimental side, this
work provides a conceptual method that indeed generates
multipartite states from collisions and shows what entangle-
ment properties one can expect from such states.

II. ENTANGLEMENT IN PARTICLE SCATTERINGS

We begin by specifying the nomenclature used throughout
this work (following that of Ref. [33]) and show how entangle-
ment is naturally present in the quantum degrees of freedom
involved in particle scatterings, specifically for the fermionic
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case. Consider n particles with masses mi at a certain time
instant t = ti, labeled by their three-vector momenta pi and
basis indexes hi, where henceforth we will use bold notation
for three-vectors. The hi can be related to spin or helicity, for
example. For simplicity, we will restrict this work to the case
of equal number of initial and final particles as well as the
conservation of the number of each particle species present
in the reaction. We assume that at ti they are sufficiently far
away such that together they are in an eigenstate of the free
Hamiltonian, written in the form

|ψ (ti )〉 = |p1, h1; . . . ; pn, hn〉. (1)

After a certain period of time they interact and scatter, and at
a further enough time instant we consider them again to be in
an eigenstate of the free theory. This evolution is encoded in
the scattering matrix, given by

Û = T

{
exp

(
−i

∫ +∞

−∞
V̂ (t ′)dt ′

)}
, (2)

where T is the time-ordering operator and V̂ (t ′) is the poten-
tial part of the Hamiltonian in the interaction picture and a hat
notation will be adopted for operators. The scattered state is
thus of the form

|ψ (t f )〉 = Û |ψ (ti )〉 = (1 + iT̂ )|ψ (ti)〉, (3)

where we used the standard decomposition Û = 1 + iT̂ . We
will use the standard nomenclature

〈q1, r1; . . . ; qn, rn| iT̂ |p1, h1; . . . ; pn, hn〉
= (2π )4δ(4)

(∑
qi −

∑
pi

)
× iM(q1, r1; . . . ; qn, rn|p1, h1; . . . ; pn, hn) (4)

for the nontrivial piece of the scattering amplitude from the
initial state |ψ (ti )〉 to an n-particle state with momenta qi

and basis index ri, where the Dirac δ ensures momentum
conservation. The crucial point of Eq. (3) is that, so long as the
final dynamical quantities are not measured, the final state will
be in a superposition of all possible outgoing states. This can
be seen by applying the n-particle identity operator În from the
left in Eq. (3), where

În =
∫

d3q1

(2π )32Eq1

. . .
d3qn

(2π )32Eqn

×
∑

r1,...,rn

|q1, r1; . . . ; qn, rn〉 〈q1, r1; . . . ; qn, rn| , (5)

where d3q ≡ dqxdqydqz is the spatial volume element and

Epi =
√

|pi|2 + m2
i are the particles’ energies. This leads to

the following form for the final state:

|ψ (t f )〉 = |ψ (ti )〉 + i(2π )4
∫

d3q1

(2π )32Eq1

. . .
d3qn

(2π )32Eqn

δ(4)

×
(∑

qi −
∑

pi

) ∑
r1,...,rn

M(q1, r1; . . . ; qn,

rn|p1, h1; . . . ; pn, hn)|q1, r1; . . . ; qn, rn〉, (6)

which clearly shows that the final state is a superposition
of all possible |q1, r1; . . . ; qn, rn〉. Such a superposition will

in general be impossible to decompose as a tensor product,
indicating that the final state will be entangled in general.

Finally, it is important to note that the initial state |ψ (ti)〉
can also be entangled from the very beginning, even if the
particles are very far away from each other. Indeed, such a
group of particles might have originated from a different scat-
tering and as a consequence became entangled. This is also
fully consistent with the free theory eigenstate assumption. To
see this, consider the general free theory Hamiltonian written
in second quantized form

Ĥ0 =
∫

d3p
(2π )3

∑
h

Epâh†
p âh

p, (7)

where âh
p is the annihilation operator, i.e., the anticommuting

operator, which annihilates the free theory vacuum |0〉 and
obeys the relation{

âh
p, âh′†

p′
} = (2π )3δhh′δ(p − p′). (8)

The initial state can then be written as

|p1, h1; . . . ; pn, hn〉 = (
2nEp1 · · · Epn

)
âh1†

p1
. . . âhn†

pn
|0〉. (9)

Focusing on the helicity quantum degrees of freedom, which
are what we will be concerned with in this work, if we con-
sider a general linear combination of the form

|ψ̃〉 =
∑

h1...hn

ch1...hn |p1, h1; . . . ; pn, hn〉, (10)

one can straightforwardly conclude from Eq. (8) that

Ĥ0|ψ̃〉 =
(∑

i

Epi

)
|ψ̃〉 (11)

and so one proves that |ψ̃〉 is also an eigenstate of the free the-
ory. Since |ψ̃〉 represents a general form of an entangled state,
one thus concludes that entangled states are also eigenstates
of the free theory.

