
PHYSICAL REVIEW A 109, 022432 (2024)

Coin dimensionality as a resource in quantum metrology involving discrete-time quantum walks
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We address metrological problems where the parameter of interest is encoded in the internal degree of freedom
of a discrete-time quantum walker, and provide evidence that coin dimensionality is a potential resource to
enhance precision. In particular, we consider estimation problems where the coin parameter governs rotations
around a given axis and show that the corresponding quantum Fisher information (QFI) may increase with the
dimension of the coin. We determine the optimal initial state of the walker to maximize the QFI and discuss
whether, and to what extent, precision enhancement may be achieved by measuring only the position of the
walker. Finally, we consider Grover-like encoding of the parameter and compare results with those obtained
from rotation encoding.
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I. INTRODUCTION

Discrete-time quantum walks (DTQWs) are quantum
generalizations of classical random walks describing the
discrete-time propagation of a quantum particle over a dis-
crete space [1–3]. In a DTQW the motion of the walker is
determined at each time step by the state of its internal de-
gree of freedom, the so-called coin. Entanglement thus arises
between the spatial degree of freedom of the particle and its
“spin” (or polarization). DTQW models have found applica-
tions in quantum search algorithms [4] and provide a means
for universal quantum computation [5–7] and simulation of
quantum phenomena [8]. More recently, DTQWs have been
also suggested for image and data encryption [9,10], and for
link prediction [11]. DTQWs have been implemented in a
wide range of physical systems including optical-quantum
systems [12–15], waveguide lattices [16,17], silicon based
systems [18], spin systems [19], spin-orbit photonics [20], and
Bose-Einstein condensates [21] and lattices [22], as well as in
quantum computers [23].

The dynamics of DTQWs is described by a unitary opera-
tor which governs the evolution of the whole system, particle
plus coin, in a single time step. It consists of a unitary
operation applied on the coin state, followed by a unitary
conditional shift operator which makes the walker change po-
sition depending on the coin state. In the prototypical DTQW,
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a walker propagating on a line, it may only hop to the left
or to the right depending on the state of its two-dimensional,
D = 2, internal degree of freedom. This basic principle can
be extended to generate a rich variety of DTQWs, with meth-
ods that range from changing the coin operator at each time
step [24–26] to applying multiple coin operators at the same
time step, and by generalizing DTQWs to generic graphs and
higher-dimensional coin spaces [6,27–29], e.g., by coupling
the walker to more than one coin [30–32] or to a single coin
of higher dimension, D > 2 [33–35].

In this paper, we focus on the latter approach, and refer
to a DTQW with a D-dimensional coin as a D-state walk.
For even D = 2k, with k ∈ N, at each time step the walker
is allowed to hop up to its kth nearest-neighboring site, but
is not allowed to stay on its current position [36], a possibil-
ity granted only for odd D = 2k + 1 [37]. Increasing D > 2
paves the way to explore dynamics that are not possible in
a usual two-state walk. In the simplest examples, i.e., pass-
ing from D = 2 to 3, the walker is also allowed to stay
at its current position [37], while for D = 4 it is allowed
to reach the next-nearest neighbors, but not to stay on the
current site [36,38].

The metrological interest of DTQWs lies in the entangle-
ment that is established between the two degrees of freedom
(the walker’s position and coin), making the overall system
more sensitive to tiny variations of the parameter, or mak-
ing one of them available to probe the other. In particular,
we focus on metrological problems where the parameter of
interest is encoded in the internal degree of freedom of the
walker [39], and provide evidence that coin dimensionality is
a potential resource to enhance precision. We determine the
optimal initial state of the walker to maximize the quantum
Fisher information (QFI), and discuss whether and to what
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extent precision enhancement may be achieved by measuring
only the position of the walker [40]. Indeed, coin dimen-
sion plays a fundamental role in the time evolution of the
DTQW, also in the position space and, in turn, in control-
ling and engineering the system. Our results may thus find
applications in the characterization of DTQW-based quan-
tum computing [41–43], as well as in estimation of node
proximity [44] and in specific scattering problems [45]. The
relation between metrology and coin dimensionality can be
exploited for the study of polarized photons or particles
with spin, where the coin plays the role of the internal de-
gree of freedom (i.e., the polarization or the spin) of the
system [19,36,46].

The paper is organized as follows: in Sec. II we introduce
the DTQW model and the different encodings—single-
parameter coin operators—we will consider for the estimation
problem. In Sec. III we briefly review the concepts of classical
and quantum Fisher information and we state the metrologi-
cal problem considered in the present paper. In Secs. IV–VI
we present analytical and numerical results of the estimation
problem for different encoding of the coin parameter and di-
mension of the coin. Section VII is devoted to the conclusions
and perspectives. Further details and proofs can be found in
the Appendices.

II. DISCRETE-TIME QUANTUM WALKS

One-dimensional DTQW models describe the time evolu-
tion of a quantum particle (walker) with an internal degree
of freedom (coin), say spin in the following, over an infinite,
discrete line. The Hilbert space of this bipartite system walker
and coin is H = Hp ⊗ Hc, with Hp = span{|x〉p | x ∈ Z}
the position space, and Hc = span{|m〉c | m ∈ I (s)

c } the coin
space, where dim Hc = D = 2s + 1 for a spin-s particle.
Note that (half) integer s corresponds to (even) odd D. For
later convenience, we have introduced the set of integer
indices

I (s)
c =

{{−s, . . . ,−1, 0, 1, . . . , s} (integer s),{− s − 1
2 , . . . ,−1, 1, . . . , s + 1

2

}
(half integer s),

(1)

sorted in ascending order and relating, in a one-to-one cor-
respondence, the quantum number −s � ms � s associated to
the z-axis component of the spin s, which can be a half integer,
to the shift in position space of the walker, which is an integer,
via

ms ∈ { −s, −s + 1, . . . , s − 1, s},
�
m ∈ { i1, i2, . . . , iD−1, iD}.

(2)

The indices ik ∈ I (s)
c satisfy the relation ik+1 = ik + 1, with the

only exception of the index ik = 0 which is not included in the
set associated to half integer s.

The evolution of the DTQW for one time step is defined by
the unitary operator

U = S (1p ⊗ C), (3)

with 1p the identity in the position space Hp. At a
given time step, the coin state is changed by applying the

coin operator C, leaving the walker’s position state unal-
tered, and this operation is followed by a conditional shift
operator:

S =
∑
x∈Z

∑
m∈I (s)

c

|x + m〉pp〈x| ⊗ |m〉cc〈m| (4)

with I (s)
c defined in Eq. (1), which makes the walker evolve in

position space according to the coin state |m〉c. Both the oper-
ators C and S must be unitary for U to be unitary. Assuming
a single, constant, and uniform coin operator [47], the state of
the system at time t ∈ N is thus

|ψ (t )〉 = U |ψ (t − 1)〉 = U t |ψ (0)〉, (5)

with |ψ (0)〉 the initial state of the system.
Our aim is to investigate estimation problems where the

parameter θ to be estimated is encoded in the coin operator
and to determine the optimal probe for this purpose, assuming
an initially localized walker. In the following sections, we
introduce the single-parameter coin operators and the probe
considered in the present paper.

