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Detecting a topological transition of quantum braiding
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The braiding operations of quantum states have attracted substantial attention due to their great potential for
realizing topological quantum computations. In this paper, we show that a threefold-degenerate eigensubspace
can be obtained in a four-level Hamiltonian which is the minimal physical system. Braiding operations are
proposed to apply to dressed states in the subspace. The topology of the braiding diagram can be characterized
through physical methods once the sequential braiding pulses are adopted. We establish an equivalent relation-
ship function between the permutation group and the output states where different output states correspond to
different values of the function. The topological transition of the braiding happens when two operations overlap,
which is detectable through the measurement of the function. Combined with the phase variation method, we can
analyze the wringing pattern of the braiding. Therefore, the experimentally feasible system provides a platform
to investigate braiding dynamics, the SU(3) physics, and the qutrit gates.
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I. INTRODUCTION

Topological quantum computation has been recognized as
one of the most important approaches toward realizing the
fault-tolerant quantum computer [1–4]. The scheme relies
on the non-Abelian anyons which exist in the degenerate
eigensubspace and obey non-Abelian braiding statistics. The
unitary gate operations used to realize quantum computation
are carried out by braiding non-Abelian anyons and measuring
the final states. The fault tolerance of the topological quantum
computer arises from the nonlocal encoding of the qubits,
which makes them immune to errors caused by local perturba-
tions. There have been numerous physical systems proposed
to realize topological quantum computers, i.e., the fractional-
Hall states [5,6], cold atoms [7], topological superconductors
[8], and the Majorana zero modes [9]. However, substantial
challenges still exist in the real experimental realizations.
Recently, two research groups independently realized the sim-
ulation of the Ising-type non-Abelian anyons (also called Ising
anyons) in superconducting quantum simulators with serial
digital quantum gates [10,11]. The non-Abelian feature and
the fusion rules are experimentally simulated in such systems.
The above works have demonstrated topological quantum
computation to be experimentally feasible.
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On the other hand, analog experiments of non-Abelian
braiding operations which connect to the topological quantum
gates are also investigated [12–25]. To reveal the non-Abelian
characteristic, threefold-degenerate eigenstates are needed
which can be constructed by single photons interacting with
seven waveguide modes in photonic chips [12]. Different
light-diffraction patterns correspond to different braiding or-
ders. It is intrinsical to the geometric effects since the
dynamical phases are trivial during the evolution process.
Similar results are also performed in acoustic waveguide
modes [14]. Furthermore, the threefold-degenerate states can
be induced with two photons interacting with four waveguide
modes in photonic chips, which is used to realize three-
dimensional quantum holonomy [17]. At the same time, it
seems that the existed braiding results have no difference from
mathematical results with classical braiding (that is, braiding
classical objects with different orders will obtain different fi-
nal states). It would be interesting to ask whether a “quantum”
braiding (braiding quantum systems with quantum controls)
would be different from a “classical” braiding. To answer the
above question, one may resort to a quantum system with a
fully controllable Hamiltonian.

In this paper, we propose to perform non-Abelian braid-
ing operations in a threefold-degenerate subspace in a cold
atomic system. The degenerate eigensubspace is constructed
in a four-level system which costs the minimal physical re-
sources. Braiding operations of the eigenstates are introduced
in such systems by imposing dressed pulses upon dressed
states. Different braiding orders generate different final states
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FIG. 1. (a) Coupling scheme used to achieve the threefold-
degenerate eigensubspace. Bare states {|1〉, |2〉, |3〉, |4〉} are four
energy levels in a cold 87Rb atomic system. �1, �2 are the Rabi
frequencies of radio fields or two-photon Raman transitions while
�3(�4) with detuning �3(�4) are the Rabi frequencies of mi-
crowave fields. (b) World-line description of braiding schemes of
three degenerate eigenstates {|λ1〉, |λ2〉, |λ3〉}. t denotes the evolving
time and the solid colored lines denote the positions of the states. Dif-
ferent orders of braiding operations {π12,o, π23,u} will induce different
final states which confirms the non-Abelian characteristic of the
braiding. The orientation of the braiding can be introduced by intro-
ducing the rotating direction of the π pulses where the overcrossing
operation is achieved by πk j,o in Eq. (5) and the undercrossing is
achieved by πk j,u in Eq. (6).

which shows the non-Abelian character. The quantumness
of the braiding operations is shown by overlapping two op-
erations that will make topological transition happen. To
quantify such transitions, mapping functions that are exper-
imentally measurable are introduced to label different final
output states. Therefore, the proposal system with threefold-
degenerate subspace provides an experimentally feasible way
to investigate the braiding dynamics, and furthermore, the
SU(3) physics [26,27]. The paper is organized as follows:
In Sec. II we introduce the four-level system that gener-
ates the threefold-degenerate eigensubspace. In Sec. III we
introduce the braiding operation upon dressed states and test
the robustness. In Sec. IV we characterize the topology of
the linking pattern by introducing an equivalence relationship
which is experimentally detectable. In Sec. V we characterize
the topology of the wringing pattern by testing the response
to the phase variation of π pulses. We conclude the paper in
Sec. VI.