III. A SINGLE SCATTERING

We will focus first on the entanglement generated from
a single scattering, taking the limit where both projectile
and target particles are pointlike with no internal structure.
The setup consists of a target particle of rest-mass M with
four-momentum p1 = (M, 0, 0, 0), and a projectile particle
of rest-mass m aligned with the z axis with four-momentum
p2 = (

√
m2 + p2, 0, 0, p) fired at the target particle. Ideally,

the target particle is heavy enough (compared to the projectile
one) for the recoil to be considered negligible, in order to
experimentally facilitate multiple collisions with the same
heavy particle. From the theoretical perspective of this work,
we consider that each projectile particle always hits the target
particle. The direction of the outgoing projectile particles
is determined by the angles θ and φ, corresponding to the
azimuthal and polar angles, respectively, where from polar
symmetry we can fix φ = 0 in the first collision. The quantum
degrees of freedom whose entanglement we would like to
study are the helicities of both particles, which start out in a
separable state. Denoting the initial and final helicities of the
projectile and target particles as h1, h2 and h3, h4, respectively,
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FIG. 1. Top right: The Feynman diagram of the interaction. Left half and bottom right: Concurrence generated from scattering an electron
off a proton at rest in the laboratory frame. Choosing as initial state a polarized state where both particles have opposing helicities yields
maximal entanglement, i.e., C = 1, for θ = π and p ≈ 15.1 MeV. For a fixed momentum p, the outgoing electron has a single degree of
freedom in θ such that p4 = p4(θ ) (cf. Appendix B). The domain θ ∈ [3π/4, 5π/4] was chosen to facilitate the visualization of the region
with appreciable entanglement generation.

one can apply the unitary evolution operator Û1,2 defined
as Û from Eq. (2) acting on two particles and contract the
result with 〈p3, h3; p4, h4|. This leads to the transition proba-
bility for the case where the scattering occurs, given by (see
Appendix A)

〈p3, h3; p4, h4| Û1,2|p1, h1; p2, h2〉
= N 2 M(p1 + p2 − p4, h3; p4, h4|p1, h1; p2, h2), (12)

where three-momentum conservation is evident and the nor-
malization factor

N2 = i(2π )4δ
(
Ep3 + Ep4 − Ep1 − Ep2

)
(13)

ensures conservation of energy. Focusing on the helicity de-
grees of freedom, one finds that the final state is of the form

|ψ f 〉 =
∑
h3,h4

M(h3, h4|h1, h2)|h3, h4〉, (14)

where we omit the momentum notation and superfluous con-
stant factors. Momentum and energy conservation are always
implicit, despite the omission of momentum vector variables.
The state |ψ f 〉 is a two-qubit state, where we consider the
index 0 and 1 to be associated to the helicities +1 and −1,
respectively. The entanglement between the helicity (qubit)
degrees of freedom can be quantified by the concurrence [34],
denoted here by C. This quantity can be expressed as

C(ρ) = max(0, λ1 − λ2 − λ3 − λ4), (15)

where λ1, . . . , λ4 are the eigenvalues, in decreasing order, of
the Hermitian matrix

R =
√√

ρρ̃
√

ρ (16)

with

ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy), (17)

where σy are the Pauli matrices in the y direction and ρ

is the density matrix of the system. For simplicity, we will
denote the concurrence between particles A and B as C[A, B].
Although any superposition of helicities can be considered as
an initial state, it is more convenient to start with a separable
state in order to to investigate how much entanglement was
generated. The only helicity state that can yield maximal
entanglement, i.e., C = 1, is that of opposite helicities, such
as |01〉. Consequently, it will be the case of focus in this
section. Additionally, we will focus on the entanglement being
generated on the vicinity of θ = π , as it has already been
seen [18] that this is the most prolific case for entanglement
generation in t-channel QED scatterings.