A. Coin operators

We describe now three different ways of encoding the
parameter of interest in the DTQW dynamics, i.e., the three
types of single-parameter coin operators C investigated in the
present paper. As a first coin model, we consider the operator
(we set h̄ = 1)

R(D)
n̂ (θ ) = e−iθn̂·T (D)

n̂ , (6)

which rotates the spin s of an angle θ about the axis n̂ =
x̂, ŷ, ẑ (unit vector). The generators T (D)

n̂ of the (D = 2s +
1)-dimensional rotation (see Appendix A for their matrix rep-
resentation) satisfy the relation[

T (D)
a , T (D)

b

] = iεabcT (D)
c (7)

where εabc is the Levi-Civita symbol.
As a second coin model, we embed the most general form

of the coin operator in D = 2 (obtained through the Euler
angles parametrization [48] and neglecting an overall phase
factor), i.e., an element of U (2),

C (D=2)
ξ,θ,ζ =

(
e−i ξ+ζ

2 cos θ
2 −ei ξ−ζ

2 sin θ
2

e−i ξ−ζ

2 sin θ
2 ei ξ+ζ

2 cos θ
2

)
(8)

where ξ ∈ [0, 4π ], θ ∈ [0, π ], ζ ∈ [0, 2π ], into a higher-
dimensional space as

C (E ,D>2)
ξ,θ,ζ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

e−i ξ+ζ

2 cos θ
2 0 . . . 0 −ei ξ−ζ

2 sin θ
2

0 1 0 . . . 0
...

. . .
. . .

. . .
...

0 0 . . . 1 0

e−i ξ−ζ

2 sin θ
2 0 . . . 0 ei ξ+ζ

2 cos θ
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(9)

The effective two-dimensional coin operator acts on the
coin states with the lowest and highest index, while leaving
the others unaffected (identity). In dimension D there are
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D(D − 1)/2 independent embeddings, but we focus on this
one due to its relation to Euler angles passing from D = 2
to 3 [49].

As a third coin model, we consider the so-called general-
ized Grover coin, that for D = 2, 3 is defined as

C (2)
G (θ ) =

(
θ

√
1 − θ2

√
1 − θ2 −θ

)
, (10)

C (3)
G (θ ) =

⎛
⎜⎜⎝

−θ2 θ
√

2 − 2θ2 1 − θ2

θ
√

2 − 2θ2 2θ2 − 1 θ
√

2 − 2θ2

1 − θ2 θ
√

2 − 2θ2 −θ2

⎞
⎟⎟⎠,

(11)

with the coin parameter 0 � θ � 1. Note that C (2)
G (θ = 1/

√
2)

is the Hadamard coin (D = 2) [11,50] and C (3)
G (θ = 1/

√
3)

is the Grover coin in D = 3 [37,51]. The Grover coin was
named after showing that a DTQW can be used to implement
Grover’s search algorithm using Grover’s diffusion operator
on the coin space [4,52,53]. Then, attempts have been made to
generalize it by considering parametric coin operators which
recover the Grover coin for some specific values of the param-
eters [37,54–56]. Accordingly, DTQWs with a generalized
Grover coin are generally referred to as generalized Grover
walks.

B. The initial state

As a probe, we consider pure separable initial states

|ψ (0)〉 = |0〉p ⊗ |φ(D)〉c, (12)

where we assume that the walker is initially localized at the
origin of the line, x = 0 [57], i.e., an eigenstate of the position
operator, X |x〉p = x|x〉p. Our purpose is to determine the opti-
mal preparation of the D-dimensional coin state |φ(D)〉c ∈ Hc

for estimating the parameter encoded in the coin operator.
A coin pure state |φ(D)〉c ∈ Hc, with dim Hc = D, is in

principle identified by D complex coefficients {χm}m and can
be written as

|φ(D)〉c =
∑

m∈I (s)
c

χm|m〉c. (13)

The actual number of independent real parameters is reduced
to 2(D − 1) parameters by the normalization condition and
because of the overall arbitrary phase, which is physically
meaningless [58]. Here we parametrize the coin state using
D − 1 angles αi, as a portion of a D-dimensional surface of an
hypersphere embedded in a (D + 1)-dimensional space. The
configurational space is obtained through the rotation of this
portion of hypersurface by D − 1 phases γi. These parameters
can take values

0 � αi � π, 0 � γi � 2π, (14)

with i = 1, . . . , D − 1. This parametrization generalizes
the Bloch sphere (recovered in dimension D = 2) to
higher dimension D > 2. Accordingly, a generic state is

parametrized as

|φ(D)〉c = cos
(α1

2

)
|i1〉c + eiγ1

D−1∏
j=1

sin
(α j

2

)
|i2〉c

+
D−1∑
k=2

eiγk

⎛
⎝D−k∏

j=1

sin
(α j

2

)⎞⎠ cos
(αD+1−k

2

)
|i1+k〉c,

(15)

where ik ∈ I (s)
c in Eq. (1).

In this paper we focus on coins of dimension D = 2, 3, 4,
so the generic state |φ(D)〉c can be explicitly written as

|φ(2)〉c = cos
(α1

2

)
| − 1〉c + eiγ1 sin

(α1

2

)
| + 1〉c, (16)

|φ(3)〉c = cos
(α1

2

)
| − 1〉c + eiγ1 sin

(α1

2

)
sin

(α2

2

)
|0〉c

+ eiγ2 sin
(α1

2

)
cos

(α2

2

)
| + 1〉c, (17)

|φ(4)〉c = cos
(α1

2

)
| − 2〉c

+ eiγ1 sin
(α1

2

)
sin

(α2

2

)
sin

(α3

2

)
| − 1〉c

+ eiγ2 sin
(α1

2

)
sin

(α2

2

)
cos

(α3

2

)
| + 1〉c

+ eiγ3 sin
(α1

2

)
cos

(α2

2

)
| + 2〉c. (18)

The coin, being a D-level system, can be thought of as a
qudit. We chose the above parametrization of the coin state
for consistency with such an interpretation, qubit state (16)
and qutrit state (17) [59], up to D = 4 in Eq. (18).

III. QUANTUM METROLOGY IN DTQWS

In our framework, the coin operator C depends on a sin-
gle unknown parameter θ . The DTQW, intended as the time
evolution of the system, strongly depends on such parameter.
Our purpose is to investigate the estimation problem for such
parameter with emphasis on the effects of coin dimensionality.

A. Classical and quantum Fisher information

Given an observable X with outcomes {x} characterized
by the conditional probability p(x|θ ) of obtaining the value
x when the parameter takes the value θ , the FI

FX (θ ) =
∫

dx
[∂θ p(x|θ )]2

p(x|θ )
(19)

provides a measure of the amount of information that the
observable X carries about the parameter θ .

In fact, for unbiased estimators, upon performing M mea-
surements of the observable X , the variance of the parameter
θ to be estimated satisfies the Cramér-Rao inequality

Var (θ ) � 1

MFX (θ )
. (20)

In our case, the relevant observable is the position of the
walker, which has a discrete spectrum, outcomes x ∈ Z, hence
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the FI is

FX (θ ) =
∑
x∈Z

[∂θ p(x|θ )]2

p(x|θ )
. (21)

In particular, our quantum system is bipartite (the walker’s
position and coin), but we would perform a projective mea-
surement on a part of it (the walker’s position). Therefore, if
we denote by ρθ the density matrix of the bipartite system
parametrized by θ , the conditional probability distribution we
need to assess the FI is

p(x|θ ) = 〈x|Trc[ρθ ]|x〉, (22)

i.e., it follows from projecting the reduced density matrix of
the walker (obtained from a partial trace of the total density
matrix over the coin space) onto the position state |x〉.

Moving to the quantum realm, the parameter is encoded in
the state of the quantum system, ρθ , and the figure of merit to
consider is the QFI [60]

H (θ ) = Tr
[
ρθL2

θ

]
� FX (θ ) ∀X, (23)

that is independent of the selected measurement procedure,
and with L the symmetric logarithmic derivative defined by
the implicit relation

∂θρθ = 1
2 (Lθρθ + ρθLθ ). (24)

The FI is always bounded from above by the QFI for any quan-
tum measurement, thus the quantum Cramér-Rao inequality

Var (θ ) � 1

MH (θ )
(25)

sets the ultimate lower (quantum) bound on the achievable
precision in estimating the parameter θ . As a final remark,
we point out that for pure states |ψθ 〉, as those of the overall
DTQW, the QFI reduces to [60]

H (θ ) = 4(〈∂θψθ |∂θψθ 〉 − |〈∂θψθ |ψθ 〉|2). (26)

B. The metrological problem

The metrological problem we address in this paper con-
cerns the estimation of the parameter encoded in a given coin
operator when letting the probe state (12) evolve in time,
performing a DTQW. The coin operators considered are the
x, y, z rotations and the generalized Grover coin in dimension
D = 2, 3, 4 (see Sec. II A). For the different coins, we discuss
the dependence of the QFI on time and on the dimension of
the coin, and determine the optimal preparation of the probe,
|�(D)〉c, to maximize the QFI. In addition, we compare the
latter with the FI associated to a position measurement of the
walker, which is the natural measurement in a QW. We recall
that a measurement is said to be optimal if the correspond-
ing FI saturates the bound in Eq. (23), i.e., whenever the FI
equals the QFI. Unless otherwise specified, the optimal probes
have been either numerically determined or analytically in-
duced, following Appendix B, and numerically verified. In the
following sections we present results for rotation encodings
(Secs. IV and V) and for the generalized Grover coin encoding
(Sec. VI).