II. HAMILTONIAN WITH THREEFOLD-DEGENERATE
EIGENSUBSPACE

Here we construct a threefold-degenerate eigensubspace in
a fully controllable cold atomic system. We adopt a four-level
system interacting with six optical fields as shown in Fig. 1(a),
where the energy levels are chosen to be |1〉 = |F = 2, mF =
−1〉, |2〉 = |F = 1, mF = −1〉, |3〉 = |F = 2, mF = 0〉, and

|4〉 = |F = 1, mF = 0〉 in the 87Rb atom. Under the bare state
basis {|1〉, |2〉, |3〉, |4〉} and rotating-wave approximation, the
interaction Hamiltonian is given by

H = 1

2

⎛
⎜⎜⎝

0 �1eiϕ �3 �4eiϕ

�1e−iϕ 0 �3e−iϕ �4

�3 �3eiϕ �3 �2eiϕ

�4e−iϕ �4 �2e−iϕ �4

⎞
⎟⎟⎠, (1)

where we have adopted h̄ = 1. The Rabi frequen-
cies �3(�4) with detuning �3(�4) that couple
{|1〉, |3〉}, {|2〉, |3〉}({|1〉, |4〉}, {|2〉, |4〉}) are set to be
microwave fields, where similar experiments have
been realized in [28]. The coupling �1(�2) between
{|1〉, |2〉}({|3〉, |4〉}) can be realized by radio fields
[29,30] or two-photon Raman transitions [31]. One
can find that when the detuning satisfies conditions
�3 = �2

3/�1 − �1,�4 = �2
4/�1 − �1,�1�2 = �3�4,

the eigenvalues of Hamiltonian (1) are given by

λ1 = λ2 = λ3 = −�1, λ4 = �2
1 + �2

2 + �2
3

�2
1

, (2)

of which a threefold-degenerate subspace with the lowest
eigenvalues exists. Comparing with the seven-level scheme
[12] or the N-pod system [32,33], the proposed system
is the minimal physical one, promoting experimental
feasibility. By parametrizing �1 = �0 sin α sin θ,�2 =
2�0 cos α/ tan θ,�3 = √

2�0 sin α cos θ,�4 = √
2�0 cos α,

the eigenstates will be obtained as

|λ1〉 =
√

2

2
(|1〉 − e−iϕ |2〉),

|λ2〉 = cos θ |b〉 − sin θ |3〉,
|λ3〉 = cos α|c〉 − e−iϕ sin α|4〉,
|λ4〉 = sin α|c〉 + e−iϕ cos α|4〉,

(3)

where |b〉 = √
2/2(|1〉 + e−iϕ |2〉), |c〉 = sin θ |b〉 + cos θ |3〉.

Under the subspace spanned by the lowest eigenstates, one
will obtain the non-Abelian gauge potentials and gauge fields
as calculated by Ajk

μ = i〈λ j |∂μ|λk〉 (Ajk
μ are the matrix ele-

ments of Alm,μ defined in two of the threefold eigenstates,
i.e., the subspace of {|λ1〉, |λ2〉}) and Flm,μν = ∂μAlm,ν −
∂νAlm,μ − i[Alm,μ, Alm,ν], respectively [34,35]. Using Eq. (3),
the nondiagonal matrix of SU(3) gauge field Flm,θα will be
given by

F12,θα = F13,θα = 0,

F23,θα = i

(
0 θ̇ α̇ sin α

−θ̇ α̇ sin α 0

)
. (4)

Therefore, the threefold-degenerate eigensubspace provides
a fully controllable platform to investigate the braiding dy-
namics and the evolution will be determined by geometric
characteristics of the gauge field which can be treated as
geometric quantum control [36–46].
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III. BRAIDING OPERATION OF DRESSED STATES
AND ROBUSTNESS

In the following, we discuss the braiding operations in the
eigensubspace constructed by {|λ1〉, |λ2〉, |λ3〉}. Considering
the oriented link of the braiding configuration [47–49], the
overcrossing braiding operation can be realized by π pulses
upon dressed states defined as

πk j,o = −i(|λk〉〈λ j |eiφk j + |λ j〉〈λk|e−iφk j )