Figure 1 illustrates the entanglement generation for differ-
ent initial momentum p and scattering angle θ for an initial
state of the form |01〉, for the particular case of an electron
scattering off a proton. One finds that, for most angles and
momenta, the scattering does not generate any entanglement.

However, it is interesting to note that for situations
where the electron reflects off the proton, i.e., θ ≈ π ,
the particles become entangled, and can even reach
maximal entanglement for θ = π and p =

√
Mm

2 (1 −√
m/M

2 + O(m/M )) ≈ 15.1 MeV, an energy which is not
high enough to relevantly probe the proton’s internal
structure, so we ignore the contribution of the proton’s
form factor to the scattering amplitudes. The existence of
an optimal momentum is actually expected on intuitive
grounds: for very small or very large momenta, the projected
particle barely interacts with the target particle, leading
to small entanglement, so there must be a middle ground

022433-3



GONÇALO M. QUINTA AND RUI ANDRÉ PHYSICAL REVIEW A 109, 022433 (2024)

0 500 1000 1500 2000
0.0

0.2

0.4

0.6

0.8

1.0

0 500 1000 1500 2000 2500 3000 3500
0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

0 100 200 300 400
0.0

0.2

0.4

0.6

0.8

1.0

FIG. 2. Concurrence between the scattered particles qubit helicity degrees of freedom for the single scattering scenario. Each label is
aligned with the corresponding plot line. The target particle is fixed as proton with mass M = Mp, while the smaller particle is considered for
four different possible masses. In each of the four cases, the concurrence is plotted for a set of values of the scattering angle θ to illustrate how
the entanglement is more easily generated for higher values of the mass ratio m/Mp. This, however, comes at the expense of requiring higher
momenta for the accelerated particle to achieve maximum entanglement.

where the interaction is stronger, leading to the maximal
possible generated entanglement. Nevertheless, the same
process between particles with different mass ratios can
accommodate a much larger θ variation. To see this, we can
redo the concurrence plot of Fig. 1 for different projectile
particle masses, as is done in Fig. 2. It is evident that it
becomes possible generate entanglement for larger angular
apertures as the projectile particle’s mass approaches that of
the target particle’s. This will come at the cost of requiring a
larger momentum for the projectile particle.

IV. CONSECUTIVE SCATTERINGS

We are now interested in the situation where, after the first
two-particle scattering, one of the scattered particles interacts
again with a third particle, without ever having its state col-
lapsed. Assuming that enough time and space are given, the
second scatter takes as initial state’s particles, which are under
the influence of the free Hamiltonian, thus one may consider
again that the interaction is governed by the unitary operator
of Eq. (3). We can now apply this operator two consecutive
times: one for the scattering of the first projectile particle with
the target particle and another for the scattering of the second
projectile particle with the recoiled target particle. Finally,
since we wish to study the entanglement generated in the qubit
degrees of freedom associated to the helicities, we will focus
on the helicity component of the final state. The result is the

following state (proof in Appendix A):

|ψh〉 = N3

∑
h4,h5,h6

dh4h5h6 (p4, p5, p6)|h4, h5, h6〉, (18)

where p4, p5, p6 and h4, h5, h6 are the momenta and helicities
of the target, first, and second projectile particles, respectively,
and

dh4h5h6 (p4, p5, p6)

=
∑

r1

M(p4, h4; p6, h6|p5 − p1 − p2, r1; p3, h3)

× M(p5 − p1 − p2, r1; p5, h5|p1, h1; p2, h2) (19)

are the components of the state, with

N3 = − (2π )5

2Ep5−p1−p2

δ
(
Ep5−p1−p2 + Ep5 − Ep1 − Ep2

)
× δ

(
Ep5−p1−p2 + Ep3 − Ep4 − Ep6

)
× δ(3)(p1 + p2 + p3 − p4 − p5 − p6) (20)