IV. METROLOGY WITH Z-ROTATION ENCODING
AND DIFFERENT COIN DIMENSIONS

The z-rotation operator is diagonal in the chosen basis for
the coin space, because the coin basis states are eigenstates
of it. This allows us to analytically determine the evolution of
the DTQW, and so the FI and the QFI. We start by discussing
the results for any D (rotations and embedded rotations)
and then we refine the discussion for D = 2, 3, 4 as case
studies.

A. Results for arbitrary dimension D

1. Actual rotation

The z rotation in arbitrary D-dimensional coin space,

R(D)
z (θ ) = diag({eimsθ }−s�ms�s), (27)

is a diagonal matrix where the index ms is the quantum num-
ber associated to the z component of the spin s = (D − 1)/2.
The initial state of the system [see Eq. (12)], with initial coin
state as in Eq. (13), evolves according to

|ψ (t )〉 = U t |ψ (0)〉 =
∑

m∈I (s)
c

e−iθmstχm|mt〉p ⊗ |m〉c, (28)

where the index of summation has a twofold role: it runs over
the quantum number −s � ms � s and, correspondingly, over
the associated integer shift m [see Eq. (1)]. The corresponding
QFI (26) is

H (D)
z (t ) = 4t2

⎡
⎢⎣∑

m∈I (s)
c

m2
s |χm|2 −

⎛
⎝∑

m∈I (s)
c

ms|χm|2
⎞
⎠

2
⎤
⎥⎦ (29)

and depends neither on θ (the parameter to be estimated) nor
on the phases {γi}i of the probe state. It only depends on the
angles {αi}i of the latter via {|χm|2}m.

The QFI is minimum (null) when the probe state is a basis
state (eigenstate of the z-rotation operator), χm = δm,m′ . In that
case, the system evolves as |ψ (t )〉 = e−iθm′

st |m′t〉p ⊗ |m′〉c,
i.e., it gains an overall phase factor, the coin state is un-
changed, and, at time t , the walker is localized at xt = m′t .
In particular, the walker remains at the origin if m′ = 0 and
performs jumps of amplitude xt+1 − xt = m′ at each time
step. The global phase factor, which is the only term still
encoding θ , has no physical meaning and indeed it provides
null QFI.

Our purpose is to maximize the QFI with respect to the
initial coin state, i.e., to the coefficients {χm}m that satisfy∑

m∈I (s)
c

|χm|2 = 1. Because of the normalization constraint,
we can maximize the QFI by weighting only the coefficients
χm with the largest m2

s , that is ms = ±s, thus assuming χm = 0
if |ms| �= s. We denote by ±M the integer indices m ∈ I (s)

c
respectively associated to ms = ±s, with

M =
{

s if s is integer (odd D),

s + 1/2 if s is half-integer (even D),
(30)

from Eq. (1). Accordingly, the QFI simplifies to

H (D)
z (t ) = 4t2s2[1 − (|χM |2 − |χ−M |2)2], (31)
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which is maximum for |χM | = |χ−M |. Recalling that D =
2s + 1, the maximum QFI achievable in dimension D or for
a spin-s particle is

max
|φ(D)〉c

H (D)
z (t ) = (D − 1)2t2 = 4s2t2. (32)

The QFI is quadratic in D, so, in this sense, a higher dimen-
sion of the coin is a metrological resource for estimating the
parameter θ encoded in the coin operator. The corresponding
optimal initial coin state is

∣∣�(D)
z

〉
c = 1√

2
(| − M〉c + eiγ |M〉c). (33)

This expression follows from |χ−M | = |χ+M |, the normal-
ization condition, and the fact that we can neglect an
overall global phase factor. An alternative proof of the max-
imization of the QFI and the optimal probe is offered in
Appendix C.

We now focus on the FI of measuring the walker’s position.
After performing a partial trace over the coin’s degrees of
freedom, the reduced density matrix resulting from the state
(28) is

ρp(t ) =
∑

m∈I (s)
c

|χm|2|mt〉pp〈mt |, (34)

diagonal in position space, with probabilities that are inde-
pendent of θ and t . Therefore, for the coin R(D)

z (θ ) we have
FX (θ ) ≡ 0 for any D, i.e., we cannot gain any information
on the parameter θ by measuring the walker’s position. Note
that, ρp being diagonal in the position space, the coherence of
the reduced density matrix is null. Analogously, the FI of a
momentum measurement is identically null, as the probability
distribution does not depend on θ in position space or thus in
momentum space after performing a Fourier transform.

One may wonder whether entanglement between the
walker and the coin plays any role in the estimation prob-
lem. To address this question, we consider the von Neumann
entropy E = −Tr(ρp log ρp), with ρp the reduced density ma-
trix of the walker’s position (equivalently with the coin’s
reduced density matrix). The bounds are 0 � E � log D, with
D the dimension of the lower-dimensional subsystem be-
tween the two, here the coin. The general reduced density
matrix (34) is diagonal and its eigenvalues, |χm|2, do not
depend on time. Assuming the optimal probe (33) as the initial
state and focusing on t > 0 [the initial state is separable,
so E (t = 0) = 0], ρp admits only two nonzero eigenval-
ues, |χ±M |2 = 1/2, and so E = log 2. This result reveals the
following.

(i) The degree of entanglement E = log 2 is constant in
time for t > 0.

(ii) It is independent of D.
(iii) It is maximum only in D = 2.
The optimal probe for the estimation problem generates

entanglement between the walker’s position and coin, but it
is not maximum in D > 2. Therefore, in the following we will
not further investigate entanglement for other encodings, as
this example already shows that, at least for an initially local-
ized walker, in general we cannot expect the optimal probe to
generate maximal entanglement, i.e., we cannot expect to have

a direct implication between maximum QFI and maximum
entanglement.

2. Embedding in dimension D > 2

According to Eq. (9), the z rotation in D = 2, when embed-
ded in a coin space of dimension D > 2, reads

R(E ,D>2)
z (θ ) = diag({e−iθ/2, 1, . . . , 1, e+iθ/2}). (35)

The initial state of the system (12), with initial coin state as in
Eq. (13), evolves according to

|ψ (t )〉 =
∑

σ=±1

eiσ tθ/2χσM |σ tM〉p ⊗ |σM〉c

+
∑

−M<m<M

χm|mt〉p ⊗ |m〉c, (36)

with M in Eq. (30). The corresponding QFI (26),

H (E ,D>2)
z (t ) = t2[|χ−M |2 + |χ+M |2 − (|χ−M |2 − |χ+M |2)2],

(37)

is independent of θ and of the phases {γi}i of the probe state.
Again, the FI is identically null because the reduced density
matrix is independent of θ and so is the probability distribu-
tion of the walker’s position.