+|λl〉〈λl | + |λ4〉〈λ4|, (5)

where k, j, l = 1, 2, 3. And the undercrossing braiding is de-
fined as

πk j,u = i(|λk〉〈λ j |eiφk j + |λ j〉〈λk|e−iφk j )

+|λl〉〈λl | + |λ4〉〈λ4|, (6)

which satisfies the relationships πk j,oπk j,o = πk j,uπk j,u =
−1, πk j,oπk j,u = πk j,uπk j,o = 1 [50]. It can be seen that the
orientation of the crossing is equivalent to the rotating di-
rection of the quantum states along a certain axis. Once the
mapping between the braiding and the π pulses sequences is
established, we can investigate the topology of the braiding in
the dressed states subspace.

The π pulse πk j,o is connected to the evolution governed by
the Hamiltonian Hk j with πk j,o = e−iHk j T and πk j,u = eiHk j T ,
where T is the evolution period. To simplify the experi-
mental realization, we set the initial control parameters with
θ (t = 0) = π/2, α(t = 0) = π/2, ϕ(t = 0) = 0 [51] where
the eigenstates turn out to be

|λ1〉in =
√

2
2 (|1〉 − |2〉), |λ2〉in = −|3〉,

|λ3〉in = −|4〉, |λ4〉in =
√

2
2 (|1〉 + |2〉). (7)

In this case, we find that the braiding operations π12,0, π23,u

with φ12 = φ23 = φ can be realized by the Hamiltonian under
the bare states basis {|1〉, |2〉, |3〉, |4〉} with

H12 = �12

4

⎛
⎜⎜⎝

0 0 −√
2eiφ 0

0 0
√

2eiφ 0
−√

2e−iφ
√

2e−iφ 0 0
0 0 0 0

⎞
⎟⎟⎠, (8)

H23 = �23

2

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 eiφ

0 0 e−iφ 0

⎞
⎟⎟⎠, (9)

with �12T = �23T = π . It can be seen that H12 can be re-
alized by a triangle-type three-level system [45] while H23 is
achieved by coupling the two-level system {|3〉, |4〉}.

As shown in Figs. 1(b) and 1(c), braiding operations
of groups {π12,o, π23,u} are introduced, where π12,o is used
to inverse the population of dressed states |λ1〉 and |λ2〉,
and π23,u is used to inverse the population of dressed
states |λ2〉 and |λ3〉. Mathematically, the final braiding
states are determined by the orders of braiding operations
which reveal the non-Abelian characteristic. For exam-
ple, when the systems are prepared in the state |�0〉 =
a1|λ1〉 + a2|λ2〉 + a3|λ3〉 + a4|λ4〉, the final state will be
|�1〉 = a2|λ1〉 + a3|λ2〉 + a1|λ3〉 + a4|λ4〉 against the union
operations π23,uπ12,o [Fig. 1(b)], while |�2〉 = a3|λ1〉 +

a1|λ2〉 + a2|λ3〉 + a4|λ4〉 corresponds to the one of π12,oπ23,u

[Fig. 1(c)]. To detect the final output state, one needs to
measure the population on each eigenstates which is done by
applying a π/2 pulse to {|1〉, |2〉}. Therefore, the correspon-
dence between the final braiding states and the bare states will
be given by |λ1〉 f = |1〉, |λ2〉 f = −|3〉, |λ3〉 f = −|4〉, |λ4〉 f =
|2〉 and the eigenstates can be detected by measuring the bare
states.

In Figs. 2(a) and 2(b), the population dynamics of the
braiding upon dressed states representations are depicted. The
initial state is chosen to be |�0〉 = √

0.4|λ1〉 + √
0.3|λ2〉 +√

0.2|λ3〉 + √
0.1|λ4〉, and Fig. 2(a) shows the results of oper-

ations π23,uπ12,o while Fig. 2(b) shows the ones of operations
π12,oπ23,u, with φ = π/2. To investigate the general dynam-
ics, Hamiltonian (1) with θ = π/2, α = π/2, and ϕ = 0 is
applied between the gap of the braiding pulses which makes
the system always evolve in the eigensubspace [52]; that is,
the evolution is given by

U = UH (T3)Uπ (T )UH (T2)Uπ (T )UH (T1); (10)

UH (Ti ) = e−iHTi ; i = 1, 2, 3; Ti is the interaction duration of
H ; Uπ (T ) = {π23,u, π12,o}. In the numerical simulation, we
set �12 = �23 = 1 and T1 = T2 = T3 = T = π . UH will not
change the population upon the eigenstates since |λi〉in, i =
1, 2, 3 are the instantaneous eigenstates of H . As shown in
Figs. 2(a) and 2(b), the different braiding results of different
braiding orders truly reveal the non-Abelian characteristic.