being formally a constant, which enforces conservation of
momentum and energy over the set of scatterings that occur
by means of Dirac δ. It is worthwhile to note that while
the two electrons are intrinsically indistinguishable, one can
distinguish each of them by time of scattering, such that each
qubit has an unambiguous association. For example, Alice re-
tains the electron from the first interaction and Bob retains the
second, such that they can now share a two-particle entangled
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FIG. 3. Bottom left: Feynman diagrams for two consecutive scatterings between two electrons and a proton. The dashed line represents a
scattered proton external line for both diagrams. Top half and bottom right: Concurrence generated from scattering two electrons with momenta
p ≈ 47.16 MeV off a proton at rest in the laboratory frame. Choosing for the initial state a polarized state where both electrons have a helicity
orthogonal to the proton’s starting helicity maximizes the entanglement generated. The relative positions in the cone are also relevant. For a
fixed momentum p, the outgoing electrons have a total of three degrees of freedom θ1, θ2 and 
φ, such that p5 = p5(θ1) and p6 = p6(θ2,
φ)
(cf. Appendix B). Entanglement is maximized for θ1,2 = π , 
φ = π , and p ≈ 47.16 MeV, but fails to reach maximal value between the
two electrons. The domain is chosen as [15π/16, 17π/16] for each polar angular variable to facilitate the visualization of the region with
appreciable entanglement generation.

state. The particular setup of this work does not contain any in-
distinguishability effects, which would be naturally included
in the scattering amplitudes M appearing within the unitary
evolution operators acting on the initial state.

To study the entanglement of the system one first needs to
construct the density matrix

ρt,p,p = |ψh〉 〈ψh|
Tr[|ψh〉 〈ψh|] , (21)

whose normalization eliminates the cumbersome N3 factor.
The amount of bipartite entanglement generated between the
two projectile particles is obtained by using the reduced den-
sity matrix derived by tracing out the target particle qubit t ,
resulting in the density matrix (proof in Appendix A)

ρp,p = Trt [ρt,p,p]

=
∑

h5,h6,r5,r6

ρh5h6r5r6 |h5, h6〉 〈r5, r6| , (22)

where we have the reduced density matrix components

ρh5h6r5r6 =
∑

σ dσh5h6 (p4, p5, p6)d∗
σ r5r6

(p4, p5, p6)∑
h4,h5,h6

∣∣dh4h5h6 (p4, p5, p6)
∣∣2 . (23)

To calculate the entanglement between the two projectiles’
helicities we find the concurrence C [p, p] by using Eq. (15)
for the reduced density matrix in Eq. (23).

We now wish to apply the precedent reasoning to the
scenario where two projectiles originating from the same
source, i.e., both described by the four-momentum p1 =
(
√

m2 + p2, 0, 0, p), scatter at different instants off a target,
which started at rest, as illustrated in the diagram in Fig. 3.
It can be shown that only three degrees of freedom are as-
sociated to the two outgoing projectiles (cf. Appendix B):
the polar angle θ1 of the first scattered projectile, the polar
angle θ2 of the second scattered projectile, and the azimuth
angle difference between the two, denoted by 
φ. As reported
in the previous section, entanglement is maximized for θ

close to π , so it is expected that the two projectiles are more
entangled close to this value as well. Figure 3 evidently dis-
plays this behavior, for a fixed momentum p ≈ 47.16 MeV,
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FIG. 4. Concurrence between subsystems resulting from three
reflected collisions, for the maximal generation case of reflected
particles. The proton can be maximally entangled with the subsystem
of three electrons, which describes a qudit of 23 levels, at a relatively
low energy of p ≈ 12.06 MeV.

which maximizes the concurrence for the particular case of
electrons being fired at a proton. It is interesting to note how
the degree of freedom 
φ affects the concurrence in Fig. 3. If
we consider a fixed value for both θ1 and θ2, we can interpret
the two electrons as being reflected along the surface of a cone
centered around the z axis, such that 
φ indicates how distant
the two electrons lie on the cone. It is clear that the more
distant apart the electrons are in the surface of the cone, the
more entanglement is generated, reaching a maximum when
they are on opposite sides of the cone with 
φ = π .

The electron momentum maximizing the entanglement in
this scenario is larger than the one required in the single scat-
tering scenario of Fig. 1. This is due to the fact that the proton
from the first scattering acquires a momentum of roughly
2p after the initial scatter, where θ1 is close to π . Since the
scattered proton is moving away from the second electron, the
relative momentum between the two is thus smaller than in
the first scattering so the electrons momentum needs to be
larger to compensate for this difference, in order to achieve
the optimal relative momentum derived in Sec. III.