B. Explicit results for dimension D = 2

The spin-1/2 rotation (D = 2) around the z axis has matrix
representation

R(2)
z (θ ) =

(
e−iθ/2 0

0 eiθ/2

)
, (38)

which leads to the QFI

H (2)
z (t ) = t2 sin2 α1. (39)

It is minimum, H (2)
z = 0, for α1 = 0, π , i.e., when the probe

is a coin basis state, and it is maximum, H (2)
z = t2, for α1 =

π/2 regardless of the phase γ1, i.e., when the probe is optimal
|�(2)

z 〉c = (| − 1〉c + eiγ1 | + 1〉c)/
√

2
As already proved, the FI of a position measurement

is identically zero, independently of the initial state. From
Eq. (34), we observe that

ρp = cos2
(α1

2

)
| − t〉pp〈−t | + sin2

(α1

2

)
| + t〉pp〈+t |, (40)

which means that, at time t , the walker populates only the sites
x = ±t with nonzero probability and we have the certainty of
finding it in the site x = −t (x = +t) if α1 = 0 (α1 = π ).

C. Explicit results for dimension D = 3

We compare the embedding of a two-dimensional z ro-
tation in a higher-dimensional space, D = 3, to the actual
three-dimensional z rotation. We embed R(2)

z (θ ) (38) into a
(D = 3)-dimensional space as

R(E ,3)
z (θ ) =

⎛
⎜⎜⎝

e−i θ
2 0 0

0 1 0

0 0 e+i θ
2

⎞
⎟⎟⎠, (41)
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which leads to the QFI

H (E ,3)
z (t ) = t2

[
2 sin2

(α1

2

)
cos2

(α2

2

)
cos2

(α1

2

)
+ sin2

(α1

2

)
cos2

(α2

2

)
+ cos2

(α1

2

)
− sin4

(α1

2

)
cos4

(α2

2

)
− cos4

(α1

2

)]
. (42)

The maximum QFI

max
|φ(2)〉c

H (2)
z (t ) = max

|φ(3)〉c

H (E ,3)
z (t ) = t2 (43)

is achieved for the optimal probe with α1 = π/2 and α2 = 0,
|�(E ,3)

z 〉c = (| − 1〉c + eiγ2 | + 1〉c)/
√

2. This result, together
with Eq. (37), reveals that embedding a R(2)

z (θ ) coin rotation
in a higher-dimensional space does not improve the maximum
achievable QFI. Even in this case, the FI for the walker’s
position measurement is null. Therefore, a higher-dimensional
coin is not a metrological resource when embedded coin op-
erators are considered.

On the other hand, a higher-dimensional coin space is
a resource for simulating DTQWs generated by a lower-
dimensional coin. E.g., the DTQW generated by the embed-
ded coin R(E ,3)

z (θ ) (41) with initial coin state (17) with α2 = 0
is equivalent to the DTQW generated by the coin R(2)

z (θ ) (38)
with initial coin state (16). Accordingly, they also provide the
same QFI [see Eq. (42), with α2 = 0, and Eq. (39)].

The actual spin-1 rotation (D = 3) around the z axis has
matrix representation

R(3)
z (θ ) =

⎛
⎜⎝e−iθ 0 0

0 1 0
0 0 eiθ

⎞
⎟⎠. (44)

It differs from the embedded rotation (41) only by a factor 2 in
the argument of the exponential. Therefore, the resulting QFI
is H (3)

z (t ) = 4H (E ,3)
z (t ) [see Eq. (42)], its maximum value is

max H (3)
z (t ) = 4t2 [see Eqs. (43) and (32)], and the optimal

probe is the same: |�(3)
z 〉c = |�(E ,3)

z 〉c.

D. Explicit results for dimension D = 4

We compare the embedding of a two-dimensional z ro-
tation in a higher-dimensional space, D = 4, to the actual
four-dimensional z rotation. We embed R(2)

z (θ ) (38) into a
(D = 4)-dimensional space as

R(E ,4)
z (θ ) =

⎛
⎜⎜⎜⎜⎝

e−i θ
2 0 0 0

0 1 0 0

0 0 1 0

0 0 0 ei θ
2

⎞
⎟⎟⎟⎟⎠. (45)

The resulting QFI is H (E ,4)
z (t ) = H (E ,3)

z (t ) [see Eq. (42)]. This
equality follows from the parametrization of the coin state in
Eq. (15) and the embedding defined in Eq. (9) for arbitrary D,
as the result involves the same variables.

The actual spin-3/2 rotation around the z axis has matrix
representation

R(4)
z (θ ) =

⎛
⎜⎜⎜⎜⎜⎝

e−i 3θ
2 0 0 0

0 e−i θ
2 0 0

0 0 ei θ
2 0

0 0 0 ei 3θ
2

⎞
⎟⎟⎟⎟⎟⎠, (46)

which leads to the QFI

H (4)
z (t ) = t2

(
9
[
sin2

(α1

2

)
cos2

(α2

2

)
+ cos2

(α1

2

)]

−
{

3

[
sin

(α1

2

)2
cos

(α2

2

)2
− cos2

(α1

2

)]

+ sin2
(α1

2

)
sin2

(α2

2

)[
1 − 2 sin2

(α3

2

)]}2

+ sin2
(α1

2

)
sin2

(α2

2

))
(47)

whose maximum, H (4)
z = 9t2, is achieved for α1 = π/2 and

α2 = 0, irrespective of α3 and of {γi}i, i.e., when the probe is
optimal: |�(4)

z 〉c = (| − 2〉c + eiγ3 | + 2〉c)/
√

2.

V. METROLOGY WITH X - AND Y -ROTATION ENCODING
AND DIFFERENT COIN DIMENSIONS

The x- and y-rotation operators are not diagonal in the
chosen basis for the coin space. Therefore, we numerically
study the corresponding DTQW and the associated estimation
problem. We will further inspect these results for the specific
values of θ for which we can provide analytical results. As
discussed in Sec. IV, the embedding of a two-dimensional z
rotation in a higher-dimensional space turns out not to be of
metrological interest, as it does not improve the QFI. There-
fore, in the following we focus exclusively on the actual x
and y rotations. Before discussing in detail our results for
dimensions D = 2, 3, 4, we list here the features of the QFI
that we found to be common to R(D)

x and R(D)
y and that cut

across all the dimensions D = 2, 3, 4.
(i) The QFI does depend on θ , unlike for z rotations; for

small angles, θ → 0.
(ii) The QFI is linear in time, while for finite angles the

leading term is quadratic in time:

lim
θ→0

H (D)
x,y (θ ) ∝ t vs H (D)

x,y (θ � 0) ∝ t2. (48)

(iii) The FI approaches the QFI:

lim
θ→0

max
|φ(D)〉c

F (D)
X ;x,y(θ ) = lim

θ→0
max
|φ(D)〉c

H (D)
x,y (θ ), (49)

meaning that the walker’s position measurement is nearly
optimal for estimating θ . As a downside, the latter result also
means that such a measurement can extract the maximum
information available on θ only when the QFI is low compared
to that for other values of θ . In addition, we have that

max
|φ(D)〉c

H (D)
x (t, θ ) = max

|φ(D)〉c

H (D)
y (t, θ ). (50)

In principle, the QFI for x rotations and that for y rotations
are maximized by different optimal probes. However, it is
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FIG. 1. Maximum QFI as a function of θ for rotations R(D)
x,y (θ ),

for time steps t = 1, 2, . . . , 6. (a) Results for D = 2 and optimal
probe |�(2)

x,y〉c = | − 1〉c (α1 = 0). For θ → 0 the QFI is H (2)
x,y (0) = t

[Eq. (52)]. For θ = π the QFI takes its maximum value H (2)
x,y (π ) =

[t2 + mod(t, 2)]/2, that differs between odd times [orange line,
Eq. (54)] and even times [blue line, Eq. (53)]. (b) Same quantities
for D = 3 and optimal probe |�(3)

x,y〉c = |0〉c (α1 = α2 = π ). The QFI
is H (3)

x,y (θ ) = 4H (2)
x,y (θ ) for θ = 0, π . The QFI shows a period of 2π .

possible to find states that are simultaneously optimal for both
the rotations.