Here we discuss the robustness of braiding, as shown in
Fig. 2(c). Assuming the starting time of π12,o(π23,u) is set
to be t1(t2), we tilt t1(t2) and observe the final population of
union operations π23,uπ12,o. It can be seen that t1 = T1, t2 =
T1 + T + T2. By keeping the separation �t = t2 − t1 > T
(two braiding operations do not overlap), the population P1

of eigenstate |λ1〉 does not change along with t1 and �t (other
populations are also similar with P1). Such robustness is guar-
anteed by the topology of the braiding which does not change
as long as one changes the control parameters.

IV. CHARACTERIZING THE LINKING PATTERN
AND TOPOLOGICAL TRANSITION

In the following, we discuss how to characterize the braid-
ing configuration with physical methods in the dressed state
subspace, and make a comparison with the one in mathematic
theory.

We first briefly review how to characterize the topology of
braiding in mathematic theory [47–49,53]. Since the braiding
diagrams can be changed to knots by certain rules, we use
the language of knot theory in the following. To determine
the topology, one needs to quantify the linking patterns (the
numbers and the distribution of the crossing) and wringing
patterns (the orientation of the crossing) which utilize the
Jones polynomial. Given an oriented link L, the Jones polyno-
mial is given by X (L) = (−A3)−ω(L)〈L〉, where A is a variable,
〈L〉 is the bracket polynomial that characterizes the linking
patterns of L, and ω(L) is the writhe that characterizes the
wringing patterns of L. It can be found that the topological
invariant in knot theory is different from the Chern number in
condensed-matter physics which is defined as an integral of
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FIG. 2. The braiding dynamics and their robustness. (a) The braiding dynamics of union operation π23,uπ12,o. (b) The braiding dynamics
of union operation π12,oπ23,u. The initial states of both cases are set to be |�0〉 = √

0.4|λ1〉 + √
0.3|λ2〉 + √

0.2|λ3〉 + √
0.1|λ4〉. Hamiltonian

(1) with θ = π/2, α = π/2, and ϕ = 0 is introduced between the gap of the braiding pulses which makes the system always evolve in the
eigensubspace. The evolution is thus governed by U = UH (T3)Uπ (T )UH (T2)Uπ (T )UH (T1), Uπ (T ) = {π12,o, π23,u}, T1 = T2 = T3 = T , where T
is the evolution period of the braiding pulses. Pink dashed lines, population of |λ1〉, P1; red dotted lines, population of |λ2〉, P2; blue dash-dotted
lines, population of |λ3〉, P3; black solid lines, population of |λ4〉, P4; the population of eigenstates can be detected by the ones of bare states
with suitable pulses. (c) Population P1 vs starting time t1 and the time interval �t .

the gauge field (described by the mathematics called differen-
tial geometry) [28,29,54–56].

In the following, we will introduce how to characterize the
topology of braiding in dressed state subspace with physical
methods.

We first discuss the characterization of the linking pattern
of the braiding. Assuming that there are m input states with
the population denoted as Pi, i = 1, 2, . . . , m with P1 > P2 >

· · · > Pm. We can redefine Pi by P′
i = m + 1 − i. One can

find that the final output state after braiding will be one of
the permutations of arrangement (P′

1P′
2 . . . P′

m) which can be
marked as

ξ =
(

P′
1 P′

2 · · · P′
m

A1 A2 · · · Am

)
. (11)

Then we map the permutation ξ to a one to one function as

K (ξ ) =
∏

i

(Ai )
i. (12)

K is experimentally determined from the population Pi. It
is known that the permutation groups are the invariant sub-
group of braiding groups [48] and the output result will not
be changed by the three Reidemeister moves in knot theory;
function K can be treated as an equivalence relationship which
separates the braiding into several groups. Since the braiding
scheme with N crossing will have 2N possible kinds of con-
figuration and m states will have m! possible permutations, we
can construct a physical system with big enough m to cover
the possible configurations of the braiding.

In Fig. 3(a), index K versus separation time �t of two
braiding operations {π23,u, π12,o} are depicted for the case
of m = 3. The initial state is chosen to be |�0〉 (the same
as in Fig. 2). The fully controllable quantum system offers
a platform to investigate the topological transition dynamics
of braiding. When �t > π , two braiding operations are well
separated; K is stable at 54 as the given final state |�1〉 =√

0.3|λ1〉 + √
0.2|λ2〉 + √

0.4|λ3〉 + √
0.1|λ4〉 after the union

operations π23,uπ12,o. K will be stable at 72 when �t < −π ,
where final state |�2〉 = √

0.2|λ1〉 + √
0.4|λ2〉 + √

0.3|λ3〉 +√
0.1|λ4〉 after the union operation π12,oπ23,u. As can be seen

that the output states are robust against the separation time

between pulses if the pulses are well separated. The above
classification results are in accord with the ones of the bracket
polynomial 〈L〉. To calculate 〈L〉, we insert the braiding
{π23,u, π12,o} in a nontrivial knot which induces 〈L〉 = 1 for
the case π23,uπ12,o and 〈L〉 = −2 for the case π12,oπ23,u.