To have an intuition of how the entanglement will be dis-
tributed with more scatterings, one can calculate the case of
three scatterings. The latter calculations are straightforwardly
generalizable from the derivations in Appendixes A and B.
Although there is not a single measure to quantify the en-
tanglement present in the resulting four-qubit state, one can
calculate the entanglement between the relevant bipartitions,
namely between all pairs of electrons and between the pro-
ton and all other electrons. This is represented in Fig. 4. It
becomes evident that as more collisions occur, the amount of
entanglement generated between the latest pairs of electrons
tends to decrease. This is expected since the proton keeps
moving farther away with more momentum as more collisions
take place and so each consecutive electron carries less rela-
tive momentum with respect to the proton. In addition to this,
there is a physical restriction at play, namely the monogamy
of entanglement [34]. The latter result essentially states that,
in order for two qubits A and B to be maximally entangled,
they must not be entangled with a third subsystem C. Since
all involved particles are entangled in this case, no pair of
particles can ever be maximally entangled. In fact, only the

bipartition proton and electrons can actually reach maximal
entanglement.

V. CONCLUSIONS

In this work we studied how the consecutive scatterings
of particles (originating from the same source) with a central
target particle can be used to generate a multipartite entangled
state between all particles. In particular, we showed that the
amount of bipartite entanglement entanglement between pairs
of particles, as quantified by the concurrence, is a balance
between two factors. On one hand, the entanglement increases
the closer the projectile particle is to total reflection as well
as how close its mass is to the target particle’s. On the other
hand, the entanglement decreases with the number of colli-
sions while at the same time making it harder for consecutive
projectile particles to hit the target particle. For the specific
case of electrons scattering off a proton, it is clear that any
appreciable entanglement is concentrated on a small solid
angle centered around the total reflected direction, with larger
angular apertures for larger mass ratios. It was also shown that
there is always a momentum for which the generated entan-
glement achieves a maximum value, which can be associated
to an optimal point of interaction lying between the extremes
of small and large momenta, where the projectile and target
particles barely interact.

As a method to generate multipartite quantum states of
massive particles, the consecutive scatterings of particles from
a heavier target particle is conceptually much simpler than
most currently used methods. Nevertheless, there are two clear
bottlenecks to be addressed for experimental implementa-
tions. First, for small mass ratios (the easiest to implement)
one would need to focus on totally reflected particles, whose
direction collides with the newly projected particles. Second,
the heavier target particle would need to be as static as possi-
ble for the projectile particles to hit it, and the method used to
keep it still could influence the projected particles in nontrivial
ways. While the second difficulty would evidently be harder
to address, a solution to the first one might be to use magnetic
fields to alter the trajectory of the projectile particles, which
would not change their energies. One would need, however,
to take into account the inevitable effects of spin precession in
the helicity qubit degrees of freedom.
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APPENDIX A: EXPLICIT STATE CONSTRUCTION
FOR TWO PROJECTILE-TARGET SCATTERINGS

Consider an initial state composed by a target with four-
momentum p1 and helicity h1 and two projectiles with
momenta p2, p3 and helicities h2 and h3. Consider as
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well the unitary matrix defined by

Ûi, j |p1, r1; . . . ; pn, rn〉 ≡ (Û |pi, ri; p j, r j〉) ⊗ |p1, r1; . . . ; pi−1, ri−1; pi+1, ri+1; . . . ; p j−1, r j−1; p j+1, r j+1; . . . ; pn, rn〉, (A1)

i.e., it applies the unitary evolution operator Û , defined by Eq. (2), on the two particles indexed by i and j (the positions relative
to the initial ket). Using this notation, the scattering of a target particle with one projectile particle, followed by another scattering
of the same target with another projectile, will result in a final state of the form

|ψ (t f )〉 = Û1,3Û1,2|p1, r1; p2, r2; p3, r3〉. (A2)

To find the explicit form of this state, one may note the specific form of Eq. (6) for two-particle scatterings, namely

Û1,2|p1, h1; p2, h2〉 = |p1, h1; p2, h2〉 + i
∫

d3q1

(2π )32Eq1

d3q2

(2π )32Eq2

(2π )4δ(4)(q1 + q2 − p1 − p2)

×
∑
r1,r3

M(q1, r1; q2, r2|p1, h1; p2, h2)|q1, r1; q2, r2〉. (A3)

We can now start by considering the first scattering only, whose resulting state is

Û1,2|p1, h1; p2, h2; p3, h3〉 = |p1, h1; p2, h2; p3, h3〉 + i
∫

d3q1

(2π )32Eq1

d3q2

(2π )32Eq2

(2π )4δ(4)(q1 + q2 − p1 − p2)

×
∑
r1,r2

M(q1, r1; q2, r2|p1, h1; p2, h2)|q1, r1; q2, r2; p3, h3〉. (A4)