A. Explicit results for dimension D = 2

The spin-1/2 rotation (D = 2) around the x or y axis has
matrix representation

R(2)
n (θ ) = cos(θ/2)1 − i2 sin(θ/2)T (2)

n , (51)

where the generators T (2)
n , with n = x, y, are defined in

Eqs. (A1) and (A2). In the following, first we consider the
y rotations, then the x rotations.

1. y rotations

We can analytically inspect the QFI for some peculiar an-
gles to determine its exact expression. We start by considering
the limit for θ → 0, i.e., a small deviation from the identity
coin [see Eq. (51)]. In this regime, the QFI is linear in t ,

lim
θ→0

H (2)
y (θ, t ) = t − sin2 α1 sin2 γ1, (52)

while, for large t , it recovers the quadratic behavior for θ � 0
[see Fig. 1(a) for θ ≈ 0 and π ]. The optimal probe that maxi-
mizes both the FI and the QFI is the state (16) with γ1 = 0, π

or α1 = 0, π [see Eq. (52)]. Similar results are found for θ =
2π , as the rotation is R(2)

y (2π ) = −R(2)
y (0) [see Eq. (51)], so

the difference with respect to θ = 0 is just a phase (−1)t in the
state, |ψθ=2π (t )〉 = (−1)t |ψθ=0(t )〉, and thus in its derivative.
Such phases compensate when computing the QFI (26).

Another peculiar value is θ = π (or θ = 3π ), for which
the rotation is R(2)

y (π ) = −iσy, with σy the Pauli matrix. Ac-
cordingly, the system oscillates between two configurations:
localized in |0〉p for even t , with corresponding QFI

H (2)
y (even t ) = t2

2

[
1 − 1

2
sin2 γ1 sin2 α1

]
, (53)

and delocalized in its two nearest neighbors | ± 1〉p for odd t ,
with corresponding QFI

H (2)
y (odd t ) =

[
t2 + 1

2
− (t + 1)2

4
sin2 γ1 sin2 α1

]
. (54)

For θ = 3π , the rotation is R(2)
y (3π ) = iσy, so the difference

with respect to θ = π is just a phase (−1)t in the state and its
derivative, which compensate when computing the QFI (26).

For R(2)
y (θ ), any real state,∣∣�(2)
y

〉
c = cos

(α1

2

)
| − 1〉c ± sin

(α1

2

)
| + 1〉c, (55)

is optimal and leads to the same maximum QFI. Both R(2)
y (θ )

and the probe being real, the maximum QFI simplifies to (see
Appendix B2)

H (2)
y (θ ) = 4〈∂θψθ |∂θψθ 〉. (56)

For y rotation in D = 2, although the QFI depends on θ [see,
e.g., Fig. 1(a)], its maximization over the possible probes is
independent of θ and the maximum QFI is independent of the
initial state, provided it is real. So, as for R(2)

z (θ ), there is a
family of optimal states for the QFI. However, if for z rotation
the condition was to have the angle α1 fixed and the phase
γ1 free, for y rotation it is to have the phase γ1 fixed and the
angle α1 free.

2. x rotations

The exact QFI for the peculiar angles θ = 0, 2π and π, 3π

can be derived from that obtained for the y rotation upon re-
placing sin2 γ1 → cos2 γ1, in Eq. (52) and Eqs. (53) and (54),
respectively. The optimal probes that maximize the QFI are
the states (16) with γ1 = π/2, 3π/2 or α1 = 0, π , conditions
that can be summarized by the state∣∣�(2)

x

〉
c = cos

(α1

2

)
| − 1〉c ± i sin

(α1

2

)
| + 1〉c. (57)

We have therefore determined the probes that separately max-
imize all the three rotations R(2)

n (θ ), with n = x, y, z. It is
not possible to simultaneously maximize the QFI of these
three rotations as they require incompatible conditions on the
optimal probe state: α1 = π/2 for the z rotation, α1 = 0, π or
γ1 = 0 for the y rotation, and α1 = 0, π or γ1 = π/2, 3π/2
for the x rotation. However, it is possible to simultaneously
maximize the QFI for two rotations with the following probes:∣∣�(2)

x,z

〉
c
= 1√

2
(| − 1〉c ± i| + 1〉c), (58)

∣∣�(2)
x,y

〉
c = | ± 1〉c, (59)

∣∣�(2)
y,z

〉
c
= 1√

2
(| − 1〉c ± | + 1〉c), (60)

where the subscripts denote the two rotations whose QFI is
maximized. As a final remark, we point out that the QFI for
R(2)

x (θ ) or R(2)
y (θ ) is always lower than that for R(2)

z (θ ); see,
e.g., Fig. 4. On the other hand, the FI for x and y rotations
is nonzero and thus higher than that for z rotation [for which
it vanishes, due to the structure of Eq. (34)]. The FI of a z
rotation is identically null because the probability distribution
for each initial state does not depend on θ and then any
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FIG. 2. Classical FI of a position measurement for rotation
R(2)

y (θ ) for time steps t = 1, 2, . . . , 6. (a, b) Results as a function of θ

for the initial state (16) with γ1 = 0 and (a) α1 = 0 and (b) α1 = π/4
[both optimal states, Eq. (55)]. (c, d) Results for (c) θ = π/3 and
(d) θ = π/2 as a function of the angle α1 parametrizing the optimal,
real initial state (55) with the plus sign [i.e., γ1 = 0 in Eq. (16)]. In
all panels, F (2)

X ;y (t = 1) ≡ 1.

position measurement cannot infer information about the coin
parameter. In contrast, for x and y rotations, the interference
phenomena in position space result in a reduction in the over-
all quantum Fisher information of the system. Despite this
reduction, the probability distribution in the walker’s space
is then dependent on θ . Consequently, measuring the walker’s
position can indeed infer information about θ . Therefore, at
the cost of a diminished global QFI, there exists a nonzero
position FI.

Let us now focus on the FI for the optimal states maximiz-
ing the QFI. In the limit of θ → 0, the FI equals the QFI, it
is linear in time [see, e.g., Figs. 1(a) and 2(a)], and thus the
optimal states for the QFI also maximize the FI. Unlike the
QFI, the FI does not show analogous regularities in the time
dependence and in the state maximizing the FI. As the time in-
creases, the maxima of the FI do not occur always at the same
value of θ and, at given θ , the FI is not necessarily increasing
in time, i.e., it is possible to have FX (θ∗, t ) > FX (θ∗, t + 1)
[see Figs. 2(a) and 2(b)]. This behavior is in sharp contrast
with that of the QFI, whose maximum occurs at θ = π and,
at given θ , is increasing in time [Fig. 1(a)]. In addition, the
FI strongly depends on the initial real state (57) considered
[Figs. 2(c) and 2(d)], while the value of the QFI is maximum
and independent of it.

B. Explicit results for dimension D = 3

The spin-1 rotation (D = 3) around the x or y axis has
matrix representation

R(3)
n (θ ) = 1 − i sin(θ/2)T (3)

n + (cos(θ/2) − 1)T (3)
n

2
, (61)

FIG. 3. Ratio R between the FI and the QFI as a function of
the time step for the optimal probe |�(3)

x,y〉c = |0〉c (64) and different
values of θ .

where the generators T (3)
n , with n = x, y, are defined in

Eqs. (A4) and (A5). Again, we can analytically study the QFI
for specific angles to inspect the metrological advantage—
higher QFI—with respect to the case D = 2. In particular, we
observe that

lim
θ→0

[
max
|φ(3)〉c

H (3)
x,y

] = 4 lim
θ→0

[
max
|φ(2)〉c

H (2)
x,y

] = 4t, (62)

max
θ

[
max
|φ(3)〉c

H (3)
x,y

] = 4 max
θ

[
max
|φ(2)〉c

H (2)
x,y

]
= 2[t2 + mod(t, 2)]. (63)

This means that the QFI corresponding to the optimal probe,
intended as the probe which provides the highest maxθ H (3)

x,y ,
is enhanced by a factor 4 compared to the case in D = 2, the
same improvement we had for the z rotation when passing
from D = 2 to 3 [see Eq. (32)]. However, for x and y rotations
this gain does not hold for all the values of θ , but for θ → 0
and θ = π [compare Figs. 1(a) and 1(b)]. The optimal probe
is unique and simultaneously optimizes the QFI for both the
rotations: ∣∣�(3)

x,y

〉
c = |0〉c. (64)

Here is a major difference with respect to the case in D = 2:
The optimal probe (i) is unique and (ii) is simultaneously
optimal only for x and y rotations. Such a probe does not
optimize the QFI for z rotations because the optimal probe
of the latter is Eq. (33) with M = 1. It is worth noticing
that in the y case even if the coin matrix is real, not all real
states maximize the QFI. Even if the QFI reduces to Eq. (56),
in D = 3 the square modulus of the derivative of the wave
function is not constant for any real state. This means that the
orthogonality of a state and its derivative, 〈∂θψθ |ψθ 〉 = 0, is
not a sufficient condition for the maximization of the QFI [see
Eq. (26)].