When −π < �t < π , braiding operations overlap. Here K
is sensitive to �t since the overlapping states are not topo-
logical. Therefore, we can detect the dynamics of topological
transition in the dressed states subspace which cannot be
realized in classical systems.

V. CHARACTERIZING THE WRINGING PATTERN
WITH PHASE VARIATION

Here we discuss the characterization of the wringing pat-
tern of the braiding. As for the oriented link, the linking
pattern is not enough to determine the topology of the braid-
ing. Different from the writhe ω(L) in the Jones polynomial,
here we propose to investigate the wringing patterns with the
phase dynamics of the quantum systems. To test the phase
coherence of the operations π23,uπ12,o, we tilt the relative

FIG. 3. (a) Equivalent relationship function K of braiding
{π23,u, π12,o} vs the deviation of �t . �t > π and �t < −π corre-
spond to two different braiding configurations and K will change
accordingly. The classification of topology by K is the same as the
bracket polynomial 〈L〉 in the well-defined regions. The topological
transition will happen when two braiding pulses overlap of which
the dynamics can be described by K . (b) Relationship between pop-
ulation P1 and the relative phase φ. The phase coherence shows the
quantumness of the braiding.
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FIG. 4. (a) World-line description of braiding π12,uπ23,uπ12,o

(upper panel) and π12,oπ23,uπ12,o (bottom panel) where only the
orientations of the final π pulses of the two braiding are different.
(b) Population dynamics against braiding π12,uπ23,uπ12,o. (c) Popu-
lation dynamics against braiding π12,oπ23,uπ12,o. Pink dashed lines,
population of |λ1〉, P1; red dotted lines, population of |λ2〉, P2; blue
dash-dotted lines, population of |λ3〉, P3; black solid lines, population
of |λ4〉, P4. (d) Inner product F = 〈� f |�i〉 vs the phase variation
of the π pulses: |�i〉, the initial state; |� f 〉, the final state; Re(F ),
the real part of F ; Im(F ), the imaginary part of F . Yellow solid
line, braiding of π12,oπ23,uπ12,o; red dash-dotted line, braiding of
π12,uπ23,oπ12,o; blue dashed line, braiding of π12,uπ23,uπ12,o; green
dotted line, braiding of π12,oπ23,oπ12,o. All the calculations use the
same initial state |�0〉 as in Fig. 2.

phases between the two braiding operations and calculate the
final states, as described in Fig. 3(b). We set φ12 = 0 and
change φ from 0 to 2π in H23. The final population of P1 will
change along with φ. Similar cases happen in P2 and P3 which
will not happen in classical braiding. Therefore, the dynamics
of braiding in quantum systems will be more interesting and
may lead to novel phenomena.

In Fig. 4, we discuss the braiding with three braiding pulses
by two cases: π12,uπ23,uπ12,o [upper panel in Fig. 4(a)] and
π12,oπ23,uπ12,o [bottom panel in Fig. 4(a)], where the only
difference between the two braiding is the orientation of the
final pulses. Such braiding schemes are frequently studied
in the investigation of Yang-Baxter equations [57–59]. The
population dynamics in Fig. 4(b) corresponds to the braiding
π12,uπ23,uπ12,o and the one in Fig. 4(c) corresponds to the
braiding π12,oπ23,uπ12,o, where the input state |�0〉 is the same
as Fig. 2. Since the populations of the output states for both
of the braiding are the same, function K cannot distinguish
the two braidings. The problem also exists in the bracket
polynomial 〈L〉 in knot theory. By connecting the starting
point and the ending point that lay in the same dashed lines
in the world-lines description of the braiding [i.e., s1 and
s′

1, s2 and s′
2, and s3 and s′

3 in Fig. 4(a)], we will obtain
knots or chains from the braiding diagram in Fig. 4(a), where
both braiding diagrams give the same value of 〈L〉 = −2.
To further characterize the topology, we calculate the final
states |� f 〉 against the variation of the phase φk j in the π

pulses of Eqs. (5) and (6). In Fig. 4(d), we plot the results

of F = 〈� f |�i〉 against φ of which the y axis symbolizes the
values of the real parts Re(F ) and the z axis symbolizes the
values of the imaginary parts Im(F ) of F . As can be seen, the
response curve of braiding π12,uπ23,uπ12,o [blue-dashed line in
Fig. 4(d)] is different from the one of π12,oπ23,uπ12,o [yellow-
solid line in Fig. 4(d)]. Other cases of braiding π12,uπ23,oπ12,o