The second target-projectile scattering, encoded by Û1,3, results in the state

Û1,3Û1,2|p1, h1; p2, h2; p3, h3〉 = Û1,3|p1, h1; p3, h3〉 ⊗ |p2, h2〉 + i
∫

d3q1

(2π )32Eq1

d3q2

(2π )32Eq2

(2π )4δ(4)(q1 + q2 − p1 − p2)

×
∑
r1,r2

M(q1, r1; q2, r2|p1, h1; p2, h2)Û1,3|q1, r1; p3, h3〉|q2, r2〉

= |p1, h1; p2, h2; p3, h3〉 + i
∫

d3q1

(2π )32Eq1

d3q3

(2π )32Eq3

(2π )4δ(4)(q1 + q3 − p1 − p3)

×
∑
r1,r2

M(q1, r1; q3, r3|p1, h1; p3, h3)|q1, r1; p2, h2; q3, r3〉

+ i
∫

d3q1

(2π )32Eq1

d3q2

(2π )32Eq2

(2π )4δ(4)(q1 + q2 − p1 − p2)
∑
r1,r2

M(q1, r1; q2, r2|p1, h1; p2, h2)

×
(

|q1, r1; p3, h3〉 + i
∫

d3k1

(2π )32Ek1

d3k3

(2π )32Ek3

(2π )4δ(4)(q1 + p3 − k1 − k3)

×
∑
l1,l3

M(k1, l1; k3, l3|q1, r1; p3, h3)|k1, l1; k3, l3〉
)

|q2, r2〉 (A5)

= |p1, h1; p2, h2; p3, h3〉 + i
∫

d3q1

(2π )32Eq1

d3q3

(2π )32Eq3

(2π )4δ(4)(q1 + q3 − p1 − p3)

×
∑
r1,r2

M(q1, r1; q3, r3|p1, h1; p3, h3)|q1, r1; p2, h2; q3, r3〉

+ i
∫

d3q1

(2π )32Eq1

d3q2

(2π )32Eq2

(2π )4δ(4)(q1 + q2 − p1 − p2)
∑
r1,r2

M(q1, r1; q2, r2|p1, h1; p2, h2)

× |q1, r1; q2, r2; p3, h3〉 + i2
∫

d3q1

(2π )32Eq1

d3q2

(2π )32Eq2

d3k1

(2π )32Ek1

d3k3

× (2π )32Ek3 (2π )8δ(4)(q1 + q2 − p1 − p2)δ(4)(q1 + p3 − k1 − k3)

×
∑

r1,r2,l1,l3

M(k1, l1; k3, l3|q1, r1; p3, h3)M(q1, r1; q2, r2|p1, h1; p2, h2)|k1, l1; q2, r2; k3, l3〉.

(A6)
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The final state is thus a superposition of four states: one where no scattering occurred, two others where one of the scatterings
did not occur, and a final one where all scatterings happened. Using now the normalization relation

〈k, r|p, s〉 = (2π )3δrsδ
(3)(k − p)2Ep (A7)

we can find the probability amplitude of obtaining as final state a target with momentum p4 and helicity h4 as well as two
projectiles with momenta p5 and p6 and helicities h5 and h6. This comes out as

〈p4, h4; p5, h5; p6, h6| Û1,3Û1,2|p1, h1; p2, h2; p3, h3〉

= i2
∫

d3q1

(2π )32Eq1

d3q2

(2π )32Eq2

d3k1

(2π )32Ek1

d3k3

(2π )32Ek3

(2π )8δ(4)(q1 + q2 − p1 − p2)δ(4)(q1 + p3 − k1 − k3)

× (2π )3δh4l1δ
(3)(k1 − p4)2Ek1 (2π )3δh5r2δ

(3)(q2 − p5)2Eq2 (2π )3δh6l3δ
(3)(k3 − p6)2Ek3

×
∑

r1,r2,l1,l3

M(k1, l1; k3, l3|q1, r1; p3, h3)M(q1, r1; q2, r2|p1, h1; p2, h2)

= −
∫

d3q1

2Eq1

(2π )5δ(4)(q1 + p5 − p1 − p2)δ(4)(q1 + p3 − p4 − p6)

×
∑

r1

M(p4, h4; p6, h6|q1, r1; p3, h3)M(q1, r1; p5, h5|p1, h1; p2, h2)