The ratio R = FX /H between FI and QFI is indicative of
the optimality of a measurement X . Indeed, it is bounded
by 0 � R � 1, with R = 1 for optimal measurements [see
Eq. (23)]. Focusing on the FI of a position measurement
performed on the optimal state (64) for the QFI, we observe
in Fig. 3 that the ratio strongly depends on the value of
θ and on the time step (except for θ = 0). Therefore, the
amount of information encoded on the outcomes of a position

022432-8



COIN DIMENSIONALITY AS A RESOURCE IN QUANTUM … PHYSICAL REVIEW A 109, 022432 (2024)

measurement depends on θ and t . The suitability of a position
measurement to estimate the parameter of interest depends on
both θ and t and it is quantified by the values of R(θ, t ): A
position measurement is nearly optimal (poor) for the value
of θ and t for which R ≈ 1 (R ≈ 0). Numerical analysis
suggests the existence of asymptotic value limt→∞ R = Rθ

(achieved from below for even t and from above for odd t),
which however strongly depends on θ .

C. Explicit results for dimension D = 4

For the spin-3/2 rotation (D = 4) around the x or y axis,
we observe that

lim
θ→0

[
max
|φ(4)〉c

H (4)
x,y

] = 7 lim
θ→0

[
max
|φ(2)〉c

H (2)
x,y

] = 7t, (65)

max
θ

[
max
|φ(4)〉c

H (4)
x,y

] = 7 max
θ

[
max
|φ(2)〉c

H (2)
x,y

]
= 7

2
[t2 + mod(t, 2)]. (66)

The highest maxθ H (3)
x,y is enhanced by a factor 7 compared

to the case in D = 2, unlike the improvement by a factor 9
we had for the z rotation when passing from D = 2 to 4 [see
Eq. (32)].

As in the case D = 2 we have more than one optimal state
for R(4)

y (θ ) and R(4)
x (θ ), that respectively read∣∣�(4)

y

〉
c = cos

(α3

2

)
| − 1〉c ± sin

(α3

2

)
| + 1〉c, (67)∣∣�(4)

x

〉
c = cos

(α3

2

)
| − 1〉c ± i sin

(α3

2

)
| + 1〉c. (68)

Again, by optimal probe we mean the probe which provides
the highest maxθ H (4)

x,y . The optimal probes resemble the op-
timal ones we determined for R(2)

y (θ ) and R(2)
x (θ ) [Eqs. (55)

and (57), respectively]. Analogously to the case D = 3, it is
not possible to simultaneously maximize the QFI for both x(y)
and z rotations, but the state∣∣�(4)

x,y

〉
c
= | ± 1〉c (69)

maximizes both the x and y rotation, similarly to the case D =
2 [see Eq. (59)]. As for the R(2)

x,y(θ ) when we have a family of
states that maximize H (D)

x,y (θ ) we cannot find optimal state(s)
for FX valid for each time step t or for each value of θ .

To conclude the discussion on the estimation problem for
rotation encodings, we compare the asymptotic behavior of
the maximum QFI, optimized over the probe states and θ , for
the rotations R(D)

n (θ ):

lim
t→∞ max

|φ(D)〉c

H (D)
n

t2
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(D − 1)2 for n = z,

1/2 for n = x, y and D = 2,

2 for n = x, y and D = 3,

7/2 for n = x, y and D = 4.

(70)

This result reveals that, at least in D = 2, 3, 4, the QFI for z
rotations is always larger than that for x, y rotations. This long-
time limit regime is achieved after a few time steps (Fig. 4).

FIG. 4. Asymptotic behavior of the QFI maximized over the ini-
tial states (12) and values of θ for rotations R(D)

n (θ ), with n = x, y, z
and D = 2, 3, 4. For large enough time, the maximum QFI is ∼O(t2).

VI. METROLOGY WITH GENERALIZED GROVER WALK
ENCODING AND DIFFERENT COIN DIMENSIONS

In this section we discuss the estimation problem of the
single parameter of the generalized Grover coin for D = 2, 3,
defined in Sec. II A. The Grover coin in D = 2 turns out to be
of interest also because it can be read as the composition of
two rotations previously considered.

1. Dimension D = 2

The QFI associated to the generalized Grover walk with
coin (10) depends on the parameter θ as

H (2)
G (θ, t ) = f (θ, t )

1 − θ2
, (71)

which diverges for θ → 1, where f (θ, t ) is polynomial in θ

and t [Fig. 5(a)]. The probe (16) is optimal for γ2 = 0, π or
α1 = 0, π (see Appendix B2), so it reads

∣∣�(2)
G

〉
c = cos

(α1

2

)
| − 1〉c ± sin

(α1

2

)
| + 1〉c, (72)

neglecting an overall phase factor. These optimal states pro-
vide the same QFI, are optimal for any value of θ , and are
the same optimal states for y rotation in D = 2. In this re-
gard, we recall that the Grover coin is the product of a y
rotation and a constant z rotation. This can be easily verified
by reparametrizing the coin (10) according to θ ∈ [0, 1] �→
cos (θ̃/2) ∈ [0, 1] as follows:

C (2)
G (θ̃ ) =

(
cos(θ̃/2) sin(θ̃/2)

sin(θ̃/2) − cos(θ̃/2)

)

=
(

cos(θ̃/2) − sin(θ̃/2)

sin(θ̃/2) cos(θ̃/2)

)(
1 0

0 −1

)

= iR(2)
y (θ̃ )R(2)

z (π ), (73)

where 0 � θ̃ � π to ensure that both sine and cosine are pos-
itive [see also Eqs. (38) and (51)]. Estimating the parameter
0 � θ � 1 of the Grover coin amounts to estimating the value
of 0 � cos (θ̃/2) � 1 in Eq. (73).
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FIG. 5. Maximum QFI in a generalized Grover walk for D =
2, 3. (a) QFI in D = 2 as a function of θ for t = 1, . . . , 6 (blue lines).
The curve 2/(1 − θ2) (red dashed line) is reported as a reference.
(b) QFI in D = 3 as a function of θ for t = 1, . . . , 6 (orange lines).
(c) QFI for the Hadamard walk (D = 2, θ = 1/

√
2), Grover walk

(D = 3, θ = 1/
√

3), and comparison of the QFI for D = 2, 3 at fixed
θ = 1/2. The asymptotic behavior of the QFI is O(t2). Results are
obtained for the optimal probes |�(2)

G 〉c = | − 1〉c and |�(3)
G 〉c = |0〉c.

2. Dimension D = 3

The optimal probe

∣∣�(3)
G

〉
c = |0〉c (74)

is unique and it also maximizes the QFI for x and y rotation in
D = 3 [Eq. (64)]. The QFI shows an analogous dependence
on θ as in D = 2 [Eq. (71)], showing the same divergence
[Fig. 5(b)].