(red dash-dotted line) and π12,oπ23,oπ12,o (green dotted line)
are also plotted where the response curves against the phase
variation are all different. The above classification results are
similar to the ones of using writhe ω in the Jones polyno-
mial. By defining the overcrossing to be the positive crossing
and the undercrossing to be the negative crossing, the writhe
(number of positive crossings minus the number of negative
crossings) will also derive four possible values ±3 and ±1
[60]. Therefore, the phase coherence of the quantum system
offers a physical method to investigate the topology of the
braiding.

VI. SCALABILITY OF THE PROPOSED SYSTEM

Here we discuss the scalability of the proposed system.
According to the above discussion, one can achieve a (N −
1)-fold degenerate eigensubspace from a N-level system.
Considering the present experimental system, the maximal
controllable levels will be Nmax = 128 with the hyperfine
ground states in the holmium atom [61,62]. To achieve a
larger Hilbert space, one may adopt the multiparticle states
of the interacting system instead of the atomic levels, i.e., N
interacting two-level atoms correspond to 2N possible states.
Assuming that an input state is given by |�0〉 = ∑

i ci|ξi〉,
where |ξi〉 is one of the possible multiparticle states |ξi〉 =
|ε1〉 ⊗ |ε2〉 · · · ⊗ |εN 〉, |εk〉, k = 1, . . . , N, are the quantum
states of the kth two-level atom which is labeled by {|0〉, |1〉}.
The braiding operation between |ξk〉 and |ξ j〉 is given by

π ′
k j,o(u) = ∓i(|ξk〉〈ξ j |eiφk j + |ξ j〉〈ξk|e−iφk j ) +

∑
l �=k, j

|ξl〉〈ξl |,

(13)

which can be realized by the evolution π ′
k j,o(u) = e∓i

∫ TI
0 H ′

k j t

governed by the Hamiltonian H ′
k j = �k j

2 (|ξk〉〈ξ j |eiφk j +
|ξ j〉〈ξk|e−iφk j ), with �k jTI = π . Hamiltonian H ′

k j can be
constructed in a N-particles system physically with Ising-type
interaction as given by

HI =
∑

i

(
aiσ

i
x + biσ

i
y + ciσ

i
z

) +
∑
i< j

Vi jσi j, (14)

where σ i
l = I ⊗ I · · · ⊗ σl ⊗ · · · I , σl (l = x, y, z) are the Pauli

matrices applied to the ith particle, and the coefficients
ai, bi, ci can be time or site dependent. Vi j are the nearest-
neighbor coupling strength and σi j are the coupling terms
which have the form σ i

l σ
j

l or σ i
+σ

j
− + σ i

−σ
j

+, σ
i( j)
+ = (σ i( j)

x +
iσ i( j)

y )/2, and σ
i( j)
− = (σ i( j)

x − iσ i( j)
y )/2 [63–65]. By choos-

ing suitable coefficients ai, bi, ci,Vi j , Hamiltonian H ′
k j can

be realized by HI , i.e., given an initial state |�0〉 =
k00|00〉 + k11|11〉), (k2

00 + k2
11 = 1), the braiding operation of

{|00〉, |11〉} can be realized by HI = �I (σ 1
x σ 2

x + σ 1
y σ 2

y )/4,
�I TI = π . To discuss the dynamics in the degenerate eigen-
subspace, one may adopt a suitable coupling configuration
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such as Hamiltonian (1) in the basis of {|ξi〉}. Therefore, the
system can be extended to the Hilbert space with dimension
2N in a N-particles system.

VII. CONCLUSION

In summary, we have proposed a scheme to realize braid-
ing operations in a threefold-degenerate eigensubspace of a
four-level system which is also the minimal physical system.
The topological transition and phase coherence of the braiding
factually exhibit the distinction between the quantum sys-
tem and the classical system. Furthermore, we show that an
equivalent relationship function and phase-variation method
can be combined to classify the topology of the braiding. As
known, classifications of knots are an NP problem in knot
theory which is still challenging [49]. Our paper may provide
a feasible way to solve the problem with physical resources.
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APPENDIX: REMARKS