= − (2π )5

2Ep5−p1−p2

δ
(
Ep5−p1−p2 + Ep5 − Ep1 − Ep2

)
δ
(
Ep5−p1−p2 + Ep3 − Ep4 − Ep6

)
δ(3)(p1 + p2 + p3 − p5 − p4 − p6)

×
∑

r1

M(p4, h4; p6, h6|p5 − p1 − p2, r1; p3, h3)M(p5 − p1 − p2, r1; p5, h5|p1, h1; p2, h2)

≡ N3dh4h5h6 (p4, p5, p6), (A8)

where

dh4h5h6 (p4, p5, p6) =
∑

r1

M(p4, h4; p6, h6|p5 − p1 − p2, r1; p3, h3)M(p5 − p1 − p2, r1; p5, h5|p1, h1; p2, h2) (A9)

and we formally take

N3 = − (2π )5

2Ep5−p1−p2

δ
(
Ep5−p1−p2 + Ep5 − Ep1 − Ep2

)
δ
(
Ep5−p1−p2 + Ep3 − Ep4 − Ep6

)
(A10)

to be a constant. One sees that N3 naturally contains conservation of energy and momentum over the set of scatterings that occur.
We are now interested in analyzing the entanglement created in the helicity degrees of freedom of the final outgoing state in

the case where the two scatterings occur. This amounts to looking at the helicity component of the final state, which will have
the form

|ψh〉 = N3

∑
h4,h5,h6

dh4h5h6 (p4, p5, p6)|h4, h5, h6〉. (A11)

One may now trace away the target subsystem and check if the remaining parts, composed by the two projectiles, are entangled.
In order to do that, one must first build the density matrix. Noting that N3 only involves real quantities, we may consider that
Tr[|ψh〉 〈ψh|] = N 2 ∑

h4,h5,h6
|dh4h5h6 (p4, p5, p6)|2, so that a normalized density matrix for the final state is

ρt,p,p = |ψh〉 〈ψh|
Tr[|ψh〉 〈ψh|] =

∑
h4,h5,h6,r4,r5,r6

dh4h5h6 (p4, p5, p6)d∗
r4r5r6

(p4, p5, p6)|h4, h5, h6〉 〈r4, r5, r6|∑
h4,h5,h6

∣∣dh4h5h6 (p4, p5, p6)
∣∣2 , (A12)

where we used the indexes t and p to refer to target and projectile subsystems, respectively. Note that the factor of N3 has
formally been canceled out. Tracing out the target subsystem results in the system composed by the two projectiles, whose
entanglement properties we can then investigate.

We must now perform the partial trace of the helicity qubits related to the proton, which amounts to applying the formula

Trt [ρ] =
∑

σ

(Ir ⊗ 〈σ |t )ρ(Ir ⊗ |σ 〉t ), (A13)

where Ir represents the identity acting on the remaining subsystems. Defining for simplicity

Nρ =
∑

h4,h5,h6

∣∣dh4h5h6 (p4, p5, p6)
∣∣2

(A14)
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we obtain the partially traced density matrix

ρp,p = Trt [ρt,p,p] = N−1
ρ

∑
σ,h4,h5,h6,r4,r5,r6

dh4h5h6 (p4, p5, p6)d∗
r4r5r6

(p4, p5, p6)|h5, h6〉 〈r5, r6|

=
∑

h5,h6,r5,r6

ρh5h6r5r6 |h5, h6〉 〈r5, r6| , (A15)

where we have the reduced density matrix components

ρh5h6r5r6 = N−1
ρ

(∑
σ

dσh5h6 (p4, p5, p6)d∗
σ r5r6

(p4, p5, p6)

)
. (A16)

The matrix ρp,p has trace equal to 1, as can be straight-
forwardly checked and will in general be mixed, i.e.,
Tr[ρ2

e,e] < 1.

APPENDIX B: KINEMATICS
FOR CONSECUTIVE COLLISIONS

Here we demonstrate the steps required to reproduce in
all generality the kinematics for the consecutive collisions
that take place in the main body of the paper. For the
sake of generalization, we will employ a different nota-
tion for the ingoing and outgoing momenta, as depicted in
Fig. 5.