Results suggest that the QFI is basically independent of
θ when the latter is small and that it is of order O(t2) for
large enough time. For a given value of θ , the maximum
value the QFI can reach is higher in D = 3 than in the D = 2
case [Figs. 5(a) and 5(b)]. Figure 5(c) shows in detail this
comparison for θ = 1/2, together with QFI for the Hadamard
(D = 2, θ = 1/

√
2) and Grover walk (D = 3, θ = 1/

√
3).

Furthermore, it is worth noticing that, in principle, different
states of the bipartite system (the walker’s position and coin)
might result in the same probability distribution p(x, θ ) of
finding the walker in position x when the parameter takes
the value θ . Accordingly, for a given probability distribution
p(x, θ ) we may expect different values of the QFI, because
the latter, by definition in Eq. (26), depends on the quantum
state and the derivative of the latter, not on p(x, θ ). Then, the
probability distribution, or any physical quantity derived from
p(x|θ ), is not reliable to investigate the QFI when comparing
different coins. As an example, if we take the D = 2

generalized Grover coin (10) and perform the substitution

θ = cos
θ̃

2
, i.e., θ̃ = 2 arccos(θ ), (75)

then the probability distribution p(x|θ ) is the same as in
the two cases, and even the wave function is the same.
Nevertheless the QFI is extremely different, since in one case
there is a divergence and in the other there is not. The origin
of such behavior is the Jacobian, J , of coordinate change:

∂

∂θ
=J ∂

∂θ̃
= ∂θ̃

∂θ

∂

∂θ̃
= −2√

1 − θ2

∂

∂θ̃
. (76)

Due to the expression of the QFI for pure states, Eq. (26), the
Jacobian appears as a square modulus as

H (D)
G (θ, t ) = |J |2H (D)

G (θ̃ , t ) = 4H (D)
G (θ̃ , t )

1 − θ2
. (77)

The classical FI for pure states shows the same characteris-
tic. The Jacobian appears as a square modulus in Eq. (21) and
so

F (D)
X ;G (θ, t ) = |J |2F (D)

X ;G (θ̃ , t ) = 4F (D)
X ;G (θ̃ , t )

1 − θ2
(78)

while the ratio between FI and QFI is not affected by the
change of coordinates and is constant:

F (D)
X ;G (θ, t )

H (D)
G (θ, t )

= R(θ, t ) = F (D)
X ;G (θ̃ , t )

H (D)
G (θ̃ , t )

= R(θ̃ , t ). (79)

We stress that the latter result, Eq. (79), is general and it holds
true for any coordinate change, for any dimensionality, and
for any coin. Moreover, all the considerations made for the
rotations about the FI still hold true for this coin. When we
have a family of states that maximize H (D)

G (θ ) the optimal state
for FX depends both on θ and t .

VII. SUMMARY AND CONCLUSIONS

We have addressed metrological problems where the pa-
rameter of interest, θ , is encoded in the internal degree of free-
dom of a discrete-time quantum walker, initially localized in
position space, and analyzed the precision achievable by dif-
ferent encodings of such parameter. We have shown that coin
dimensionality is a potential resource to enhance precision.

When the parameter is encoded in a coin rotation Rz, the
exact expression of the QFI has been analytically obtained at
any time step t . We have determined the initial preparation of
the coin state which maximizes the QFI. This optimal state
turns out to be independent of the value of the unknown
parameter θ . Moreover, the maximum value achievable by
the QFI increases with the square of the coin’s dimension,
according to Eq. (32). This precision may be achieved by
a joint measurement on the two degrees of freedom of the
system (the walker’s position and coin), since in this case the
FI associated to a position measurement vanishes.

We have then studied the case where the encoding of the
parameter happens through x and y rotations, finding the fam-
ily of initial states that maximize the QFI (also in this they are
independent of the value of θ ) and showing that the maximal
achievable QFI increases with the dimension of the coin. For
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D = 2 we have proved the existence of states that are jointly
optimal for the two rotation encodings, Rx/y, and that it is
also possible to find states that maximize the QFI for any pair
of two-dimensional rotations. For D = 3, there is an optimal
initial state for the two encodings Rx and Ry, which is different
from that obtained for Rz. At variance with the D = 2 case, it
is not possible to jointly maximize the QFI of Rz and one of
the Rx/y rotations.

Finally, we have addressed encoding via a generalized
Grover coin, and have found that the optimal states are the
same as those optimizing the estimation for y-rotation encod-
ings, at least for the dimensions we analyzed (D = 2, 3).

Overall, we have provided evidence that coin dimensional-
ity is a resource to enhance precision in metrological problems
involving DTQWs. Our results provide solid tools to address
optimization of probe states in several situations of interest,
i.e., sensing in magnetic systems, where the coin’s degree of
freedom is the spin of the particle, or waveguides, where the
coin’s degree of freedom is the polarization of the photon.

ACKNOWLEDGMENTS

This work has been done under the auspices of
GNFM-INdAM and has been partially supported by MUR
and European Union through Project No. PRIN22-PNRR-
P202222WBL-QWEST. L.R. acknowledges financial support
by Istituto Nazionale di Fisica Nucleare through the project
“QUANTUM.” The main idea was conceived by P.B. and
M.G.A.P. The investigation was carried out by S.C. and G.R.
and the theoretical framework is due to S.C. and L.R., S.C.
and G.R. wrote the original draft. Writing review and editing
has been performed by L.R., S.C., P.B., and M.G.A.P.

APPENDIX A: SPIN ROTATION GENERATORS

The generators T (D)
n of the rotations about the axes n =

x, y, z in dimension D are the representation of the spin op-
erators S(D)

n [61]. Here below we report their explicit matrix
form.

1. Dimension D = 2

In dimension D = 2 the generators of the rotations are
proportional to the Pauli matrices {σn}n=x,y,z—generators of
SU (2)—and read

T (2)
x = σx

2
= 1

2

(
0 1
1 0

)
, (A1)

T (2)
y = σy

2
= 1

2

(
0 −i
i 0

)
, (A2)

T (2)
z = σz

2
= 1

2

(
1 0
0 −1

)
. (A3)

2. Dimension D = 3

In dimension D = 3 the generators of the rotations are

T (3)
x = 1√

2

⎛
⎜⎝0 1 0

1 0 1
0 1 0

⎞
⎟⎠, (A4)

T (3)
y = 1√

2

⎛
⎜⎝0 −i 0

i 0 −i
0 i 0

⎞
⎟⎠, (A5)

T (3)
z =

⎛
⎜⎝1 0 0

0 0 0
0 0 −1

⎞
⎟⎠. (A6)

3. Dimension D = 4

In dimension D = 4 the generators of the rotations are

T (4)
x = 1

2

⎛
⎜⎜⎜⎜⎝

0
√

3 0 0√
3 0 2 0

0 2 0
√

3

0 0
√

3 0

⎞
⎟⎟⎟⎟⎠, (A7)

T (4)
y = 1

2

⎛
⎜⎜⎜⎜⎝

0 −i
√

3 0 0

i
√

3 0 −2i 0

0 2i 0 −i
√

3

0 0 i
√

3 0

⎞
⎟⎟⎟⎟⎠, (A8)

T (4)
z = 1

2

⎛
⎜⎜⎜⎝

3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3

⎞
⎟⎟⎟⎠. (A9)

APPENDIX B: DETAILS OF SOME RESULTS
MENTIONED IN THE TEXT

1. Derivative of the evolution operator

To assess the QFI as a function of time, we need the wave
function and its derivative at each time step, i.e., we need
their time evolution. While computing |ψθ (t )〉 = U t |ψ (0)〉 is
straightforward in principle, this might not be the case for
|∂θψθ (t )〉 ≡ ∂θ |ψθ (t )〉 = (∂θU t )|ψ (0)〉. To compute the latter
we have to compute ∂θU t , as the unknown parameter is en-
coded in U , not in the initial state, and this operator is the sum
of t terms:

∂θU t =
t−1∑
m=0

Um(∂θU )U t−m−1. (B1)

On the other hand, this expression can be manipulated to
iteratively compute such operator as the sum of only two terms
at each time step:

∂θU t = (∂θU t−1)U + U t−1∂θU ∀t > 0. (B2)

2. Orthogonality between a state and its derivative

The inner product 〈ψθ |∂θψθ 〉 = i�〈ψθ |∂θψθ 〉 is pure imag-
inary, as ∂θ 〈ψθ |ψθ 〉 = 0 = 2Re〈ψθ |∂θψθ 〉 from the normal-
ization condition, 〈ψθ |ψθ 〉 = 1. Then, if the inner product is
real, then it is necessarily null, and so the state |ψθ 〉 is or-
thogonal to its derivative |∂θψθ 〉. This is condition is naturally
verified if both the state and its derivative are real.