1. Derivation of the four-level system
with a threefold-degenerate eigensubspace

To construct a four-level system with a threefold-
degenerate eigensubspace directly is quite a challenging task.
At the same time, it is well known that a N-pod system has a
degenerate eigensubspace with N − 2 dimensions. Therefore,
we may get the four-level system with a threefold-degenerate
eigensubspace deduced from the five-pod system with large
detuning. Under the bare state basis {|1〉, |2〉, |3〉, |4〉, |5〉} and
rotating-wave approximation, the interacting Hamiltonian of
a five-pod system is given by

H (t ) = h̄

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 �′
1

0 0 0 0 �′
2e−iϕ

0 0 0 0 �′
3

0 0 0 0 �′
4e−iϕ

�′
1 �′

2eiϕ �′
3 �′

4eiϕ −2�5

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (A1)

where �′
i(i = 1, 2, 3, 4, 5) are the Rabi frequencies and �5

is the single-photon detuning. According to the Schrödinger
equation and the large detuning situation (�5 	 �′

i), we can

FIG. 5. Population dynamics of different input states where the
density matrix is described by Eq. (A4). The coherence of input states
can be tilted by parameter η. Solid lines (Pp2, Pp3), η = 1; dashed
lines (Pm2, Pm3), η = 1/2; dotted line (Pt2, Pt3), η = 0. The red lines
are the numerical results of dressed state |λ2〉 and the blue lines are
the ones of |λ3〉.

get

dc1

dt
= − i�′

1

4�5
(�′

1c1 + �′
2eiϕc2 + �′

3c3 + �′
4eiϕc4),

dc2

dt
= − i�′

2

4�5
(�′

1e−iϕc1 + �′
2c2 + �′

3e−iϕc3 + �′
4c4),

dc3

dt
= − i�′

3

4�5
(�′

1c1 + �′
2eiϕc2 + �′

3c3 + �′
4eiϕc4),

dc4

dt
= − i�′

4

4�5
(�′

1e−iϕc1 + �′
2c2 + �′

3e−iϕc3 + �′
4c4),

(A2)

where ci are the probability amplitude of bare states |i〉, i =
1, 2, 3, 4, respectively. One can find that the effective four-
level system upon bare states {|1〉, |2〉, |3〉, |4〉} is given by

Heff = h̄

2

⎛
⎜⎜⎝

0 �11eiϕ �13 �14eiϕ

�11e−iϕ 0 �13e−iϕ �14

�13 �13eiϕ �31 �34eiϕ

�14e−iϕ �14 �34e−iϕ �41

⎞
⎟⎟⎠, (A3)

with �11 = �′2
1 /2�5,�13 = �′

1�
′
3/2�5,�14 = �′

1�
′
4/2�5,

�34 = �′
3�

′
4/2�5, �31 = (�′2

3 − �′2
1 )/2�5, �41 = (�′2

4 −
�′2

1 )/2�5, and �′
1 = �′

2. One can check that Hamiltonian Heff

has a threefold-degenerate eigensubspace. By replacing �11

with �1, �13 with �3, �14 with �4, �34 with �2, �31 with
�3, and �41 with �4, we can recover Hamiltonian (1) from
Hamiltonian (A3).

By adopting (N + 1)-pod configuration, the N-fold degen-
erate subspace can be deduced after the reduction. It can be
found that a fully connected coupling should be realized in the
reduced Hamiltonian which may be experimentally challeng-
ing for large N . To solve this problem, the series-connected
tripod system can be adopted [12]. It can be checked that
a Hamiltonian with terms coupling the nearest neighbor is
needed after the reduction, which will improve the experimen-
tal feasibility.
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FIG. 6. (a) Population dynamics against braiding π12,uπ23,uπ12,o

with additional Hamiltonian Hg adding to all of the π pulses. (b) Pop-
ulation dynamics against braiding π12,oπ23,uπ12,o with additional
Hamiltonian Hg adding to all of the π pulses. Through detecting the
breaking dynamics we can distinguish the braiding with the same
linking pattern but different wringing patterns. Pink dashed lines,
population of |λ1〉, P1; red dotted lines, population of |λ2〉, P2; blue
dash-dotted lines, population of |λ3〉, P3; black solid lines, population
of |λ4〉, P4.

2. Effect of initial mixed states on quantum braiding

Here we discuss the distinction of braiding of different
input states, pure states and mixed states, while the braiding
operations are still coherent. The input states now are de-
scribed by the density operator as

ρ0 =

⎛
⎜⎜⎜⎜⎜⎝

|c1|2 ηc1c∗
2 ηc1c∗

3 ηc1c∗
4

ηc2c∗
1 |c2|2 ηc2c∗

3 ηc2c∗
4

ηc3c∗
1 ηc3c∗

2 |c3|2 ηc3c∗
4

ηc4c∗
1 ηc4c∗

2 ηc4c∗
3 |c4|2

⎞
⎟⎟⎟⎟⎟⎠

. (A4)

The density operator is a pure state when η = 1 and is mixed
state when 0 � η < 1; ci, i = 1, 2, 3, 4 are probability ampli-
tudes of |i〉.