Let p(1)
in be the three-momentum of the target particle,

which starts of at rest and has mass M. The superscript “(1)”
indicate that we are referring to the first scattering that particle
p is experiencing, while the subscript “in” indicates that it
is an incoming particle. The other incoming particle in the
first scattering will be denoted by k(1)

in , which is the particle
that will be accelerated towards the target particle with lin-
ear momentum p and mass m. After a single scattering, the
outgoing three-momenta are p(1)

out and k(1)
out. From here, we want

to consider additional copies of the particle k(1)
in to consecu-

tively scatter against the same target particle, so for the second

FIG. 5. Diagram depicting the consecutive scatterings. The di-
agrams represent the tree-level QED interaction between two
distinguishable types of particles denoted by the three-momenta k
and p, with rest masses m and M, respectively. The superscripts in the
three-momenta indicate how many interactions occurred up to that
point, while the subscripts indicate whether the particle is incoming
or outgoing. The three-momenta p indicate the target particle, which
started off at rest, while k is the lighter particle, which is accelerated
into the target. For each interaction, a different particle k, with the
same energy and direction as the first one, is shot at the same target
particle p, such that the in the ith interaction, k(i)

in = k(1)
in , while

p(i)
in = p(i−1)

out .

collision we will have k(2)
in = k(1)

in scattering off of p(2)
in = p(1)

out,
and so on for any number of intended collisions. With this
we set up the first conditions for our system of consecutive
collisions, which will allow us to recursively compute the
kinematics in the ith interaction. In particular, we have:

p(1)
in = (0, 0, 0), (B1)

k(1)
in = (0, 0, p), (B2)

p(i)
in = p(i−1)

out , (B3)

k(i)
in = k(1)

in . (B4)

As we will see, each interaction will result in an additional
two degrees of freedom, which we will take as the angular
coordinates for the outgoing particle k(i)

out, namely θ
(i)
k and

φ
(i)
k . Due to spherical symmetry, one can eliminate a single

degree of freedom φ
(i)
k , which we choose to be φ

(1)
k in this

work, although any other φ
(i)
k is possible. In order to find the

values of p(i)
out and k(i)

out as functions of θ
(i)
k and φ

(i)
k , we only

need to guarantee that these can be recursively calculated from
p(i−1)

out = p(i)
in .

Let Ek and Ep denote the energies the particles with
momenta k and p, respectively. From the conservation of four-
momentum leading to the equality (k(i)

in − k(i)
out )

2 = (p(i)
out −

p(i)
in )2 and from the conservation of energy Ep(i)

out
= Ek(i)

in
+

Ep(i)
in

− Ek(i)
out

, one can write

√∣∣k(i)
out

∣∣2 + m2 = a + b
∣∣k(i)

out

∣∣, (B5)

with

a ≡ Ep(i)
in

− M2 − m2 + p(i)
in · (

p(i)
in + k(i)

in

)
Ek(i)

in
+ Ep(i)

in

, (B6)

b ≡ �e(θ (i)
k , φ

(i)
k ) · (

p(i)
in + k(i)

in

)
Ek(i)

in
+ Ep(i)

in

, (B7)
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where �e(θ (i)
k , φ

(i)
k ) is the unit vector for k(i)

out = |k(i)
out|�e(θ (i)

k , φ
(i)
k ). Equation (B5) is solvable for |k(i)

out| with a single positive solution

∣∣k(i)
out

∣∣ = a b +
√

a2 + m2(b2 − 1)

b2 − 1
, (B8)

and, so long as we know p(i)
in = p(i−1)

out , we can explicitly write Eq. (B8), which itself is enough to fully describe k(i)
out as well as

p(i)
out (through three-momentum conservation).

Finally, when calculating the scattering amplitudes it can be useful to define the angular coordinates (θ (i)
p , φ(i)

p ) associated to

the direction of p(i)
out, to be used for the spinors in the helicity basis. These are straightforward to derive from p(i)

out. Let us consider
the first interaction as an example. This case is simpler since p(1)

in = (0, 0, 0), as well as by the fact that we can fix φ
(1)
k = 0 from

spherical symmetry. As such, Eq. (B8) reads

∣∣k(1)
out

∣∣ = p
(m2 + M

√
p2 + m2) cos

(
θ

(1)
k

) + (M +
√

p2 + m2)
√

M2 − m2 sin2
(
θ

(1)
k

)
(M +

√
p2 + m2)2 − p2 cos2

(
θ

(1)
k

) . (B9)

The form of k(1)
out leads to a solution for p(1)

out, which in turn leads to a recursive solution for any ith interaction as given by
Eqs. (B1)–(B4).
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