We want to apply the above result to our estimation prob-
lem based on DTQWs. The reason is that the QFI may be
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maximized by making −|〈ψθ |∂θψθ 〉|2 � 0 in Eq. (26) null.
We stress that this argument does not necessarily lead to the
true maximum QFI. Nevertheless, it can still be of help in
determining the optimal probe. The condition of orthogonality
between the wave function |ψθ (t )〉 and its derivative |∂θψθ (t )〉
at time t is

〈ψθ (t )|∂θψθ (t )〉 = 〈ψ (0)|(U t )†(∂θU t )|ψ (0)〉

=
t−1∑
m=0

〈ψθ (m)|U†(∂θU )|ψθ (m)〉

=
t−1∑
m=0

〈ψθ (m)|(1 ⊗ C†∂θC)|ψθ (m)〉 = 0,

(B3)

where the second line follows from Eq. (B1) and the third line
from S†S = 1 (unitary). We want this condition to hold true
at any time t > 0, so it must be satisfied also at t = 1. Given
the initial state (12), the latter condition reads

〈ψθ (1)|∂θψθ (1)〉 = 〈ψ (0)|(1 ⊗ C†∂θC)|ψ (0)〉
= c〈φ(D)|C†∂θC|φ(D)〉c = 0. (B4)

The coin is a unitary operator, thus ∂θ (C†C) = ∂θ1 = 0, which
implies

(C†∂θC)† = −C†∂θC, (B5)

i.e., the operator C†∂θC is anti-Hermitian, so its diagonal ele-
ments are pure imaginary. If the condition in Eq. (B4) holds
true for all |φ(D)〉c, then the operator C†∂θC is null, which
implies that both C† and ∂θC are singular, unless one of them
is null. This cannot be the case as, in contradiction with our
assumptions, C does depend on the parameter to be estimated
and must be unitary (thus, also nonsingular) for U to be
unitary, as required by the DTQW. Therefore, we cannot have
a condition holding true for any probe, but in principle we
can determine some conditions (sufficient, but not necessary)
under which Eq. (B4) is satisfied.

The following argument relies on two points.
(i) The operator 1 ⊗ C†∂θC is anti-Hermitian, because

C†∂θC is.
(ii) The expectation value of an antisymmetric operator on

a real state is null.
If the coin operator C is real, then C†∂θC and 1 ⊗ C†∂θC are

real, thus antisymmetric. As a result, for any real state |φ(D)〉c

we have c〈φ(D)|C†∂θC|φ(D)〉c = 0. The unitary operator U in
Eq. (3) is real, C being real by assumption and S real by defini-
tion [Eq. (4)]. If |φ(D)〉c is real, then the initial state (12) is real
and accordingly |ψθ (t )〉 = U t |ψ (0)〉 is real for any t � 0. In
conclusion, a sufficient condition to have 〈ψθ (t )|∂θψθ (t )〉 = 0
for all t > 0 is that the coin operator and the initial coin state
are real.

As an example, we discuss the rotations in D = 2. First, we
observe that, for a given rotation Rn = exp(−iθTn)—we omit
the argument θ and the superscript (D) for shortness—around
the axis n = x, y, z, its derivative is ∂θRn = −iTnRn. Clearly
[Rn, Tn] = 0 and R†

nRn = 1, thus for the rotations we simply
have C†∂θC = −iTn. From the latter result with the genera-
tors in Eqs. (A1)–(A3) and by direct inspection of R(2)

n (θ ),

we see that only the y rotation is real. The orthogonality
condition (B4) on the generic initial state (16) for R(2)

y leads
to − i

2 sin α1 sin γ1 = 0, which is satisfied for γ1 = 0, π or
α1 = 0, π . We numerically verified that the resulting probes,
i.e., ∣∣�(2)

y

〉
c = cos

(α1

2

)
| − 1〉c ± sin

(α1

2

)
| + 1〉c, (B6)

are indeed optimal, as they maximize the QFI. On the other
hand, the above argument does not apply to R(2)

x (θ ) and
R(2)

z (θ ) due to the presence of complex matrices.

APPENDIX C: ALTERNATIVE PROOF OF THE OPTIMAL
QFI FOR Z ROTATIONS IN ARBITRARY DIMENSION

When there is only one parameter θ to be estimated and the
state is pure, the QFI can be alternatively expressed as

H (θ ) = lim
δθ→0

8(1 − |〈ψθ |ψθ+δθ 〉|)
δθ2

. (C1)

In our case, the states |ψθ 〉 to be considered are reported in
Eq. (28) and we can easily prove that

|〈ψθ (t )|ψθ+δθ (t )〉| = |〈φc|eiδθT (D)
z t |φc〉|, (C2)

where T (D)
z is the generator of z rotations in dimension D

and |φc〉 is the initial coin state. Maximizing the QFI (C1)
is equivalent to minimizing Eq. (C2). We define the unitary
operator W ≡ exp{itT (D)

z δθ} = ∑D
j=1 eiλ j Pj whose distinct

eigenvalues {eiλ j }, with λ j = mjtδθ , are associated to the cor-
responding eigenprojectors {Pj}. A lemma by Parthasarathy
[62] states that, if |〈φc|W |ψc〉| > 0 for every normalized state
|φc〉, then

min
‖φc‖=1

|〈φc|W |φc〉|2 = min
j �=k

cos2

(
λ j − λk

2

)

= cos2

(
λ j∗ − λk∗

2

)

= |〈φ∗
c |W |φ∗

c 〉|2, (C3)

where the eigenvalues λ j∗ and λk∗ are those minimizing the
right-hand side of the first line, and

|φ∗
c 〉 = 1√

2
(|λ j∗ 〉 + |λk∗ 〉), (C4)

where |λ j∗ 〉 and |λk∗ 〉 are arbitrary normalized states in the
range of Pj∗ and Pk∗ , respectively.

According to this lemma, we can prove the maximum QFI
(32) and the optimal initial coin state (33). Since the QFI is
defined in the limit for δθ → 0, we can compute the square
root of Eq. (C3) as√

min
j �=k

cos2

(
λ j − λk

2

)
≈
√

1 − t2δθ2

4
max

j �=k
(mj − mk )2

=
√

1 − t2s2δθ2 ≈ 1 − t2s2

2
δθ2,

(C5)

because −s � mj � s. This, together with Eq. (C1), leads to
Eq. (32). Now, we focus on the optimal probe state. In our
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case, all the D eigenvalues of T (D)
z , and so of W , are distinct.

Hence, an operator Pj is a projector onto the one-dimensional
space spanned by the jth eigenstate of T (D)

z . As shown above,
the two eigenstates we need to define the state in Eq. (C4)
correspond to the lowest and highest eigenvalues of T (D)

z , i.e.,

we need | ± s〉. Each eigenspace is one-dimensional, thus the
only arbitrariness left is in the choice of the phase factor.
However, when taking the superposition of two states, only
the relative phase matters. This, together with Eq. (C4), leads
to the optimal initial coin state in Eq. (33).
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Barkhofen, I. Jex, and C. Silberhorn, Phys. Rev. Res. 1, 033036
(2019).
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