In Fig. 5, the population dynamics of the braiding upon
eigenstates |λ2,3〉 are shown, where the control parameters
are the same as the ones in Fig. 2 and c1 = √

0.4, c2 =√
0.3, c3 = √

0.2, c4 = √
0.1. We consider union operations

of π23,u with φ = π/2. The density operator is computed by
ρ(t ) = Ucρ0U †

c , Uc = UH (T2)Uπ (T )UH (T1), Uπ (T ) = π23,u.
The red (population of |λ2〉, Pp2) and blue (population of |λ3〉,
Pp3) solid lines in Fig. 5 are the numerical results of pure states
with η = 1 in Eq. (A4). Since the initial state and the braiding
are both coherent, the dynamics of the population will be
subject to the phase φ sinusoidally. The red (blue) dotted lines
are the results of Pt2(Pt3 ) with the situation of η = 0. Here
the input state is classical, of which the population dynamics
will not change as one tilts the phase φ. A common case of
η = 1/2 is shown by the red (blue) dashed lines in Fig. 5
where the population dynamics of Pm2(Pm3) can be subjected
to the phase variation of φ but will not be as perfect as the case
in η = 1. Therefore, a quantum braiding needs the input state
and the braiding operations to be both coherent.

3. Characterizing the wringing pattern with breaking dynamics

Taking advantage of the full controllability of the proposed
system, we can test the braiding topology by breaking the

braiding which can be done by adding a global Hamiltonian
to the braiding operations.

As in the case of Fig. 4(a), two braidings with the same
linking pattern but different wringing patterns cannot be dis-
tinguished by the population of the output states, that is
function K . However, through applying a specific (but not
unique) Hamiltonian

Hg = �0

⎛
⎜⎜⎝

0 −1 0 0
−1 0 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠, (A5)

to all of the π pulses, the results will be different. The numer-
ical results are shown in Figs. 6(a) and 6(b). The evolution
operator of Fig. 6(a) is derived as

Uag = UHg−H12UHg−H23UHg+H12 , (A6)

while the evolution operator of Fig. 6(b) is derived as

Ubg = UHg+H12UHg−H23UHg+H12 , (A7)

where UH ′ = e−iH ′T . The initial states and the control param-
eters are the same as the ones in Figs. 2(a) and 2(b). The
existence of Hg breaks the configurations of Ua and Ub since
operators UHg+H12 (UHg−H12 ) are no longer π pulses. The evolu-
tion will be dynamically dependent on �0T yet still inside the
threefold-degenerate eigensubspace. In Figs. 6(a) and 6(b),
one can easily find that the final populations Pi, i = 1, 2, 3, are
different for Uag and Ubg. Consequently, we can describe the
topology of braiding by function K and breaking dynamics.

4. Qutrit gates in degenerate eigensubspace

d-ary digits (d > 2) encoded in multiquantum states have
emerged as an alternative way to qubit for quantum compu-
tation and quantum information science. Due to the larger
Hilbert space, d-ary digits feature a more powerful ability to
do multiple control operations simultaneously and reduce the
circuit complexity, simplifying the experimental setup and en-
hancing the algorithm efficiency [66,67]. Here we investigate
the realization of geometric qutrit gates in the threefold-
degenerate eigensubspace with Hamiltonian (1), i.e., the Pauli
X gate X3 and the Z gate Z3 with the form

X3 =
⎛
⎝0 0 1

1 0 0
0 1 0

⎞
⎠, Z3 =

⎛
⎝1 0 0

0 eiφ3 0
0 0 e2iφ3

⎞
⎠. (A8)

One can find that the X3 gate is the cyclic permutation
of the probability amplitudes of the quantum state and
can be achieved by a pulse sequence of π12,oπ23,o. Fur-
thermore, the Z3 gate can be achieved by the sequences
π23,u(φ3)π23,o(0)π12,u(φ3)π12,o(0) where zero or φ3 in φk j,o(u)

can be determined by the φk j in Eqs. (5) and (6). The operation
πk j,o(u) can be realized geometrically and thus the X3, Z3 gates
[36–45]. The present control can be also generalized to the
case of d-ary digits with n-fold degenerate eigensubspace.
Since the eigenstates are connected to the bare states with
Eq. (7), therefore, the proposed gates can be applied to the
bare states after a unitary transformation.
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